
How difficult is it to compute
the winner(s) of a game?

Olivier Hudry

Télécom ParisTech, Paris, France

The context: who is the winner?

� A game withn players.

� For any pair {i, j} of distinct players, i and j
compete together.

� We assume that there is no tie: i defeatsj or
conversely.

� We would like to rank the players or at least to
choose a winner.

The lack of transitivity

� The results obtained from the n(n – 1)/2 possible
matches do not always provide a transitive structure: i
may defeatj, while j defeatsk who, in his turn, defeatsi.

� The result is a (round-robin) tournament, i.e. an
antisymmetric, complete, binary relation, and not
necessarily a linear order(= transitive tournament).

� Question: how to rank the players from the obtained
tournament or at least how to determine a winner (or
several winners)?

� This leads to the so-calledtournament solutions.

A link with the context of voting theory

� Similar issues appear in the context of voting theory
when a pairwise comparison method(Condorcet, 1785)
is applied:

� n candidates;

� we compute the numbermxy of voters who prefer
candidate x to candidate y;

� majority rule: x is collectively preferred to y if mxy > myx.

� The result is still a tournament (called the majority
tournament), even if the voters´ preferences are linear
orders (« voting paradox », « Condorcet effect »,
« Condorcet cycle »...).

The associated graph

� We build a directed graph T = (X, A) where

� X = set of players;

� there is an arc (= directed edge) fromx to y if x defeatsy.

� As there is no tie, T is a tournament (= complete asymmetric

directed graph).

T may betransitive(then, it is a linear order), but not

necessarily.

An example

� n = 6 players: a, b, c, d, e, f.

a b

c

d

f

e

� An absolute winner (a Condorcet winner for an election...)
is a playerW who defeats any other player; in T, all the arcs
leaveW; the outdegree of W is equal to n – 1. When there
exists an absolute winner, there is only one.

no absolute winner a = absolute winner

a b

c

d

f

e

a b

c

d

f

e

Let T = (X, A) be a tournament on n vertices.

� A tournament solution is any mappingS satisfying:

S: T → S(T) ⊆ X with S(T) ≠ ∅

S(T) = {winners of T with respect to S}.

� How to design S?

� What is the complexity of S?
* S is polynomial if there exists a polynomial algorithm

to computeS(T);
* S is NP-hard if the computation of S(T) is NP-hard.

Tournament solution S

� Combinatorial optimization problem(COP): given a finite set
X and a functionf defined fromX to {0, 1, 2, ...}, compute
the minimum of f over X:

minimizef(x) with x ∈ X.

� Decision problem: problem in which we set a question with
« yes »or « no »as its answer. Ex:

1. Composite number: given an integern, do there exist two
integersp > 1 and q > 1 withn = pq?

2. DP(Decision problem associated withCOP): givenX, f
and an integerK, does there existx ∈ X with f(x) ≤ K?

Main features of the theory of algorithmic complexity

� Any algorithm solving COP may solve DP: it is sufficient to
compute the minimum of f and to compare it to K.

� Conversely, any algorithmA solving DP can be used to solve
COP:

- start withK = f(x0) wherex0 denotes any element of X

- while the answer provided by A is « yes », do:

K← K – 1.

The last value of K for which the answer is « yes » provides
the minimum of f.

Links between COP and DP

� To solve a problemΠ, we need an algorithm, i.e. a method
designed to solveΠ. The efficiency of an algorithmA can be
measured by its (time) complexity.

� The complexity of A is given by the number of elementary
operations (such as the additions, the comparisons, and so
on) performed to solve the considered instance I.

� If the complexity of A can be upper-bounded by a
polynomial in the size of I (here, n), A is said to be
polynomial and Π also is said to bepolynomial.

Complexity of an algorithm

� P= {polynomial decision problems}.

� Many problems are not known to belong to P.

� NP= {decision problems such that we can check the answer
« yes », in polynomial time, thanks to some information
(certificate) guessed and provided by somebody else}.

� Ex. 1. Composite number belongs to NP.

2. DP often belongs to NP: it is sufficient to « guess »
an appropriatex ∈ X with f(x) ≤ K and to be able to
check thatx fits in polynomial time.

� P ⊆ NP. Open problem: P = NP or P ⊂ NP?

