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Hard Lefschetz for simplicial polytopes and intersection theory on
tropical isolated surface singularities

Tropical geometry. Every k-dimensional affine algebraic variety V ⊂ Cn gives rise
to its tropicalization, which is a certain k-dimensional piecewise linear set in Rn, reflecting
amazingly many topological and geometric properties of V . For instance, the tropicalization
of a complex line in the plane is the union of rays in the directions ↑,→ and ↙ from the
common initial point. The combinatorial fact that any two distinct tripods of this kind
intersect by one point reflects the algebraic-geometric fact that two generic lines in the plane
intersect by one point.

Intersection theory. If two curves in the plane intersect at an isolated point, then
slightly shifted copies of these curves intersect at finitely many nearby points. The maximal
possible number of such points is called the intersection index of the curves. If the two curves
live in a singular surface, rather than in the plane, then applications still require to define
their intersection index. However, we cannot shift curves in a singular surface, and thus we
need another idea for the definition, which is a classical topics for intersection theory. The
simplest way is to try to represent the curve A (aka Weil divisor) as the zero set of a function
f (aka Cartier divisor), and to define the intersection index of the curves A and B as the
multiplicity of the root of the restriction f |B. What is, for instance, the intersection index
of two lines in the cone z = xy?

Motivation from enumerative geometry. Both tropical geometry and intersection
theory emerged as approaches to enumerative geometry, whose topics is illustrated by the
following classical problem: count how many curves of given degree and genus pass through
a given set of points in C2. The approach of intersection theory is to consider the space,
parameterizing all curves of given degree and genus. All curves, passing through a given
point, form a hypersurface in this space, and we are looking for the intersection index of
several such hypersurfaces. The approach of tropical geometry is to count tropical curves
of given tropical degree and tropical genus through a given set of points in R2. It is a
purely combinatorial problem, and Mikhalkin proved in 2003 that the tropical count will
give the same number as the conventional one. This solution of a classical problem so much
advertised the new field of study, that tropical geometry has already earned more than 400
publications and a personal line in the MSC subject classification.

Tropical intersection theory. Motivated by Mikhalkin’s achievement, it is now con-
sidered desirable to construct a tropical counterpart for every important piece of algebraic
geometry. In particular, many authors work on constructing intersection theory of tropical
varieties. What we now call the intersection index of tropical curves in the plane was con-
structed in 1990’s under another name by Fulton and Sturmfels. The intersection index of
tropical curves in a smooth tropical surface was defined by Allerman, Francois, Raw and
Shaw in 2010. We aim at constructing intersection index of tropical curves in a tropical
surface with an isolated singularity.

Statement of the problem (in plain words). For linearly independent vectors a and
b in the Euclidean plane R2, define the linear function l on R2 by the conditions l(a) = p
and l(b) = q, define the unit vector v by the conditions v · b = 0 and v · a > 0, and denote
the derivative of l along v by a,b

p,q
.

Let P ⊂ R3 be a convex polytope, let f be a function, assigning a real number f(B)
to every face B ⊂ P , and let nB be the unit external normal vector of B. We define
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another function f ′ on the set of faces of P by the equality f ′(B) =
∑

A
nA,nB

f(A),f(B)
, where A

runs over all faces of P , adjacent to B. Let RP be the space of all functions on the set of
faces of P , then the rule f 7→ f ′ defines a self-map D : RP → RP , and one can note that
dim kerD = codim imD is at least 3 (it is a good exercise to describe explicitly a three-
dimensional subspace in the kernel and a codimension 3 subspace, containing the image).
We can now precisely formulate our question:

dim kerD = codim imD = 3?

Note that, instead of working with geometric definition of D, we can explicitly write down
its matrix.

Where is tropical geometry in this question? Actually, instead of the polytope P ,
we should consider the set of all external normal vectors to its faces and edges: this will be
the aforementioned tropical surface S. Instead of the function f , we should consider external
normal rays to faces of P , with the multiplicity f(B) attached to the ray generated by nB:
the union of these rays will be a tropical curve C on S. The fact that f is in the image of D
means that the ”tropical Weil divisor” C can be represented as a ”tropical Cartier divisor”,
and we can develop the tropical analogue of intersection theory on S.

Suggestion on how to solve. The first objective is to study the case when P is the
convex hull of finitely many ”generic” points p0, . . . , pN in R3 (so that all the faces are
triangles). For this, we can fix p1, . . . , pN , move p0, and trace what happens to the matrix D
as the convex hull of p0, . . . , pN suffers a transformation. Actually, there are only two types
of transformations that cannot be avoided by a slight modification of the trajectory of p0:
(1) one triangular face of P splits into three, or (2) two triangular faces of P merge into one
quadrilateral, which then breaks again (along another diagonal) into two triangular faces. If
we manage to prove that the rank of D is preserved during these transformations, then we
can eventually move the point p0 to the interior of the convex hull of p1, . . . , pN , where the
rank of D is known by induction on N .

