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f*= f(x*) = global mingepf(x) (or maxepf(x))
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1 Global Continuous (or Discrete) Op-
timization Problem
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Over an unbounded domaiw(= R” or D = Z"), no

algorithm can be designed for integer programming, noalne
eqguations, continuous global optimization and constraint
satisfaction problems.

Diophantine Equation Problem (Hilbert 23 problems):
Given a polynomial functiorP(z+, ..., x,,) with integer
coefficients, decide whether the following equation has a
solution:

P(ZCl, ,SUn) — O,
x; . wnteger, 1 =1,....n7

There exists no recursive function to decide whether the
diophantine equation problem has a solution.
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The main focus of computational complexity Is to
analyze thentrinsic difficulty of optimization problems
and to decide which of them are likely to be tractable.
The pursuit for developing efficient algorithms also leax
to elegant general approachefor solving optimization

problems, and reveairprising connectionsamong
problems and their solutions.

The general problem NP-hard. Furthermore,
checking existence of a feasible point that satisfies
the optimality conditions Is alsNP-hard.

How to check convexity!

From Local to Global in Numerical Optimization — p.



Challenging problems:
Phase transitions problems
Average case complexity
Smoothed Analysis
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Many powerful techniques in global optimization
are based on the fact that many objective functions
can be expressed as ttidference of two convex
functions (so callead.c. functions).

If D(x) is an objective function irR", then the
representatiod (x) = p(x) — q(z), wherep, q are
convex functions is said to bedac. decomposition
of D.

The space of d.c. functions cdosedunder many
operations freqguently encountered in optimization
(I.e., sum, product, max, min, etc).

Hartman 1959: Every locally d.c. function is d.c.
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For simplicity of notation, consider the d.c.
program:

min f(z) — g(z)
st. ze€D (1)

whereD Is apolytopein R with nonempty interior,
and f andg areconvex functionsn R".

By introducing an additional variabte Problem (1)
can be converted into the equivalent problem:
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e Global Concave Minimization:

min t — g(x)
st. z€D,f(x)—t<0

with concave objective functiort — g(x) andconvex
feasible set{(z,t) € R"™! 1z € D, f(x) —t <0}. If
(x*,t*) is an optimal solution of (2), then* is an
optimal solution of (1) and* = f(x*).

(2)

Therefore, any d.c. program of type (1) can be
solved by an algorithm for minimizing a concave
function over a convex set.
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Monotonicity with respect to some variables (partial
monotonicity) or to all variables (total monotonicity) Is &
natural property exhibited by many problems
encountered in applications. The most general probler

of d.I. monotonic optimization is:

min  f(z) — g(z)
st. filx) —gi(x) <0,0=1,....,m
where are all functions are increasing 8i.

©)
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4 DI Optimization Problems
= Assume without loss of generality thatr) = 0.

5 Vi fi(z) = gi(x) <0} & max {fi(z) — gi(z)} <

1<i<m

0< F(x)— G(x) <0, where

F(z) = maX{fz ‘|‘ZQJ

]
— Z gi(z)

F(x) andG(z) are both increasing functions.
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4 DI Optimization Problems

= Problem reduces to:

min f(x)
st. F(x)+t<F(b),
G(x)+t> F(b),

t < F(b) — F(0),

= A setG C R normal if for any two pointsz, 2’
such thatt’ < z, iIf x € G, thenz’ € G.
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Numerous global optimization problems can be
reformulated as monotonic optimization problems. Suc
problems include multiplicative programming,
nonconvex quadratic programming, polynomial
programming, and Lipschitz optimization problems.
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5 Challenging problems

» Find thebestD.C. decomposition.
= Find thebestD.l. decomposition.
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In combinatorial optimization and graph theory many
approaches have been developed that link the discrete
universe to the continuous universe througgometric,
analytic, and algebraictechniques. Such techniques
Include global optimization formulations, semidefinite

programming, and spectral theory.
Examples:

Interior Point and Semidefinite Programming Algorithms

Lovasz number
Goemans-Willlamson Relaxation of the MAX-CUT

Solution of Gilbert-Pollak’s Conjecture (Du-Hwang)
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6 IS Continuous Optimization different
than Discrete Optimization?

Examples:

mlz2ec{0,1l}sz—2°=2(1-2)=0

¥ Integer constraints are equivalent to continuous nonconve
constraints (complementarity!)

m | Discrete Optimization <= Continuous Optimization

® The key Issue Is:
Convex Optimization £ Nonconvex Optimization

= The Linear complementarity problem (LCP) is equivalent
to the linear mixed integer feasibility problem
(Pardalos-Rosen)
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{ Continuous Approaches to Discrete
Optimization Problems
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{ Continuous Approaches to Discrete
Optimization Problems
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The satisfiability problem (SAT) is central in
mathematical logic, computing theory, and many
Industrial application problems. Problems in computer
vision, VLSI design, databases, automated reasoning,
computer-aided design and manufacturing, involve the
solution of instances of the satisfiability problem.
Furthermore, SAT Is the basic problem in computation:
complexity. Developing efficient exact algorithms and
heuristics for satisfiability problems can lead to genera
approaches for solving combinatorial optimization
problems.
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(.1 Satisfiability Problems

LetCq,Co, ..., C, ben clauses, involvingn Boolean variables
x1,%2,...,Tm, Which can take on only the values ue orf al se (1 or
0). Define clauseé to be
m;
Ci = \/ lijs
j=1
where the literal$;; € {x;,z; | i =1,...,m}.