Class P, class NP

� For two problems Π1 and Π2, we say (approximation…) that
Π2 is at least as difficult as Π1 (Π1 ≤ Π2) if the polynomiality
of Π2 would involve the one of Π1.

� An NP-complete problem Π is a decision problem belonging to
NP and which is at least as difficult as any other problem of
NP:

1. Π ∈ NP; 2. ∀ Π′ ∈ NP, Π′ ≤ Π.

� An NP-hard problem is a problem at least as difficult as any
problem of NP (or, equivalently, as difficult as any NP-
complete problem).

� Usually, DP is polynomial if and only if COP is polynomial.
When DP is NP-complete, COP is NP-hard.

NP-complete problems, NP-hard problems

CPU time (1000 CPU time (1000 CPU time (1000 CPU time (1000 operationsoperationsoperationsoperations per second)per second)per second)per second)
n 10 20 30 40 50

log10(n)

n

n2

n3

n5

2n

10n

n !

nn

CPU time (1000 CPU time (1000 CPU time (1000 CPU time (1000 operationsoperationsoperationsoperations per second)per second)per second)per second)
n 10 20 30 40 50

log10(n) 0.001 s 0.0013 s 0.0015 s 0.0016 s 0.0017 s

n 0.01 s 0.02 s 0.03 s 0.04 s 0.05 s

n2 0.1 s 0.4 s 0.9 s 1.6 s 2.5 s

n3 1 s 8 s 27 s 64 s 125 s

n5 1.7 mn 53.3 mn 6.75 h 28.3 h 3.6 days

2n

10n

n !

nn

CPU time (1000 CPU time (1000 CPU time (1000 CPU time (1000 operationsoperationsoperationsoperations per second)per second)per second)per second)
n 10 20 30 40 50

log10(n) 0.001 s 0.0013 s 0.0015 s 0.0016 s 0.0017 s

n 0.01 s 0.02 s 0.03 s 0.04 s 0.05 s

n2 0.1 s 0.4 s 0.9 s 1.6 s 2.5 s

n3 1 s 8 s 27 s 64 s 125 s

n5 1.7 mn 53.3 mn 6.75 h 28.3 h 3.6 days

2n 1 s 17.5 mn 12.4 days 34.9 years 357 cent.

10n 116 days 3 x 107

centuries

3 x 1017

centuries

3 x 1027

centuries

3 x 1037

centuries

n ! 1 h 7.7 x 105

centuries

8.4 x 1019

centuries

2.6 x 1035

centuries

9.6 x 1051

centuries

nn 116 days 3.3 x 1013

centuries

6.5 x 1031

centuries

3.8 x 1051

centuries

2.8 x 1072

centuries

Copeland solution C (1951)

� A vertex x is a Copeland winner if the number of players defeated
by x (called the Copeland score s(x) of x) is maximum.

Ex.

Scores:

s(a) = 4, s(b) = 3,

s(c) = 2, s(d) = 2,

s(e) = 1, s(f) = 3;

the Copeland winner isa

(preorder: a > b ~ f > c ~ d > e).

a b

c

d

f

e

Zermelo solution Z (1929): maximum likelihood

� Let p(x, y) denote the probability that x defeats y.

Assume that the results are independent: the fact that x defeats y
does not provide information about the result between z and t.

Assume that each player x is characterized by a strength wx such
that we have: p(x, y) = wx / (wx + wy).

Then the probability to obtain T knowing the strengths wx is:

p(T / {wx}) =

� Given T, Zermelo’s maximum likelihood method consists in
computing the strengths wx* maximizing p(T / {wx}) and then in
ranking the players according to the decreasing values of the wx*’s.

∏
∈ +Ayx yx

x
ww

w

),(

� Ex.

Maximizing

with

gives: wa = 0.27, wb = wf = 0.18, wc = wd = 0.14, we = 0.09.

The Zermelo winner isa (preorder: a > b ~ f > c ~ d > e).

� Theorem(L.R. Ford Jr, 1957)

Copeland method and Zermelo method lead to the same winners

(more precisely, the same rankings).

