

Characterising the Dynamics of Nano S&T: Implications for Future Policy

A. Delemarle (U. Paris Est)

With P. Larédo (Université Paris-Est - U. of Manchester) and B.Kahane (U. Paris Est)

FRENCH- RUSSIAN CONFERENCE "ECONOMIE, POLITIQUE ET SOCIETE: NOUVEAUX DEFIS ET PERSPECTIVES" SECTION ECONOMICS OF S&T AND INNOVATION - 28-29 October 2010

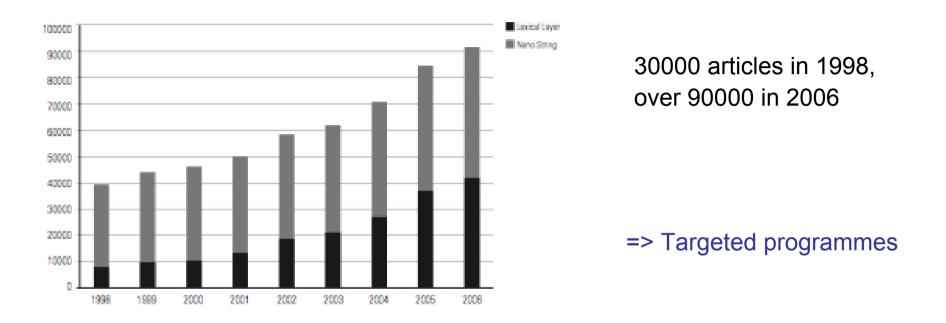
Content

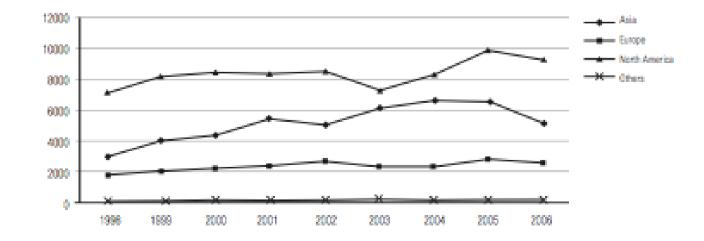
- Our question: How do nanotechnology develop? Will it like previous scientific revolutions, be the source of a new major industry? What policy portfolio can be implemented?
- Our central hypothesis: nanotechnology as a 'general purpose technology' but it needs to be managed locally. Cannot rely on past 'best practices'
- The presentation in brief:
 - Revisiting past post WWII revolutions and the policy portfolios
 - Analysing the 1st generation of policy instruments in nano
 - Analysing S&T dynamics : 1. a general purpose technology and
 - 2. A high degree of geographical concentration
 - Redefining a policy mix and characterising clusters

A retrospective view

- A reappraisal of past dynamics on features associated to the physics, IT and bio 'waves'.
- Driving to the policy hypothesis: different institutional 'mechanisms' associated to the emergence (variety generation & selection) of new science-based markets
 - physics and large programmes (Space, Aeronautics)
 - IT and 'technological' / collaborative programmes
 - Bio and IP/'start-up'/venture capital policies (to package/demonstrate value of knowledge developed by public sector research)

Leading science'	Physics	Computer science/ IT	Molecular biology
Dynamics Crystallisation	Large objects or technical systems	Distributed IP (patent pool) Strong industry- university relations	Science based / 'individual' IP, transfer / licences
Trajectory	Early selection of design / cumulative improvements	Adoption of standards and design tools	Competition between paradigms
Critical infra- structures	Specific very large equipments	Generic infrastructures	No / (limited) entry barriers
Modes of coordination	'Large programme' (product oriented)	Technological programmes	Networks & clusters (bottom-up)
Main industrial actors	'national' champions (specialising in public infrastructures)	MNF (oriented toward mass markets). Specialised firms (B to B) to better relate to users	Start-up & venture capital in initial phase/ Concentration around large established firms during diffusion
Typical 'industries'	Nuclear energy, Space, civil aero- nautics, digital wired telecoms	Information technolo- gy, mobile telecom- munications (GSM)	Biotechnologies


What about 1st generation of nanotechnology programmes?


