How difficult is it to compute the winner(s) of a game?

Olivier Hudry

Télécom ParisTech, Paris, France

The context: who is the winner?

- A game with *n* players.
- For any pair {*i*, *j*} of distinct players, *i* and *j* compete together.
- We assume that there is no tie: *i* defeats *j* or conversely.
- We would like to rank the players or at least to choose a winner.

The lack of transitivity

- The results obtained from the n(n 1)/2 possible matches do not always provide a transitive structure: *i* may defeat *j*, while *j* defeats *k* who, in his turn, defeats *i*.
- The result is a (*round-robin*) *tournament*, i.e. an antisymmetric, complete, binary relation, and not necessarily a linear order (= transitive tournament).
- Question: how to rank the players from the obtained tournament or at least how to determine a winner (or several winners)?
- This leads to the so-called *tournament solutions*.

A link with the context of voting theory

- Similar issues appear in the context of voting theory when a pairwise comparison method (Condorcet, 1785) is applied:
 - \Rightarrow *n* candidates;
 - $\Rightarrow \text{ we compute the number } m_{xy} \text{ of voters who prefer candidate } x \text{ to candidate } y;$
 - \Rightarrow majority rule: x is collectively preferred to y if $m_{xy} > m_{yx}$.
- The result is still a tournament (called the *majority tournament*), even if the voters' preferences are linear orders (« voting paradox », « Condorcet effect », « Condorcet cycle »...).

The associated graph

- We build a *directed graph* T = (X, A) where
 - \Rightarrow X = set of players;
 - \Rightarrow there is an *arc* (= directed edge) from x to y if x defeats y.

• As there is no tie, *T* is a *tournament* (= complete asymmetric directed graph).

T may be transitive (then, it is a linear order), but not necessarily.

An example

• n = 6 players: a, b, c, d, e, f.

An *absolute winner* (a *Condorcet winner* for an election...) is a player W who defeats any other player; in T, all the arcs leave W; the outdegree of W is equal to n – 1. When there exists an absolute winner, there is only one.

Tournament solution S

Let T = (X, A) be a tournament on *n* vertices.

• A *tournament solution* is any mapping *S* satisfying:

S: $T \to S(T) \subseteq X$ with $S(T) \neq \emptyset$

 $S(T) = \{$ *winners* of *T* with respect to *S* $\}$.

- How to design *S*?
- What is the complexity of *S*?
 * *S* is *polynomial* if there exists a polynomial algorithm to compute *S*(*T*);

* *S* is *NP-hard* if the computation of S(T) is NP-hard.

Main features of the theory of algorithmic complexity

Combinatorial optimization problem (COP): given a finite set *X* and a function *f* defined from *X* to {0, 1, 2, ...}, compute the minimum of *f* over *X*:

minimize f(x) with $x \in X$.

• Decision problem: problem in which we set a question with « yes » or « no » as its answer. Ex:

1. Composite number: given an integer *n*, do there exist two integers p > 1 and q > 1 with n = pq?

2. DP (Decision problem associated with COP): given X, fand an integer K, does there exist $x \in X$ with $f(x) \leq K$?

Links between COP and DP

- Any algorithm solving COP may solve DP: it is sufficient to compute the minimum of *f* and to compare it to *K*.
- Conversely, any algorithm *A* solving DP can be used to solve COP:
 - start with $K = f(x_0)$ where x_0 denotes any element of X
 - while the answer provided by A is « yes », do:

 $K \leftarrow K - 1$.

The last value of *K* for which the answer is « yes » provides the minimum of *f*.

Complexity of an algorithm

- To solve a problem Π, we need an *algorithm*, i.e. a method designed to solve Π. The efficiency of an algorithm A can be measured by its (time) *complexity*.
- The complexity of *A* is given by the number of elementary operations (such as the additions, the comparisons, and so on) performed to solve the considered instance *I*.
- If the complexity of A can be upper-bounded by a polynomial in the size of I (here, n), A is said to be *polynomial* and Π also is said to be *polynomial*.

Class P, class NP

- **P** = {polynomial decision problems}.
- Many problems are not known to belong to P.
- NP = {decision problems such that we can check the answer « yes », in polynomial time, thanks to some information (*certificate*) guessed and provided by somebody else}.
- Ex. 1. Composite number belongs to NP.
 - 2. DP often belongs to NP: it is sufficient to « guess » an appropriate $x \in X$ with $f(x) \leq K$ and to be able to check that x fits in polynomial time.
- $P \subseteq NP$. Open problem: P = NP or $P \subset NP$?