∏
∈ +Ayx yx

x
ww

w

),(

1=∑
x

xw

a b

c

d

f

e

Uncovered set UC
(Fishburn, 1977, Miller, 1980)

� A playerx is covered by a playery in T if y defeatsx and if all the
players defeated by x are defeated by y: (x, z) ∈ A ⇒ (y, z) ∈ A.

A playerx is uncovered if no player coversx.

� The winners of T according to UC are the uncovered players of T.

� We may iterateUC to getUC2, UC3, … UCn = UCn+1 = … = UC∞.

Uncovered set UC
(Fishburn, 1977, Miller, 1980)

� Ex.

b and c are covered by a;

e is covered by d;

a, d and f are uncovered:

UC(T) = {a, d, f}.

� UC2(T) = UC3(T) = … = {a, d, f}.

a b

c

d

f

e

Markovian solution MS
(Levchenkov, 1992, Laslier, 1993)

� A Markov chain is defined on X from T = (X, A) with the following transition
probabilities:

p(x → y) =

where s(x) denotes the Copeland score (= the outdegree) of x. This defines a
stochastic matrix P = (p(x → y)).

� Then we start from any vertex and we randomly go from the current vertex to
another one with a probability given by P. After k steps, the probability
distribution πk = (πx,k)x∈X is given by

πk = πk–1.P = π0.Pk,

where π0 denotes the initial probability distribution.

=−
∈−

∈

yxnxs

Axyn

Ayx

 if)1/()(

),(if)1/(1

),(if 0

� The Markovian theory shows thatπk admits a limitπ* = (πx*) x∈X whenk
tends to infinity withπ* = π*P.
� πx* can be interpreted as the strengthof x.
� The Markovian solution consists in sorting the candidates according

to their strengths: the winners are the candidates x maximizingπx*.

� Ex.

tournament

(missing arcs: →)

Markovian chain

(missing arcs: ←)

� π* = (0.561, 0.738, 0.246, 0.241, 0.050, 0.009, 0.112).
� b is the winner (b > a > c > d > g > e > f).

a b c d f e g

a b c
d

f e g

1/6 1/6

1/6

5/6 4/6

3/6

2/6

2/6 1/6
4/6

Minimal covering set MC (Dutta, 1988)

� Let Y ⊂ X. For y ∈ Y and x ∈ X – Y, we say thaty coversx in Y ∪ { x} if y
coversx in T|Y ∪ { x} .

� Y is a covering set of T if, for anyx ∈ X – Y, x is covered in Y ∪ { x}.
Ex: UC and UC∞ are covering sets.

� The minimal covering set MC(T) of T is the smallest (w.r.t. inclusion)
covering set of T: ∀ x ∈ X – MC(T), x is covered in MC(T) ∪ { x}
and ∀ Y ⊂ MC(T), ∃ x ∈ X – Y which is not covered in Y ∪ { x}.

� Ex.

(missing arcs: →)

MC(T) = {a, b, c}

UC = UC∞ = {a, b, c, d, e, f}.

a b c
d f e

Bank’s solution B: maximal transitive
subtournament (Banks, 1985)

� B(T) = {x ∈ X such that there exists a maximal (w.r.t. inclusion) transitive
subtournament, i.e. a linear order, of T with x as its absolute winner}.

� Ex.

B(T) = {a, d, f}

a because of a > b > c > d
d because of d > e > f
f because of f > a > b > c.

a b

c

d

f

e

Slater’s solution Sl: linear orders at minimum
distance (Slater, 1961)

� For any linear order O, let d(O, T) be the symmetric difference distance
between O and T: d(O, T) = |{(x, y) ∈ X2 with (x, y) ∈ O and (y, x) ∈ T}|.

Rk: d(O, T) measures the number of disagreements between O and T.

� A Slater order of T is a linear order O* minimizing d. This minimum
distance is called the Slater index i(T) of T.

� A Slater winner of T is the absolute winner of any Slater order of T.

Slater’s solution Sl: linear orders at minimum
distance (Slater, 1961)

� Ex.

1 Slater order:

f > a > b > d > c > e,

i(T) = 2,

Sl(T) = {f}.

a b

c

d

f

e

Top cycle TC

� Let G = (X, A) be a directed graph. The top cycle TC(G) of G is the union
of the strongly connected components of G with no incoming arcs.

