- 2.1. Докажите, что нормированное пространство сепарабельно тогда и только тогда, когда в нем есть плотное подпространство не более чем счетной размерности.
- **2.2.** Докажите, что пространства c_0 , C[a,b], ℓ^p , $L^p[a,b]$, $L^p(\mathbb{R})$ при $p < \infty$ сепарабельны, а ℓ^∞ , $C_b(\mathbb{R})$, $L^\infty[a,b]$ и $L^\infty(\mathbb{R})$ несепарабельны.
- **2.3.** Докажите, что подмножество сепарабельного метрического пространства, рассмотренное как метрическое пространство с индуцированной метрикой, само сепарабельно.
- **2.4***. Мера μ , определенная на некоторой σ -алгебре подмножеств множества X, называется cenapabeльной, если существует не более чем счетное семейство $\mathcal B$ измеримых подмножеств конечной меры в X, обладающее тем свойством, что для каждого измеримого множества конечной меры $A \subset X$ и каждого $\varepsilon > 0$ найдется такое $B \in \mathcal B$, что $\mu(A \triangle B) < \varepsilon$.
- 1) Докажите, что мера Лебега в \mathbb{R}^{n} сепарабельна.
- 2) Интерпретируйте сепарабельность меры как сепарабельность некоторого метрического пространства, состоящего из измеримых подмножеств X (по модулю некоторого отношения эквивалентности).
- 3) Пусть $1 \leq p < \infty$, и пусть μ σ -конечна (это означает, что X является объединением не более чем счетного числа измеримых множеств конечной меры). Докажите, что $L^p(X,\mu)$ сепарабельно тогда и только тогда, когда μ сепарабельна.
- 4) Докажите, что $L^{\infty}(X,\mu)$ несепарабельно за исключением того (тривиального) случая, когда в X имеется лишь конечное число измеримых множеств.
- **2.5.** Пусть X, Y нормированные пространства, причем X конечномерно. Докажите, что любой линейный оператор $T \colon X \to Y$ ограничен и достигает нормы.
- **2.6.** Пусть $\lambda \in \ell^{\infty}$, и пусть $X = \ell^{p}$ или c_{0} . Напомним, что диагональный оператор $M_{\lambda} \colon X \to X$ переводит вектор $x \in X$ в вектор $(\lambda_{n}x_{n})_{n \in \mathbb{N}} \in X$, и что $\|M_{\lambda}\| = \sup_{n} |\lambda_{n}|$ (см. лекцию). При каких условиях оператор M_{λ} достигает нормы?
- **2.7.** Зафиксируем точку $t_0 \in [a, b]$ и рассмотрим линейный функционал

$$F: (C[a,b], \|\cdot\|_p) \to \mathbb{K}, \quad F(x) = x(t_0).$$

- 1) При каких $p \in [1, +\infty]$ функционал F ограничен? 2) Найдите его норму. 3) Достигает ли он нормы?
- **2.8.** Пусть $X = (C[a,b], \|\cdot\|_p)$ $(1 \leqslant p \leqslant +\infty)$, и пусть $f \in C[a,b]$. Оператор умножения $M_f \colon X \to X$ действует по правилу

$$M_f(g) = fg$$
 $(f \in X).$

- 1) Докажите, что M_f ограничен. 2) Вычислите его норму. 3) При каких условиях оператор M_f достигает нормы?
- **2.9.** Пусть (X, μ) пространство с мерой, и пусть $f: X \to \mathbb{K}$ существенно ограниченная измеримая функция. Зафиксируем $p \in [1, +\infty]$. Оператор умножения $M_f: L^p(X, \mu) \to L^p(X, \mu)$ действует по правилу

$$M_f(g) = fg$$
 $(f \in L^p(X, \mu)).$

1) Докажите, что M_f ограничен. 2) Вычислите его норму. 3) При каких условиях оператор M_f достигает нормы?

2.10. Пусть $X = L^p[0,1]$ $(1 \le p \le +\infty)$. Оператор неопределенного интегрирования $T \colon X \to X$ действует по формуле

$$(Tf)(x) = \int_0^x f(t) dt \qquad (f \in X).$$

1) Докажите, что T ограничен. 2) Для p = 1 и $p = \infty$ вычислите его норму. 3) Для тех же p выясните, достигает ли он нормы.

Анонс: для p=2 норма этого оператора равна $2/\pi$. В свое время мы это сможем доказать.

2.11. Пусть I=[a,b], и пусть $K\in C(I\times I).$ Интегральный оператор $T\colon C(I)\to C(I)$ задается формулой

$$(Tf)(x) = \int_{Y} K(x, y) f(y) \, dy.$$

Докажите, что T корректно определен, ограничен, и что $||T|| \leqslant ||K||_{\infty}$.

2.12. Пусть (X, μ) — пространство с мерой, и пусть $K \in L^2(X \times X, \mu \times \mu)$. Интегральный оператор Гильберта-Шмидта $T \colon L^2(X, \mu) \to L^2(X, \mu)$ задается формулой

$$(Tf)(x) = \int_X K(x, y) f(y) d\mu(y).$$

Докажите, что T корректно определен, ограничен, и что $||T|| \leq ||K||_2$.

- **2.13.** Пусть X, Y нормированные пространства. Напомним, что линейный оператор $T \colon X \to Y$ называется *коизометрией*, если он отображает открытый единичный шар пространства X на открытый единичный шар пространства Y.
- 1) Докажите, что если T отображает замкнутый единичный шар пространства X на замкнутый единичный шар пространства Y, то T коизометрия.
- 2) Верно ли обратное утверждение?
- **2.14.** Пусть $\lambda \in \ell^{\infty}$, и пусть $X = \ell^{p}$ или c_{0} . При каких условиях на λ диагональный оператор $M_{\lambda} \colon X \to X$ 1) топологически инъективен; 2) открыт; 3) изометричен; 4) коизометричен?
- 2.15. Ответьте на те же четыре вопроса для оператора умножения из задачи 2.9.
- **2.16.** Постройте линейные изометрические вложения **1)** \mathbb{K}_p^n в $(C[a,b], \|\cdot\|_p)$, **2)** ℓ^{∞} в $C_b(\mathbb{R})$, **3)** c_0 в $(C[a,b], \|\cdot\|_{\infty})$.
- **2.17.** Докажите, что следующие свойства нормированного пространства X эквивалентны:
 - (1) равенство ||x+y|| = ||x|| + ||y|| возможно только для пропорциональных x, y;
 - (2) единичная сфера S_X не содержит нетривиальных отрезков;
 - (3) если $x, y \in \mathbb{S}_X$ и $x \neq y$, то ||x + y|| < 2.

Нормированные пространства, обладающие этими свойствами, называются *строго нормированными*, а норма с указанными свойствами — *строго выпуклой*.

- **2.18. 1)** Найдите условия, необходимые и достаточные для того, чтобы неравенство Юнга и неравенство Гёльдера (см. листок 1) обращались в равенства.
- **2)** Докажите, что пространства \mathbb{K}_p^n , ℓ^p , $L^p(X,\mu)$ являются строго нормированными при 1 .
- **2.19.** Докажите, что пространства $L^1(X,\mu)$ и $L^\infty(X,\mu)$ не являются строго нормированными за исключением того (тривиального) случая, когда X единственное непустое измеримое подмножество в X.