How difficult is it to compute the winner(s) of a game?

Olivier Hudry

Télécom ParisTech, Paris, France

The context: who is the winner?

- A game with n players.
- For any pair $\{i, j\}$ of distinct players, i and j compete together.
- We assume that there is no tie: i defeats j or conversely.
- We would like to rank the players or at least to choose a winner.

The lack of transitivity

- The results obtained from the $n(n-1) / 2$ possible matches do not always provide a transitive structure: i may defeat j, while j defeats k who, in his turn, defeats i.
- The result is a (round-robin) tournament, i.e. an antisymmetric, complete, binary relation, and not necessarily a linear order (= transitive tournament).
- Question: how to rank the players from the obtained tournament or at least how to determine a winner (or several winners)?
- This leads to the so-called tournament solutions.

A link with the context of voting theory

- Similar issues appear in the context of voting theory when a pairwise comparison method (Condorcet, 1785) is applied:
$\Rightarrow n$ candidates;
\Rightarrow we compute the number $m_{x y}$ of voters who prefer candidate x to candidate y;
\Rightarrow majority rule: x is collectively preferred to y if $m_{x y}>m_{y x}$.
- The result is still a tournament (called the majority tournament), even if the voters' preferences are linear orders (《 voting paradox », « Condorcet effect », «Condorcet cycle »...).

The associated graph

- We build a directed graph $T=(X, A)$ where
$\Rightarrow X=$ set of players;
\Rightarrow there is an arc (= directed edge) from x to y if x defeats y.
- As there is no tie, T is a tournament (= complete asymmetric directed graph).
T may be transitive (then, it is a linear order), but not necessarily.

An example

- $n=6$ players: a, b, c, d, e, f.

- An absolute winner (a Condorcet winner for an election...) is a player W who defeats any other player; in T, all the arcs leave W; the outdegree of W is equal to $n-1$. When there exists an absolute winner, there is only one.

no absolute winner

c

Tournament solution S

Let $T=(X, A)$ be a tournament on n vertices.

- A tournament solution is any mapping S satisfying:

$$
\begin{aligned}
& S: T \rightarrow S(T) \subseteq X \text { with } S(T) \neq \varnothing \\
& S(T)=\{\text { winners of } T \text { with respect to } S\} .
\end{aligned}
$$

- How to design S ?
- What is the complexity of S ?
* S is polynomial if there exists a polynomial algorithm to compute $S(T)$;
* S is NP-hard if the computation of $S(T)$ is NP-hard.

Main features of the theory of algorithmic complexity

- Combinatorial optimization problem (COP): given a finite set X and a function f defined from X to $\{0,1,2, \ldots\}$, compute the minimum of f over X :

$$
\text { minimize } f(x) \text { with } x \in X \text {. }
$$

- Decision problem: problem in which we set a question with « yes» or «no » as its answer. Ex:

1. Composite number: given an integer n, do there exist two integers $p>1$ and $q>1$ with $n=p q$?
2. DP (Decision problem associated with COP): given X, f and an integer K, does there exist $x \in X$ with $f(x) \leq K$?

Links between COP and DP

Any algorithm solving COP may solve DP: it is sufficient to compute the minimum of f and to compare it to K.

- Conversely, any algorithm A solving DP can be used to solve COP:
- start with $K=f\left(x_{0}\right)$ where x_{0} denotes any element of X
- while the answer provided by A is «yes », do:

$$
K \leftarrow K-1 .
$$

The last value of K for which the answer is « yes » provides the minimum of f.

Complexity of an algorithm

- To solve a problem Π, we need an algorithm, i.e. a method designed to solve Π. The efficiency of an algorithm A can be measured by its (time) complexity.
- The complexity of A is given by the number of elementary operations (such as the additions, the comparisons, and so on) performed to solve the considered instance I.
- If the complexity of A can be upper-bounded by a polynomial in the size of I (here, n), A is said to be polynomial and Π also is said to be polynomial.

Class P, class NP

- $\quad \mathrm{P}=\{$ polynomial decision problems $\}$.
- Many problems are not known to belong to P.
- $\quad \mathrm{NP}=\{$ decision problems such that we can check the answer < yes », in polynomial time, thanks to some information (certificate) guessed and provided by somebody else\}.
- Ex. 1. Composite number belongs to NP.

2. DP often belongs to NP: it is sufficient to < guess » an appropriate $x \in X$ with $f(x) \leq K$ and to be able to check that x fits in polynomial time.

- $\mathrm{P} \subseteq \mathrm{NP}$. Open problem: $\mathrm{P}=\mathrm{NP}$ or $\mathrm{P} \subset \mathrm{NP}$?