NP-complete problems, NP-hard problems

- For two problems Π_1 and Π_2 , we say (approximation...) that Π_2 is at least as difficult as Π_1 ($\Pi_1 \leq \Pi_2$) if the polynomiality of Π_2 would involve the one of Π_1 .
- An *NP-complete problem* Π is a decision problem belonging to NP and which is at least as difficult as any other problem of NP:

1. $\Pi \in NP$; 2. $\forall \Pi' \in NP, \Pi' \leq \Pi$.

- An *NP-hard problem* is a problem at least as difficult as any problem of NP (or, equivalently, as difficult as any NP-complete problem).
- Usually, DP is polynomial if and only if COP is polynomial. When DP is NP-complete, COP is NP-hard.

CPU time (1000 operations per second)

<i>n</i>	10	20	30	40	50
$\log_{10}(n)$					
n					
n^2					
n^3					
n^5					
2^n					
10 ⁿ					
n !					
n^n					

CPU time (1000 operations per second)

<i>n</i>	10	20	30	40	50
$\log_{10}(n)$	0.001 s	0.0013 s	0.0015 s	0.0016 s	0.0017 s
п	0.01 s	0.02 s	0.03 s	0.04 s	0.05 s
n^2	0.1 s	0.4 s	0.9 s	1.6 s	2.5 s
n^3	1 s	8 s	27 s	64 s	125 s
n^5	1.7 mn	53.3 mn	6.75 h	28.3 h	3.6 days
2^n					
10 ⁿ					
n !					
n^n					

CPU time (1000 operations per second)

<i>n</i>	10	20	30	40	50
$\log_{10}(n)$	0.001 s	0.0013 s	0.0015 s	0.0016 s	0.0017 s
п	0.01 s	0.02 s	0.03 s	0.04 s	0.05 s
n^2	0.1 s	0.4 s	0.9 s	1.6 s	2.5 s
n^3	1 s	8 s	27 s	64 s	125 s
n^5	1.7 mn	53.3 mn	6.75 h	28.3 h	3.6 days
2^n	1 s	17.5 mn	12.4 days	34.9 years	357 cent.
10 ⁿ	116 days	3 x 10 ⁷ centuries	3 x 10 ¹⁷ centuries	3 x 10 ²⁷ centuries	3 x 10 ³⁷ centuries
n !	1 h	7.7 x 10 ⁵ centuries	8.4 x 10 ¹⁹ centuries	2.6 x 10 ³⁵ centuries	9.6 x 10 ⁵¹ centuries
n^n	116 days	3.3 x 10 ¹³ centuries	6.5 x 10 ³¹ centuries	3.8 x 10 ⁵¹ centuries	2.8 x 10 ⁷² centuries

Copeland solution C (1951)

• A vertex *x* is a *Copeland winner* if the number of players defeated by *x* (called the *Copeland score s*(*x*) of *x*) is maximum.

b

С

Ex.

Scores: s(a) = 4, s(b) = 3, s(c) = 2, s(d) = 2, s(e) = 1, s(f) = 3;the Copeland winner is a (preorder: $a > b \sim f > c \sim d > e$).

Zermelo solution Z (1929): maximum likelihood

• Let p(x, y) denote the probability that x defeats y.

Assume that the results are independent: the fact that x defeats y does not provide information about the result between z and t.

Assume that each player *x* is characterized by a *strength* w_x such that we have: $p(x, y) = w_x / (w_x + w_y)$.

Then the probability to obtain *T* knowing the strengths w_x is:

$$p(T \mid \{w_x\}) = \prod_{(x,y) \in A} \frac{w_x}{w_x + w_y}$$

Given *T*, Zermelo's maximum likelihood method consists in computing the strengths w_x* maximizing p(T / {w_x}) and then in ranking the players according to the decreasing values of the w_x*'s.

gives: $w_a = 0.27$, $w_b = w_f = 0.18$, $w_c = w_d = 0.14$, $w_e = 0.09$.

The Zermelo winner is *a* (preorder: $a > b \sim f > c \sim d > e$).

