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The context: who Is the winner?

e A game withn players.

e For any pair {, j} of distinct players) and|
compete together.

e \We assume that there is no ti@efeatg or
conversely.

e \We would like to rank the players or at least to
choose a winner. S




The lack of transitivity

e The results obtained from tmgn — 1)/2 possible
matches do not always provide a transitive structure:
may defeaj, while| defeatk who, In his turn, defeats

e The result is arpund-robin) tournament, i.e. an
antisymmetric, complete, binary relation, amut
necessarily a linear ordér transitive tournameint

e Question: how to rank the players from the obtained
tournament or at least how to determine a winner (or
several winners)?

e This leads to the so-callédurnament solutions.
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A link with the context of voting theory

e Similar issues appear in the contexiofing theory
when apairwise comparison methqg@ondorcet, 1785)
IS applied:

= N candidates:

= we compute the numbenm,y of voters who prefer
candidatex to candidatsy,

= majority rule:x is collectively preferred ty if my > myy.

e The resultis still a tournament (called timajority
tournament), even if the voters™ preferences are linear
orders (« voting paradox », « Condorcet effect »,

« Condorcet cycle »...). ——




The associated graph

e We build adirected graph T = (X, A) where
= X = set of players;

= there is ararc (= directed edge) fromtoy if x defeatsy.

e Asthereis no tie] is atournament (= complete asymmetric
directed graph).

T may betransitive(then, it is a linear order), but not
necessarily.
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An example

e n=06playersa, b, c,d, ef.
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e An absolute winner (a Condorcet winner for an election...)
IS a playeW who defeats any other player; Th all the arcs
leaveW, the outdegree diVis equal ton— 1. When there
exists an absolute winner, there is only one.

a b a b

o</

S
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Tournament solutio®

Let T = (X, A) be a tournament amvertices.

e A tournament solution is any mappinds satisfying:
ST YT OXwith §T) # [
ST) = {winners of T with respect td}.

e How to desigrs?

e What is thecomplexity ofS?
* Sis polynomial if there exists a polynomial algorithm

to computeS(T);
* Sis NP-hard if the computation o§T) is NP-har( =
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Main features of the theory of algorithmic complexity

e Combinatorial optimization proble(COBP): given a finite set
X and a functiorf defined fromXto {0, 1, 2, ...}, compute
the minimum off overX:

minimizef(x) with x LI X.

e Decision problemproblem in which we set a question with
« yes »0r « no »as Iits answer. EXx:

1. Composite number: given an integedo there exist two
Integersp > 1 andg > 1 withn = pg?

2. DP (Decision problem associated witfOP): givenX, f

and an integekK, does there exist [ X with f(X) < K? ey
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Links between COP and DP

Any algorithm solving COP may solve DP: it is sufficient to
compute the minimum dfand to compare it t§.

Conversely, any algorithiA solving DP can be used to solve
COP:.

- start withK = f(xo) wherexp denotes any element &f
- while the answer provided b is « yes », do:
K«—K-1.

The last value oK for which the answer is « yes » provides
the minimum of.



Complexity of an algorithm

e To solve a probleml, we need amlgorithm, i.e. a method
designed to solvEl. The efficiency of an algorithiA can be
measured by its (timejomplexity.

e The complexity ofA is given by the number of elementary
operations (such as the additions, the comparisoiiss@
on) performed to solve the considered instance

e If the complexity ofA can be upper-bounded by a
polynomial in the size df(here,n), Ais said to be
polynomial andlT1 also is said to beolynomial.
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Class P, class NP

P = {polynomial decision problems}.
Many problems are not known to belong to P.

NP = {decision problems such that we can check the answer
« yes », in polynomial time, thanks to some information
(certificate) guessed and provided by somebody else}.

Ex. 1. Composite number belongs to NP.

2. DP often belongs to NP: it is sufficient to « guess »
an appropriate [1 X with f(x) <K and to be able to
check thak fits in polynomial time.

P LI NP. Open problem: P = NP orfPNP?
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NP-complete problems, NP-hard problems

For two problem$1: andll,, we say (approximation...) that
[, is at least as difficult &ld1 (M1 < M) if the polynomiality
of 2 would involve the one dfl;.

An NP-complete problem I is a decision problem belonging to
NP and which is at least as difficult as any othebpem of
NP:

1.7 0 NP; 2.0 ONP, T < T1.

An NP-hard problemis a problem at least as difficult as any
problem of NP (or, equivalently, as difficult asyddP-
complete problem).

Usually, DP is polynomial if and only if COP is gabmial.
When DP is NP-complete, COP is NP-hard.