- Since 2001 : NNI. Quickly followed worldwide
- Isomorphism in the resource allocation
 - 1. Development of facilities like in the physics and bio waves
 - 2. Focus on fostering a 'friendly ecology'
 - 3. Research at the core of the programmes
 - one central programme to develop common abilities (Fr, Japan, Korea, EU)
 - or targeted programmes based on applications (US)
- Isomorphism in the main principles
 - 1. Supporting 'frontier science' and technological exploration
 - 2. Developing programmes on instruments, methods, processes
 - 3. Focusing on collaborative and PP partnerships on strategic applications

Large investments to address the issue

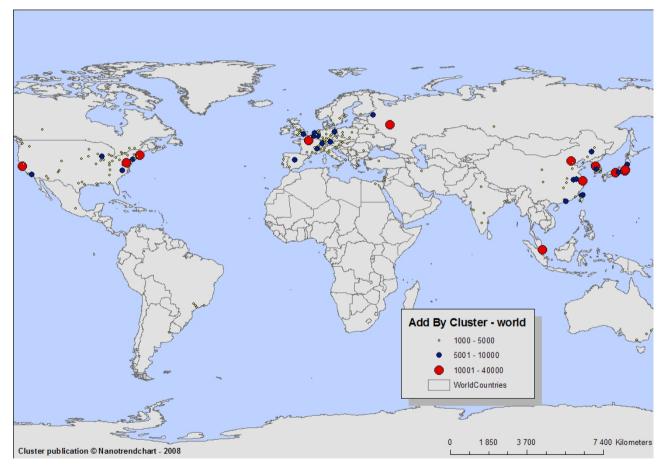
- Building databases (publications & patents) --> delineating emerging fields (see Mogoutov & Kahane, 2007)
- Sources: articles (WoS) + patents (Patstat)
- Methods developed key criterion: automated, reproducible, non expert-based and evolutive.
- Building clusters on a world-wide basis (based on automated, reproducible processes) -->
 - geolocalisation of all addresses,
 - aggregation on a geographical base (not administrative, nor institutional)
 - actor identification (Univ; Govt labs; firms)

A 'turbulent' scientific growthbut still exploring (technology)

A General Purpose technology

firms in DTI scoreboard	total	nano	%
Chemicals	93	76	82%
Electronic & electrical	102	68	67%
Oils & gas, forestry	44	29	66%
Automobile & parts	78	51	65%
Tech hardware &equipment	225	136	60%
Construction & materials	20	12	60%
Healthcare	53	30	57%
Aerospace & defence	34	19	56%
Pharmaceuticals & biotech*	152	75	49%
Industrial engineering	70	33	47%
Leisure & personal goods	44	17	39%
General industrials	43	16	37%
Media & telecom	17	6	35%
Other	152	42	28%
Software & comp services	111	23	21%
total	1238	633	51%

Not 1 industry but the need to master competences broadly and to integrate them into their products


⇒Diffusion based programmes

Diffusion + production programmes

Options

- Technological centers (for tailored tools see the physics waves) and/or technological platforms
- Industry targeted programmes
- Capability building (higher education + integrating researchers in firms)
- Start up policies?
 - Instrumentation
 - Acceptability/demonstration

A strong concentration phenomenon

203 world clusters shape the world of knowledge production in nanotechnology (80% of 1998-06 production)

=> Rethinking the diffusion policies by engineering linkages at both the industry and the geographical levels

Characterising clusters to adapt the policy mix

Indicator 1 : institutional diversity

Role of governmental labs: as a locus for costly instrumentations; as a proxy for scientific platform

Indicator 2 : cognitive (sectoral/thematic) diversity 60 strong & balanced clusters and 80 specialized clusters

Indicator 3 : agglomeration

History matters for patent applications Existing industrial zones are already the most active