Ex.

a b

c

d

f

e

a b

c

d

f

e

G
T

TC(T)
TC(G)

Tournament equilibrium set TEQ
(Schwartz, 1990)

� For any tournament solution S and any tournament T = (X, A), define the
(asymmetric) contestation relation D(S, T) by:

x D(S, T) y ⇔ x ∈ S(T|N–{ y}),

where N–{ y} denotes the set of predecessors (in-neighbours) of y.

� We define a contestation graph DS(T): DS(T) = (X, D(S, T))
and a new tournament solution S* by: S*(T) = TC(DS(T)).

� TEQ is the only tournament solution S with S* = S:

TEQ(T) = TC(DTEQ(T)).

� Ex.

vertex x a b c d e f

N–{ x} { d, f} { a} { a, b} { b, c} { a, b, c, d} { b, c, d, e}

TEQ(T|N–{ x}) { d} { a} { a} { b} { a, b, d} { b}

DTEQ(T):

� TEQ(T) = {a, b, d}.

a b c d f e

a b

c

d

f
e

Complexity results

� Polynomial methods:

� Copeland method and Zermelo method, in O(n2).

� Uncovered set UC, in O(n2) for checking that a player is a winner, in
O(n2.38) to compute all the winners (multiplication of two n × n
matrices).

� ∀ k ≥ 1, UCk (the complexity depends on k).

� Markovian solution MS, in O(n2.38) (resolution of a linear system).

� Minimum covering set MC (as a linear programming problem;
F. Brandt and F. Fischer, 2008).

� the computation of a Banks winner, in O(n2) (O. H., 2004).

Complexity results

� NP-hard methods:

� checking that a given vertex is a Banks winner (G. Woeginger, 2003)

� the computation of all the Banks winners

� Slater methodSl (N. Alon, 2006; P. Charbit, S. Thomassé, A. Yeo,
2007; V. Conitzer, 2006; O. H., 2010)

� TEQ (F. Brandt, F. Fischer, P. Harrenstein, M. Mair, 2010)

Links between these tournament solutions

UC TC(UC) UC∞ C, Z Sl B MC

UC

TC(UC) ⊂

UC∞ ⊂ ⊂

C, Z ⊂ ∅ 13 ∅ 9

Sl ⊂ ⊂ ∅ 8 ∅ 6

B ⊂ ⊂ ∩ ≠ ∅ ∅ 13 ∅ 14

MC ⊂ ⊂ ⊂ ∅ 9 ∅ 8 ∩ ≠ ∅

TEQ ⊂ ⊂ ⊂ ∅ 9 ∅ 8 ⊂ ⊂

S ⊂ S′ : ∀ T, S(T) ⊆ S′ (T) and ∃ T s.t. S(T) ≠ S′ (T)
S ∅ k S′ : ∀ n ≥ k, ∃ T with n vertices s.t. S(T) ∩ S′ (T) = ∅
S ∩ S′ ≠ ∅ : ∀ T, S(T) ∩ S′ (T) ≠ ∅

An illustration

� C(T) = Z(T) = {a}

� UC(T) = {a, d, f}

� UC∞(T) = {a, d, f}

� MC(T) = {a, d, f}

� MS(T) = {a}

(1 order : a > f > d > b > c > e)

� B(T) = {a, d, f}

� Sl(T) = {f}

(1 Slater order : f > a > b > d > c > e)

� TEQ(T) = {a, d, f}

a b

c

d

f

e

� P. Fishburn (1977) Condorcet social choice functions, SIAM Journal of
Applied Mathematics, 33, 469-489.

� O. Hudry (2009) A survey on the complexity of tournament solutions,
Mathematical Social Sciences, 57 (3), 292-303.

� O. Hudry (2009) Complexity of voting procedures, Encyclopedia of
Complexity and Systems Science, R. Meyers (ed.), 9942-9965.

� J.-F. Laslier (1997) Tournament Solutions and Majority Voting,
Springer, Berlin, Heidelberg, New York.

� J. W. Moon (1968) Topics on tournaments, Holt, Rinehart and Winston,
New York.

� H. Moulin (1986) Choosing from a tournament, Social Choice and
Welfare 3: 272-291.

Thank you for your attention!

Short bibliography