CPU time (1000 operations per second)
n 10 20 30 40

log,(n)




CPU time (1000 operations per second)

n 10 20 30 40 50

log,(n) 0.001 s 0.0013s 0.0015s 0.0016s 0.0017 s
n 0.01s 0.02s 0.03s 0.04 s 0.05s
n? 0.1s 04s 09s 1.6s 2.5s
n3 1s 8s 27 s 64 s 125 s
n° 1.7 mn 53.3 mn 6.75 h 28.3 h 3.6 days
7n




CPU time (1000 operations per second)

n 10 20 30 40 50
log,4(n) 0.001 s 0.0013s 0.0015s 0.0016s 0.0017s
n 0.01s 0.02s 0.03s 0.04 s 0.05s
n? 0.1s 04s 09s 1.6s 2.5s
n3 1ls 8s 27 s 64 s 125 s
n° 1.7 mn 53.3 mn 6.75 h 28.3 h 3.6 days
2" 1ls 17.5 mn 12.4 days 34.9years 357 cent.
100 116 days 3x10 3 x 10 3 x 167 3 x 1067
centuries  centuries  centuries  centuries
n! 1h 7.7x10 8.4x10° 26x106° 9.6x106%
centuries  centuries centuries  centuries
n" 116 days 3.3x10® 6.5x16' 3.8x10' 2.8x10°
centuries  centuries  centuries  centuries




Copeland solutioiC (1951)

e A vertexxis aCopeland winner if the number of players defeated
by X (called theCopeland score s(x) of X) is maximum.

EX.
Scores: a b
s(a) = 4,(b) = 3, \4
s(c) = 2,5(d) = 2,

s(e) = 1,5(f) = 3; f ‘
the Copeland winner ,\

(preordera>b~f>c~d>e).




Zermelo solutior¥ (1929): maximum likelihood

I
e Letp(x, y) denote the probability thatdefeatsy.

Assume that the results are independent: theHatx tefeatsy
does not provide information about the result betvzandt.

Assume that each playrrs characterized by sirength wy such
that we havep(x, y) =wx/ (Wx + wWy).

Then the probability to obtaifi knowing the strengthsy is:

W
T/ Xf) — X
T = 1L

e GivenT, Zermelo’s maximum likelihood methamnsists in
computing the strengthg® maximizing p(T / {wy}) and then in
ranking the players according to the decreasingesabf thew*’s.



e EX.
Wy

Maximizing []
(x,y)DAWX Wy

with 2 Wy =1
X

gives:Wa = 0.27,Wp =Ws = 0.18,we = Wy = 0.14,we = 0.009.

The Zermelo winner ia (preordera>b~f>c~d>e).

e Theorem(L.R. Ford Jr, 1957)
Copeland method and Zermelo method lead to the samesrginn

(more precisely, the same rankings).



Uncovered setJC
(Fishburn, 1977, Miller, 1980)

e A playerxis covered by a playerly in T if y defeatsxand if all the
players defeated hyare defeated by. (x, 2 O A= (y, 2 U A.

A playerxis uncovered if no player covers.
e The winners off according tdJC are the uncovered playersf

e We may iteratdJC to getUC?, UC3, ... UC=UCl =, =UC",

—
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Uncovered setJC
(Fishburn, 1977, Miller, 1980)

e EX.

b andc are covered bw;

eis covered by,

a, d andf are uncovered:
UC(T) ={a, d, f}.

e UCYT)=UCYT)=...={a d,f




Markovian solutionMS
(Levchenkov, 1992, Laslier, 1993)

A Markov chainis defined orX from T = (X, A) with the following transition
probabilities:

0if (x,y)OA

pP(X - y) = 41/(n =D if (y,x)JA
S(X)/(n=-1) if x=y

wheres(x) denotes the Copeland score (= the outdegree)Ttfis defines a
stochastic matri® = (p(x - Y)).

Then we start from any vertex and we randomly gmftiee current vertex to
another one with a probability given By After k steps, the probability
distributionTk = (Tkk)xox IS given by

Tk = Thk-1.P = 10.PK,

whereto denotes the initial probability distribution. PARIS "
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e The Markovian theory shows that admits a limiti* = (T&*) xax whenk
tends to infinity withre* = 1 P.
= T* can be interpreted as tlsrengthof x.
= TheMarkovian solutiorconsists in sorting the candidates according

to their strengths: the winners are the candidateaximizingri*.
o EX.
tournament

(missing arcs—)

Markovian chain

(missing arcs:-)
1/6
> T =(0.561, 0.738, 0.246, 0.241, 0.050, 0.009, )11  pregsiere
> bisthe winner§>a>c>d>g>e>f). ER0A

supérieure des
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Minimal covering seMC (Dutta, 1988)
|

e LetY X ForylYandxX-Y, we say that coversxin Y[ {x} if y
coversxin Ty g -

e Yisacoveringset of Tif, for anyx 1 X-Y, x is covered inY [ {x}.
Ex: UC andUC> are covering sets.

e Theminimal covering set MC(T) of T is the smallest (w.r.t. inclusion)
covering set off: J x O X—MC(T), xis covered inrMC(T) I {x}
and] Y O MC(T), Ox O X=Y which is not covered ity I { x}.