In the Satisfiability Problem (C'N F)

one Is to determine the assignment of truth values torth@riables that
satisfy alln clauses.
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(.1 Satisfiability Problems

Given aC'N F formula F'(x) from {0, 1}" to {0, 1} with n clauses
C1,...,C,, we define a real functiofi(y) from E™ to E that transforms
the SAT problem into an unconstraingbbal optimization problem:

o ) (4)
where
fly) =) cily). (5)
1=1

A clause functiorr;(y) is a product ofn literal functionsg;;(y;)
(1 <j<m):

m
Ci = H Gij (Y5);
j=1
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(.1 Satisfiability Problems

where
)

ly; — 1| ifliteral z; is in clauseC)

q¢ij(y;) = § |y; +1| ifliteral z; is in clauseC; (7)

1 If neitherx; norz; is in C;
\

The correspondence betweeandy is defined as follows (for < i < m):

v

z; =14 0 Iif y; = —1

! unde fined otherwise

F(x) is true iff f(y)=0 on the corresponding= {—1,1}™.
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(.1 Satisfiability Problems

Next consider a polynomial unconstrainglobal optimization
formulation:

Juin f (¥), (8)
where
fly) =) cly). €)
1=1

A clause functiorr;(y) is a product ofn literal functionsg;;(y;)
(1 <j<m):

m
Ci = H Gij (Y5),
j=1
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(.1 Satisfiability Problems

where

(
(y; — 1)* if z; is in clauseC;

¢i;(y;) = § (y; +1)% if 2; isin clauseC;

1 If neitherx; norz; is in C;
\

wherep Is a positive integer.
The correspondence betweeandy is defined as follows (for < i < m):

g

1 ifyz':1
;=4 0 if y; = —1

\ unde fined otherwise

F(X) is true iff f(y)=0 on the corresponding= {—1,1}"™.
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These models transform the SAT problem from a
discrete, constrained decision problem into an
unconstrained global optimization problem.

A good property of the transformation is thihese
models establish a correspondence between the
global minimum points of the objective function
and the solutions of the original SAT problem.

A CNF F'(x) Is trueif and only If f takes the global
minimum value) on the corresponding.
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(.1 Satisfiability Problems
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Consider a graptir = G(V, E), wherelV = {1,... . n}
denotes the set of vertices (nodes), @denotes the set
of edges. Denote b, j) an edge joining vertexand
vertex;. A cligue of G Is a subset’ of vertices with the
property that every pair of vertices (1l is joined by an
edge. The maximum clique problem is the problem of
finding a cligue set’ of maximal cardinality.

Applications:

e project selection, classification theory, fault
tolerance, coding theory, computer vision, economics,
Information retrieval, signal transmission theory,
aligning DNA and protein sequences, and other
specific problems.
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Multivariable polynomial formulations

W If 2" Is the solution of the followingdontinuous) quadratic program

max f(x) =Y . | x; — D _(ij)eE Ti%j = elx —1/221 Agx
subjecttad < z; < 1foralll1 <i<n

then, f(«*) equals the size of the maximum independent set.

W If z* Is the solution of the followingdontinuous) polynomial
program

max f(z) = > (1 — ;) H(z’,j)GE 15
subjecttad < z; < 1foralll1 <i:<n

then, f(«*) equals the size of the maximum independent set.

™ In both cases a polynomial time algorithm has been developed
that finds independent sets of large size.
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Multivariable polynomial formulations
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Motzkin-Strauss type approaches

Consider the continuousdefinite quadratic
programming problem

max fo(z)= Y. muz; =izl Agx
(,7)€l

st. zeS={z=(21,...,2,)7: > z; =1, (12)
i=1
.2137;>O (z:l,,n)},

where A Is the adjacency matrix of the gragh
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If o = max{fq(x):x € S}, thenG has a maximum
cligueC of sizew(G) = 1/(1 — 2«). This
maximum can be attained by setting= 1/k if

i€ Candz; =01if ¢ ¢ C.

(Pardalos and Phillips 1990) K, hasr negative
eigenvalues, then at least— r constraints are active

at any global maximum* of f(x). Therefore, ifAq
hasr negative eigenvalues, then the sjzk of the
maximum clique is bounded Q¢’| < r + 1.
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The“call graph” comes from telecommunications traffic. The
vertices of this graph are telephone numbers, and the edgeslés
made from one number to another (including additionalrimlidata,
such as, the time of the call and its duration). The challemge
studying call graphs is that they are massive. Every day AT & T
handles approximately 300 million long-distance calls.