NP-complete problems, NP-hard problems

- For two problems Π_{1} and Π_{2}, we say (approximation...) that Π_{2} is at least as difficult as $\Pi_{1}\left(\Pi_{1} \leq \Pi_{2}\right)$ if the polynomiality of Π_{2} would involve the one of Π_{1}.
- An NP-complete problem Π is a decision problem belonging to NP and which is at least as difficult as any other problem of NP:

$$
\text { 1. } \Pi \in \mathrm{NP} ; \quad \text { 2. } \forall \Pi^{\prime} \in \mathrm{NP}, \Pi^{\prime} \leq \Pi \text {. }
$$

- An NP-hard problem is a problem at least as difficult as any problem of NP (or, equivalently, as difficult as any NPcomplete problem).
- Usually, DP is polynomial if and only if COP is polynomial. When DP is NP-complete, COP is NP-hard.

CPU time (1000 operations per second)

n	10	20	30	40	50
$\log _{10}(n)$					
n					
n^{2}					
n^{3}					
n^{5}					
2^{n}					
10^{n}					
$n!$					
n^{n}					

CPU time (1000 operations per second)

n	10	20	30	40	50
$\log _{10}(n)$	0.001 s	0.0013 s	0.0015 s	0.0016 s	0.0017 s
n	0.01 s	0.02 s	0.03 s	0.04 s	0.05 s
n^{2}	0.1 s	0.4 s	0.9 s	1.6 s	2.5 s
n^{3}	1 s	8 s	27 s	64 s	125 s
n^{5}	1.7 mn	53.3 mn	6.75 h	28.3 h	3.6 days
2^{n}					
10^{n}					
$n!$					
n					
n^{n}					

CPU time (1000 operations per second)

n	10	20	30	40	50
$\log _{10}(n)$	0.001 s	0.0013 s	0.0015 s	0.0016 s	0.0017 s
n	0.01 s	0.02 s	0.03 s	0.04 s	0.05 s
n^{2}	0.1 s	0.4 s	0.9 s	1.6 s	2.5 s
n^{3}	1 s	8 s	27 s	64 s	125 s
n^{5}	1.7 mn	53.3 mn	6.75 h	28.3 h	3.6 days
2^{n}	1 s	17.5 mn	12.4 days	34.9 years	357 cent.
10^{n}	116 days	3×10^{7} centuries	3×10^{17} centuries	3×10^{27} centuries	3×10^{37} centuries
$n!$	1 h	7.7×10^{5} centuries	8.4×10^{19} centuries	2.6×10^{35} centuries	9.6×10^{51} centuries
n^{n}	116 days	3.3×10^{13} centuries	6.5×10^{31} centuries	3.8×10^{51} centuries	2.8×10^{72} centuries

Copeland solution C (1951)

- A vertex x is a Copeland winner if the number of players defeated by x (called the Copeland score $s(x)$ of x) is maximum.

Ex.
Scores:
$s(a)=4, s(b)=3$,
$s(c)=2, s(d)=2$,
$s(e)=1, s(f)=3 ;$
the Copeland winner is a (preorder: $a>b \sim f>c \sim d>e$).

Zermelo solution Z (1929): maximum likelihood

- Let $p(x, y)$ denote the probability that x defeats y.

Assume that the results are independent: the fact that x defeats y does not provide information about the result between z and t.

Assume that each player x is characterized by a strength w_{x} such that we have: $p(x, y)=w_{x} /\left(w_{x}+w_{y}\right)$.

Then the probability to obtain T knowing the strengths w_{x} is:

$$
p\left(T /\left\{w_{x}\right\}\right)=\prod_{(x, y) \in A} \frac{w_{x}}{w_{x}+w_{y}}
$$

- Given T, Zermelo's maximum likelihood method consists in computing the strengths $w_{x}{ }^{*}$ maximizing $p\left(T /\left\{w_{x}\right\}\right)$ and then in ranking the players according to the decreasing values of the $w_{x}{ }^{* \prime} s$.
- Ex.

Maximizing Π

with $\sum_{x} w_{x}=1$
gives: $w_{a}=0.27, w_{b}=w_{f}=0.18, w_{c}=w_{d}=0.14, w_{e}=0.09$.
The Zermelo winner is a (preorder: $a>b \sim f>c \sim d>e$).

- Theorem (L.R. Ford Jr, 1957)

Copeland method and Zermelo method lead to the same winners (more precisely, the same rankings).

Uncovered set $U C$ (Fishburn, 1977, Miller, 1980)

- A player x is covered by a player y in T if y defeats x and if all the players defeated by x are defeated by $y:(x, z) \in A \Rightarrow(y, z) \in A$.

A player x is uncovered if no player covers x.

- The winners of T according to $U C$ are the uncovered players of T.
- We may iterate $U C$ to get $U C^{2}, U C^{3}, \ldots U C^{n}=U C^{n+1}=\ldots=U C^{\infty}$.