Indicator 4 : Visibility

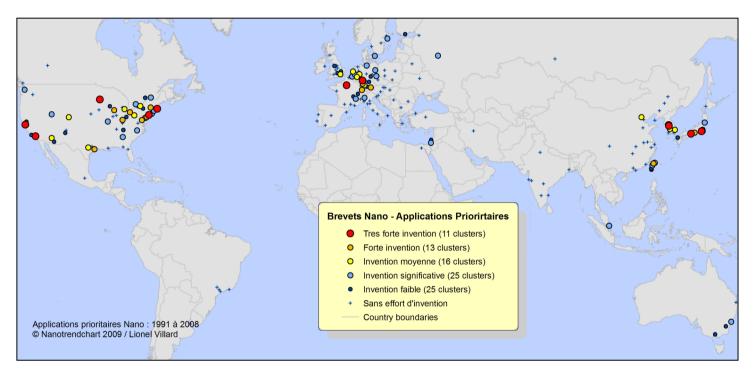
Highly cited articles (top 1%) display the attractiveness of new concepts

Indicator 1 : institutional diversity

Ex: Role of governmental labs

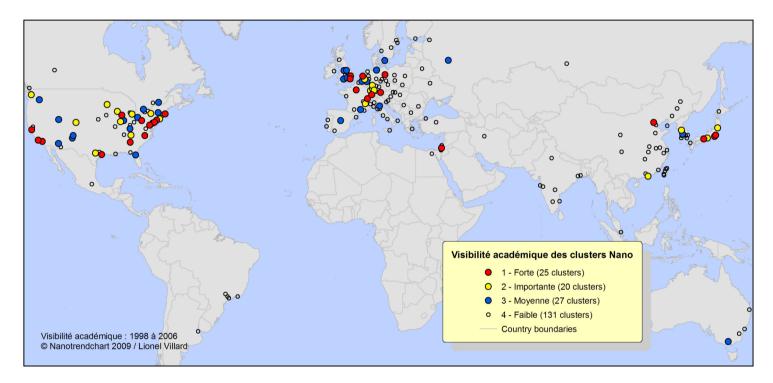
- as a locus for costly instrumentations
- as a proxy for scientific platform
- represent for 23% of publications
- 18 clusters amounts for 50% of govt labs publications (40 for universities)
- 33 clusters account for 66% of govt labs publication (71 for universities)
- Including 5 major DOE nanoresearch centers in the US and CEA labs in France

Indicator 2 : cognitive (sectoral/thematic) diversity


Présence thématique : engagement et équilibre thématique						
	v.strong &	strong &	bi-	mono	without	
	balanced	balanced	specialised	specialised	significant	
					engagement	total
US	8	9	5	15	18	55
Asia	8	4	14	11	12	49
Europe	17	12	11	15	26	81
other	1	1	4	4	8	18
total	34	26	34	45	64	203

Thematic presence : a balanced cluster has to be present in the top 80% of the three themes (Physic – electronics, chemistry – materials, biotech – life science)

- 60 strong & balanced clusters and 80 specialized clusters
- No real difference in continental distribution


Indicator 3 : agglomeration

History matters and cumulativity of knowledge But we see also new places in Europe and Asia (high rate of growth)

- Role of S&T platforms
- Role of anchor tenant

Indicator 4 : Visibility

- Highly cited articles (top 1%) display the attractiveness of new concepts
- 50% of main clusters display Top 1% articles
- Visibility is the business of Triadic countries : North America (22), Europe (15), Asia (8 mainly in Japan)

Combined Cognitive Diversity and Visibility +

Santa	ngKong Madrid nta Barbara bana Lausanne Beijing Berlin Cambridge Grenoble Jerusalem <i>Sendai</i> Oak Ridge	Munich Raleigh Tsukuba Zurich Atlanta Ann Arbor Austin	San Francisco - New York Boston - Los Angeles Washington - Chicago Kyoto - Tokyo - Seoul Paris Nagoya Amsterdam London Karksruhe Mainz <i>Philadelphia</i> Pittsburgh Houston <i>Boulder</i>	
	Moscou Oxford Manchester Montreal	Eindhoven Louvain Taejon Cleveland	Julich Tempe	Firms INV+ Hsinchu Bochum Suwon Chiba