Further objectives. The aforementioned suggestion allows (hopefully) to prove that
D is non-degenerate, if the polytope P is the convex hull of a “sufficiently generic” finite
collection of points. It would be interesting to prove non-degeneracy of D for all P with
triangular faces, or to find a counterexample.

We can also relax the aforementioned condition, allowing faces of P to be triangles or
parallelograms. This case seems important: e. g. the intersection of the corresponding trop-
ical surface S with a plane is exactly the kind of a tropical curve participating in Mikhalkin’s
theorem. The same suggestion as above might help in this case, with a slight difference that
P should be now represented as the convex hull of generic points and parallelograms.

By some reasons outside the scope of this abstract, the problem of non-degeneracy of D
becomes irrelevant (although simpler) for polytopes P , whose faces are more complicated
than triangles and parallelograms. For instance, it is well known as the “combinatorial hard
Lefschetz theorem” for simple polytopes (a polytope is called simple if all faces of its dual are
triangular, and the proof is by hard Lefschetz theorem for the toric variety, corresponding
to P ).

Instead of a polytope in R3 and its faces, we can consider a polytope in Rn and its facets.
This setting is more general, but should not be harder to solve.

Introduction to tropical geometry: arxiv.org/abs/math/0601041
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Stratification of sparse determinantal varieties

Stratification of determinantal varieties. A stratification of a set S ⊂ Ck is a
sequence of closed subsets S0 ⊂ S1 ⊂ . . . ⊂ Sk = Ck, such that the set Si \ Si−1 (which is
called the i-dimensional stratum) is empty or homeomorphic to an i-dimensional manifold
for every i, and S is the union of some of these strata. The determinantal variety Sm,n is the
set of all complex (m × n)-matrices of rank smaller than min(m,n); the name comes from
the fact that such matrices are characterised by vanishing of maximal minors. It is a closed
subset in the space of all complex (m × n)-matrices, and admits the stratification, whose
non-empty strata are the sets of the form {matrices of rank r} for r = 0, . . . ,min(m,n).
Exercise: find the dimension of each stratum.

Sparse determinantal varieties. Choose a set K ⊂ {1, . . . ,m} × {1, . . . , n} and let
MK be the set of all complex (m × n)-matrices, whose (i, j)-entries vanish for (i, j) ∈ K.
This is a vector subspace in the space of complex (m × n)-matrices, and the first (easy)
problem is as follows:

describe low codimension strata of the sparse determinantal variety Sm,n ∩MK .

Example: the space of degenerate square triangular 2×2 matrices is the union of two planes,
whose intersection is a line L, therefore the two strata are L and its complement.

Effectively degenerate matrices. A matrix of size m × n with m 6 n is said to be
effectively degenerate, if its rows a1, . . . , am admit a linear relation

∑m
i=1 λiai = 0 with λi 6= 0

for every i = 1, . . . ,m. The set Tm,n of all effectively degenerate complex (m× n)-matrices
is dense in Sm,n, but not closed itself. Thus, the following problem is different from the first
one (and is more complicated):

describe low codimension strata of the set Tm,n ∩MK .

Example: the space of effectively degenerate square triangular 2 × 2 matrices is a plane
minus its origin O, therefore the two strata are O and its complement.

Motivation. The Kouchnirenko-Bernstein theorem gives an exact upper bound for
the number of common roots of n polynomials on (C \ 0)n with given Newton polytopes.
Considering the collection of these polytopes as a matrix of size 1×n, a natural generalization
of this question is as follows. Given an (m × n)-matrix A, whose entries are polynomials
on (C \ 0)k with given Newton polytopes, find an exact upper bound for the number of
points x ∈ (C \ 0)k such that rkA(x) 6 r. This problem is solved for the maximal and the
minimal possible value of r (i.e. for min(m,n) and 1 respectively), and the study of other
cases leads to the aforementioned problems. For instance, the simplest of the remaining
cases m = n = r + 2 requires understanding of codimension 3 strata of Tm,n ∩MK .

General problem.

Describe stratifications of Sm,n ∩MK and Tm,n ∩MK .

It is difficult to estimate how complicated this problem is, until any strata of low codimension
are well understood. The solution of this problem might rely upon theory of matroids in
order to classify sparse degenerate matrices with respect to combinatorial ways of their
degeneration, and require construction of normal forms of such matrices in order to verify
that the resulting classes are smooth. It would also be important to check that the resulting
stratification is a Whitney stratification, or at least a topological stratification.

Literature: ”Determinantal variety”, ”Matroid” – see Wikipedia and references therein.
Normals forms – see Arnold, Varchenko, Gusein-Zade, ”Singularities of differentiable maps”.
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