• Theorem (L.R. Ford Jr, 1957)

Copeland method and Zermelo method lead to the same winners (more precisely, the same rankings).

Uncovered set *UC* (Fishburn, 1977, Miller, 1980)

- A player x is *covered* by a player y in T if y defeats x and if all the players defeated by x are defeated by y: (x, z) ∈ A ⇒ (y, z) ∈ A.
 A player x is *uncovered* if no player covers x.
- The winners of *T* according to *UC* are the uncovered players of *T*.
- We may iterate UC to get UC^2 , UC^3 , ... $UC^n = UC^{n+1} = \ldots = UC^{\infty}$.

Uncovered set *UC* (Fishburn, 1977, Miller, 1980)

Ex. *b* and *c* are covered by *a*; *e* is covered by *d*; *a*, *d* and *f* are uncovered:
UC(T) = {a, d, f}.

•
$$UC^{2}(T) = UC^{3}(T) = \dots = \{a, d, f\}.$$

Markovian solution MS

(Levchenkov, 1992, Laslier, 1993)

A *Markov chain* is defined on X from T = (X, A) with the following transition probabilities:

$$p(x \to y) = \begin{cases} 0 \text{ if } (x, y) \in A \\ 1/(n-1) \text{ if } (y, x) \in A \\ s(x)/(n-1) \text{ if } x = y \end{cases}$$

where s(x) denotes the Copeland score (= the outdegree) of *x*. This defines a stochastic matrix $P = (p(x \rightarrow y))$.

Then we start from any vertex and we randomly go from the current vertex to another one with a probability given by *P*. After *k* steps, the probability distribution π_k = (π_{x,k})_{x∈X} is given by

$$\pi_k = \pi_{k-1}.P = \pi_0.P^k,$$

where π_0 denotes the initial probability distribution.

- The Markovian theory shows that π_k admits a limit $\pi^* = (\pi_x^*)_{x \in X}$ when k tends to infinity with $\pi^* = \pi^* P$.
 - $\Rightarrow \pi_x^*$ can be interpreted as the strength of *x*.
 - ⇒ The Markovian solution consists in sorting the candidates according to their strengths: the winners are the candidates *x* maximizing π_x^* .

Minimal covering set MC (Dutta, 1988)

- Let $Y \subset X$. For $y \in Y$ and $x \in X Y$, we say that y covers x in $Y \cup \{x\}$ if y covers x in $T_{|Y \cup \{x\}}$.
- Y is a *covering set of T* if, for any x ∈ X Y, x is covered in Y ∪ {x}.
 Ex: UC and UC[∞] are covering sets.
- The *minimal covering set* MC(T) of T is the smallest (w.r.t. inclusion) covering set of $T: \forall x \in X - MC(T)$, x is covered in $MC(T) \cup \{x\}$ and $\forall Y \subset MC(T)$, $\exists x \in X - Y$ which is not covered in $Y \cup \{x\}$.

• Ex.

(missing arcs: \rightarrow)

 $MC(T) = \{a, b, c\}$ $UC = UC^{\infty} = \{a, b, c, d, e, f\}.$

Bank's solution *B*: maximal transitive subtournament (Banks, 1985)

B(T) = {x ∈ X such that there exists a maximal (w.r.t. inclusion) transitive subtournament, i.e. a linear order, of T with x as its absolute winner}.

• Ex.

 $B(T) = \{a, d, f\}$

a because of a > b > c > d*d* because of d > e > f*f* because of f > a > b > c.

Slater's solution *Sl*: linear orders at minimum distance (Slater, 1961)

- For any linear order *O*, let *d*(*O*, *T*) be the symmetric difference distance between *O* and *T*: *d*(*O*, *T*) = |{(*x*, *y*) ∈ *X*² with (*x*, *y*) ∈ *O* and (*y*, *x*) ∈ *T*}|.
 Rk: *d*(*O*, *T*) measures the number of disagreements between *O* and *T*.
- A *Slater order of T* is a linear order O^* minimizing *d*. This minimum distance is called the *Slater index i*(*T*) *of T*.
- A *Slater winner of T* is the absolute winner of any Slater order of *T*.

Slater's solution *Sl*: linear orders at minimum distance (Slater, 1961)

• Ex.