Uncovered set $U C$

(Fishburn, 1977, Miller, 1980)

- Ex.
b and c are covered by $a ;$ e is covered by d;
a, d and f are uncovered:

$$
U C(T)=\{a, d, f\}
$$

- $U C^{2}(T)=U C^{3}(T)=\ldots=\{a, d, f\}$.

Markovian solution MS
 (Levchenkov, 1992, Laslier, 1993)

A Markov chain is defined on X from $T=(X, A)$ with the following transition probabilities:

$$
p(x \rightarrow y)=\left\{\begin{array}{l}
0 \text { if }(x, y) \in A \\
1 /(n-1) \text { if }(y, x) \in A \\
s(x) /(n-1) \text { if } x=y
\end{array}\right.
$$

where $s(x)$ denotes the Copeland score (= the outdegree) of x. This defines a stochastic matrix $P=(p(x \rightarrow y))$.

- Then we start from any vertex and we randomly go from the current vertex to another one with a probability given by P. After k steps, the probability distribution $\pi_{k}=\left(\pi_{x, k}\right)_{x \in X}$ is given by

$$
\pi_{k}=\pi_{k-1} . P=\pi_{0 .} \cdot P^{k},
$$

where π_{0} denotes the initial probability distribution.

- The Markovian theory shows that π_{k} admits a limit $\pi^{*}=\left(\pi_{x}\right)_{x \in X}$ when k tends to infinity with $\pi^{*}=\pi^{*} P$.
$\Rightarrow \quad \pi_{x}{ }^{*}$ can be interpreted as the strength of x.
\Rightarrow The Markovian solution consists in sorting the candidates according to their strengths: the winners are the candidates x maximizing $\pi_{x}{ }^{*}$.
- Ex.
tournament
(missing arcs: \rightarrow)

Markovian chain
(missing arcs: \leftarrow)

$\Rightarrow \quad \pi^{*}=(0.561,0.738,0.246,0.241,0.050,0.009,0.112)$.
$\Rightarrow b$ is the winner $(b>a>c>d>g>e>f)$.

Minimal covering set MC (Dutta, 1988)

- Let $Y \subset X$. For $y \in Y$ and $x \in X-Y$, we say that y covers x in $Y \cup\{x\}$ if y covers x in $T_{\mid Y \cup\{x\}}$.
- Y is a covering set of T if, for any $x \in X-Y, x$ is covered in $Y \cup\{x\}$. Ex: $U C$ and $U C^{\infty}$ are covering sets.
- The minimal covering set $M C(T)$ of T is the smallest (w.r.t. inclusion) covering set of $T: \forall x \in X-M C(T), x$ is covered in $M C(T) \cup\{x\}$ and $\forall Y \subset M C(T), \exists x \in X-Y$ which is not covered in $Y \cup\{x\}$.
- Ex.
(missing arcs: \rightarrow)

$M C(T)=\{a, b, c\}$
$U C=U C^{\infty}=\{a, b, c, d, e, f\}$.

Bank's solution B : maximal transitive subtournament (Banks, 1985)

- $B(T)=\{x \in X$ such that there exists a maximal (w.r.t. inclusion) transitive subtournament, i.e. a linear order, of T with x as its absolute winner $\}$.
- Ex.
$B(T)=\{a, d, f\}$
a because of $a>b>c>d$
d because of $d>e>f$ f because of $f>a>b>c$.

Slater's solution $S l$: linear orders at minimum distance (Slater, 1961)

- For any linear order O, let $d(O, T)$ be the symmetric difference distance between O and $T: d(O, T)=\mid\left\{(x, y) \in X^{2}\right.$ with $(x, y) \in O$ and $\left.(y, x) \in T\right\} \mid$. Rk: $d(O, T)$ measures the number of disagreements between O and T.
- A Slater order of T is a linear order O^{*} minimizing d. This minimum distance is called the Slater index $i(T)$ of T.
- A Slater winner of T is the absolute winner of any Slater order of T.

Slater's solution Sl: linear orders at minimum distance (Slater, 1961)

- Ex.

1 Slater order:
$f>a>b>d>c>e$,
$i(T)=2$,
$S l(T)=\{f\}$.

Top cycle $T C$

- Let $G=(X, A)$ be a directed graph. The top cycle $T C(G)$ of G is the union of the strongly connected components of G with no incoming arcs.

Ex.
$T C(G)$

$T C(T)$

Tournament equilibrium set TEQ (Schwartz, 1990)

- For any tournament solution S and any tournament $T=(X, A)$, define the (asymmetric) contestation relation $D(S, T)$ by:

$$
x D(S, T) y \Leftrightarrow x \in S\left(T_{\mid N^{\sim}\{y\}}\right),
$$

where $N^{-}\{y\}$ denotes the set of predecessors (in-neighbours) of y.