=

(missing arcs:-)

MC(T) ={a, b, ¢}

UC=uUC~={a,Db,cdef} TELECOM
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Bank’s solutionB: maximal transitive
subtournament (Banks, 1985)

e B(T) ={x 0 Xsuch that there exists a maximal (w.r.t. inclusioansrtive
subtournament, i.e. a linear order,Tokith x as its absolute winner}.

e EX.

B(T) ={a, d, f}
abecauseoh>b>c>d

d because ofl > e>f
f because of>a>b>c.
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Slater’s solutiors: linear orders at minimum
distance (Slater, 1961)

e For any linear ordeD, letd(O, T) be the symmetric difference distance
betweerO andT: d(O, T) = [{(x, y) O X2with (x,y) D O and §, x) O T}.

Rk: d(O, T) measures the number of disagreements bet@eemdT.

e A Sater order of Tis a linear orde©* minimizingd. This minimum
distance is called th@ater index i(T) of T.

e A Sater winner of T is the absolute winner of any Slater ordel of
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Slater’s solutior: linear orders at minimum
- distance (Slater, 1961)

o EX.

1 Slater order:
f>a>b>d>c>e
i(T) =2,

3(T) = {1}.
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Top cycleTC

e LetG= (X, A) be adirected graph. Thep cycle TC(G) of G is the union
of the strongly connected componentgzoivith no incoming arcs.

EX.
TC(G)

TC(T)

b
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Tournament equilibrium sateQ
(Schwartz, 1990)

e For any tournament solutiddand any tournamefit= (X, A), define the
(asymmetric)ontestation relation D(S T) by:

XD T)y < xU STy
whereN{y} denotes the set of predecessors (in-neighboung) of

e We define acontestation graph DT): D4T) = (X, D(S T))
and a new tournament soluti® by: S*(T) = TC(D4T)).

e TEQis the only tournament solutidwith S =S
TEQ(T) = TC(Dreq(T))-
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-2 a b C d e f
O O O
vertexx a b C d e f
N~{x} {d,f} {a} {a,b} {b,c {abcd {bcd e}

TEQ(Tinx) 1dr {3 &  {bp  {ahbd {0}

Dreg(T):

s

» TEQ(T) = {a, b, d}. ¢




Complexity results

e Polynomial methods:

=

=

Copeland method and Zermelo method, inZD(

Uncovered set/C, in O(n?) for checking that a player is a winner, in

O(n%3¥) to compute all the winners (multiplication of twox n
matrices).

O k=1, UCK(the complexity depends d.
Markovian solutionMS, in O(n%39 (resolution of a linear system).

Minimum covering seMC (as a linear programming problem;
F. Brandt and F. Fischer, 2008).

the computation of a Banks winner, inr®((O. H., 2004).

———
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Complexity results

e NP-hard methods:

=

=

=

checking that a given vertex is a Banks winner (G. Wogey, 2003)
the computation of all the Banks winners

Slater method@ (N. Alon, 2006; P. Charbit, S. Thomassé, A. Yeo,
2007; V. Conitzer, 2006; O. H., 2010)

TEQ (F. Brandt, F. Fischer, P. Harrenstein, M. Mair, 2010
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Links between these tournament solutions

._ ucC TC(UC) |UC> |[C,Zz |9 B MC [
ucC
TC(UC) | [
uc> |0 0
C,Z |O 01©’ |(O°
S 0 0 8 ] 6
B 0 0 nz0 (OB |0
MC |O 0 O 09 8 n#0
TEQ |O 0 O 09 8 O 0

SOS:0OT,YT) OS(T)andOTs.t. YT) 2 S'(T)
SO kS”: Onz=k, OT with nvertices s.t§T) n S’(T) =0
SnS20:0T,YT) n S(T) 20 TELECOM
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An illustration

C(T) =Z(T) = {a}
UC(T) ={a, d, f}
UC>(T) = {a, d, f}

MC(T) ={a, d, f} f
MS(T) = {a}

(Lorder:a>f>d>b>c>e)

e B(M={adf
o S(M={f

(1 Slater orderf>a>b>d>c>e)

TEQ(T) ={a, d, f}
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