1 Slater order: f > a > b > d > c > e, i(T) = 2, $Sl(T) = \{f\}$.

Top cycle *TC*

• Let G = (X, A) be a directed graph. The *top cycle* TC(G) of G is the union of the strongly connected components of G with no incoming arcs.

Tournament equilibrium set *TEQ* (Schwartz, 1990)

• For any tournament solution *S* and any tournament T = (X, A), define the (asymmetric) *contestation relation* D(S, T) by:

 $x\,D(S,\,T)\,y \Leftrightarrow x \in \,S(T_{/N^-\{y\}}),$

where $N^{-}\{y\}$ denotes the set of predecessors (in-neighbours) of *y*.

- We define a *contestation graph* $D_S(T)$: $D_S(T) = (X, D(S, T))$ and a new tournament solution S^* by: $S^*(T) = TC(D_S(T))$.
- *TEQ* is the only tournament solution *S* with $S^* = S$: $TEQ(T) = TC(D_{TEO}(T)).$

télécommunications

Complexity results

• Polynomial methods:

- \Rightarrow Copeland method and Zermelo method, in O(n^2).
- Uncovered set *UC*, in $O(n^2)$ for checking that a player is a winner, in $O(n^{2.38})$ to compute all the winners (multiplication of two $n \times n$ matrices).
- $\Rightarrow \forall k \ge 1, UC^k$ (the complexity depends on k).
- \Rightarrow Markovian solution *MS*, in O($n^{2.38}$) (resolution of a linear system).
- Minimum covering set *MC* (as a linear programming problem;
 F. Brandt and F. Fischer, 2008).
- ⇒ the computation of a Banks winner, in $O(n^2)$ (O. H., 2004).

Complexity results

• NP-hard methods:

- \Rightarrow checking that a given vertex is a Banks winner (G. Woeginger, 2003)
- \Rightarrow the computation of all the Banks winners
- Slater method *Sl* (N. Alon, 2006; P. Charbit, S. Thomassé, A. Yeo, 2007; V. Conitzer, 2006; O. H., 2010)
- \Rightarrow *TEQ* (F. Brandt, F. Fischer, P. Harrenstein, M. Mair, 2010)

Links between these tournament solutions

	UC	TC(UC)	UC^{∞}	<i>C</i> , <i>Z</i>	Sl	В	МС
UC							
TC(UC)	C						
UC^{∞}	U	C					
C, Z	U	Ø 13	Ø ⁹				
Sl	U	C	Ø 8	\emptyset 6			
В	U	C	∩≠Ø	Ø 13	\emptyset ¹⁴		
МС	U	C	C	Ø ⁹	Ø 8	∩≠Ø	
TEQ	C	C	C	Ø ⁹	Ø 8		C

 $S \subset S': \forall T, S(T) \subseteq S'(T) \text{ and } \exists T \text{ s.t. } S(T) \neq S'(T)$ $S \oslash {}^{k}S': \forall n \ge k, \exists T \text{ with } n \text{ vertices s.t. } S(T) \cap S'(T) = \emptyset$ $S \cap S' \neq \emptyset: \forall T, S(T) \cap S'(T) \neq \emptyset$

An illustration

- $UC(T) = \{a, d, f\}$
- $UC^{\infty}(T) = \{a, d, f\}$
- $MC(T) = \{a, d, f\}$
- $MS(T) = \{a\}$ (1 order : a > f > d > b > c > e)
- $B(T) = \{a, d, f\}$
- $Sl(T) = \{f\}$

(1 Slater order : f > a > b > d > c > e)

•
$$TEQ(T) = \{a, d, f\}$$

Short bibliography

- P. Fishburn (1977) Condorcet social choice functions, *SIAM Journal of Applied Mathematics*, 33, 469-489.
- O. Hudry (2009) A survey on the complexity of tournament solutions, *Mathematical Social Sciences*, 57 (3), 292-303.
- O. Hudry (2009) Complexity of voting procedures, *Encyclopedia of Complexity and Systems Science*, R. Meyers (ed.), 9942-9965.
- J.-F. Laslier (1997) *Tournament Solutions and Majority Voting*, Springer, Berlin, Heidelberg, New York.
- J. W. Moon (1968) *Topics on tournaments*, Holt, Rinehart and Winston, New York.
- H. Moulin (1986) Choosing from a tournament, *Social Choice and Welfare* 3: 272-291.

Thank you for your attention!