- We define a contestation $\operatorname{graph} D_{S}(T): \quad D_{S}(T)=(X, D(S, T))$ and a new tournament solution S^{*} by: $S^{*}(T)=T C\left(D_{S}(T)\right)$.
- TEQ is the only tournament solution S with $S^{*}=S$:

$$
T E Q(T)=T C\left(D_{T E Q}(T)\right)
$$

- Ex.

vertex x	a	b	c	d	e	f
$N^{-}\{x\}$	$\{d, f\}$	$\{a\}$	$\{a, b\}$	$\{b, c\}$	$\{a, b, c, d\}$	$\{b, c, d, e\}$
$\operatorname{TEQ}\left(T_{\mid N\{x\}}\right)$	$\{d\}$	$\{a\}$	$\{a\}$	$\{b\}$	$\{a, b, d\}$	$\{b\}$

Complexity results

- Polynomial methods:
\Rightarrow Copeland method and Zermelo method, in $\mathrm{O}\left(n^{2}\right)$.
\Rightarrow Uncovered set $U C$, in $\mathrm{O}\left(n^{2}\right)$ for checking that a player is a winner, in $\mathrm{O}\left(n^{2.38}\right)$ to compute all the winners (multiplication of two $n \times n$ matrices).
$\Rightarrow \quad \forall k \geq 1, U C^{k}$ (the complexity depends on k).
\Rightarrow Markovian solution $M S$, in $\mathrm{O}\left(n^{2.38}\right)$ (resolution of a linear system).
\Rightarrow Minimum covering set $M C$ (as a linear programming problem; F. Brandt and F. Fischer, 2008).
\Rightarrow the computation of a Banks winner, in $\mathrm{O}\left(n^{2}\right)$ (O. H., 2004).

Complexity results

- NP-hard methods:
\Rightarrow checking that a given vertex is a Banks winner (G. Woeginger, 2003)
\Rightarrow the computation of all the Banks winners
\Rightarrow Slater method Sl (N. Alon, 2006; P. Charbit, S. Thomassé, A. Yeo, 2007; V. Conitzer, 2006; O. H., 2010)
$\Rightarrow \quad T E Q$ (F. Brandt, F. Fischer, P. Harrenstein, M. Mair, 2010)

Links between these tournament solutions

	$U C$	$T C(U C)$	$U C^{\infty}$	C, Z	$S l$	B	$M C$
$U C$							
$T C(U C)$	\subset						
$U C^{\infty}$	\subset	\subset					
C, Z	\subset	\varnothing^{13}	\varnothing^{9}				
$S l$	\subset	\subset	\varnothing^{8}	\varnothing^{6}			
B	\subset	\subset	$\cap \neq \varnothing$	\varnothing^{13}	\varnothing^{14}		
$M C$	\subset	\subset	\subset	\varnothing^{9}	\varnothing^{8}	$\cap \neq \varnothing$	
$T E Q$	\subset	\subset	\subset	\varnothing^{9}	\varnothing^{8}	\subset	\subset

$S \subset S^{\prime}: \forall T, S(T) \subseteq S^{\prime}(T)$ and $\exists T$ s.t. $S(T) \neq S^{\prime}(T)$
$S \varnothing^{k} S^{\prime}: \forall n \geq k, \exists T$ with n vertices s.t. $S(T) \cap S^{\prime}(T)=\varnothing$
$S \cap S^{\prime} \neq \varnothing: \forall T, S(T) \cap S^{\prime}(T) \neq \varnothing$

An illustration

- $C(T)=Z(T)=\{a\}$
- $U C(T)=\{a, d, f\}$
- $U C^{\infty}(T)=\{a, d, f\}$
- $M C(T)=\{a, d, f\}$
- $M S(T)=\{a\}$
(1 order : $a>f>d>b>c>e$)
- $B(T)=\{a, d, f\}$
- $S l(T)=\{f\}$

(1 Slater order : $f>a>b>d>c>e$)
- $\operatorname{TEQ}(T)=\{a, d, f\}$

Short bibliography

- P. Fishburn (1977) Condorcet social choice functions, SIAM Journal of Applied Mathematics, 33, 469-489.
- O. Hudry (2009) A survey on the complexity of tournament solutions, Mathematical Social Sciences, 57 (3), 292-303.
- O. Hudry (2009) Complexity of voting procedures, Encyclopedia of Complexity and Systems Science, R. Meyers (ed.), 9942-9965.
- J.-F. Laslier (1997) Tournament Solutions and Majority Voting, Springer, Berlin, Heidelberg, New York.
- J. W. Moon (1968) Topics on tournaments, Holt, Rinehart and Winston, New York.
- H. Moulin (1986) Choosing from a tournament, Social Choice and Welfare 3: 272-291.