Careful analysis of the call graph could help with infrastructure
planning, customer classification and marketing

How can we visualize such massive graphs? To flash a terabyte c
data on a 1000x1000 screen, you need to cram a megabyte of da
Into each pixel!

From Local to Global in Numerical Optimization — p. 3



In our experiments with data frobelecommunication traffic, the
corresponding multigraph h&s,767,087 vertices and over 170

million of edges
A giant connected component with 44,989,29%&rtices was

computed. Thenaximum (quasi)-clique problemis considered in
this giant component.
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Optimization on Massive Graphs

Several other graphs have been considered:

= Financial graphs

= Brain models

= Drug design models
= Biological networks
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Estimation of Short Term Largest Lyapunov
Exponents (ST'L,,,..)

Sincethe brain is a nonstationary system
algorithms used to estimate measures of the brain
dynamics should be capable of automatically
iIdentifying and appropriately weighing existing
transients in the data. In a chaotic system, orbits
originating from similar initial conditions (nearby
points in the state space) diverge exponentially
(expansion process). Thate of divergenceis an
Important aspect of the system dynamics and is
reflected in the value diyapunov exponents
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Spatiotemporal Dynamical Analysis

We employ thél'-index (from the well-known
paired T-statistics for comparisons of means) as a
measure of distance between the mean values of
pairs of ST'L,,... profiles over time. Th&-index at
time t between electrode sitésand; Is defined as:

T;i(t) = VN X |E{ST Liaz; — ST Liaz.; }|/0i.:(t)

whereFE{-} is the sample average difference for the
ST Lygzi — ST Lipq, i €Stimated over a moving

window wy ().
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(.3 Multiquadratic Optimization
m Electrode Selection Problem

The quadratically constrained quadratic 0-1 proble
IS given by:
min ! Ax
st. >l,xm =k
vI'Bx  >T,k(k—1)
r € {0,1}"
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Warning Timeg,
]
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8 Hierarchical Optimization

= The word hierarchy comes from the Greek word
“Lepapyira”, a system of graded (religious)
authority .
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The word hierarchy comes from the Greek word
“Lepapyta’, a system of graded (religious)
authority .

Hierarchical structures are found in many complex
systems and in particular in biology.

Biological systemsare characterized by hierarchice
architectural designs in which organization is
controlled on length scales ranging from the
molecular to macroscopic. These hierarchical
architectures rely on critical interfaces that link
structural elements of disparate scale.
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8 Hierarchical Optimization

Nature makes very different systems (that have
specific hierarchical composite structures) out of very
similar molecular constituents.
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Nature makes very different systems (that have
specific hierarchical composite structures) out of very
similar molecular constituents.

First, the structures are organized in discrete level
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Nature makes very different systems (that have
specific hierarchical composite structures) out of very

similar molecular constituents.

First, the structures are organized in discrete level

Second, the levels of structural organization are ht
together by specific interactions between

components.
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Nature makes very different systems (that have
specific hierarchical composite structures) out of very
similar molecular constituents.

First, the structures are organized in discrete level

Second, the levels of structural organization are ht
together by specific interactions between
components.

Finally, these interacting levels are organized into
oriented distinct hierarchical composite system of
specific function.
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The mathematical study of hierarchical structures can
found in diverse scientific disciplines including
environment, ecology, biology, chemical engineering,
classification theory, databases, network design, game
theory and economics. The study of hierarchy occurrin
In biological structures reveals interesting propertes a
well as limitations due to different properties of
molecules. Understanding the complexity of hierarchic
designs requiressystems methodologies that are
amenable to modeling, analyzing and optimizing
(Haimes Y.Y. 1977) these structures.
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Hierarchical optimization (or multi-level) can be
used to study properties of these hierarchical
designs. Imierarchical optimization, the
constraint domain is implicitly determined by a
series of optimization problems which must be
solved In a predetermined sequence

Hierarchical optimization is a generalization of
mathematical programming. The simplest two-leve
(or bilevel) programming problem describes a
hierarchical system which is composed of two leve
of decision makers and is stated as follows:
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(BP) min  ¢(z(y),y)

yeY
subjectto ¢ (z(y),y) <0

where x(y) = argmin f(z,y)
re

subjectto g(z,y) < 0,

whereX C R" andY C R™ are closed sets,

Y : X XY — RPandg: X xY — R?are
multifunctions,p and f are real-valued functions. The
set

S={(r,y):xe X,yeY,¥(x,y) <0,g(x,y) <0}is
the constraint sebf BP.
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Multi-level programming problems have been
studied extensively in their general setting during
the last decade.

In general, hierarchical optimization problems are
nonconvex and therefore Is not easy to find globall
optimal solutions.
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It seems thahierarchical structures are harder to
manage than completely centralized systems
Then,what are the rationalities for hierarchical
structures to exist?

Answers to such questions may help us to
understand the reason behind hierarchical structur
In biology.
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extreme point algorithms
branch-and-bound algorithms
complementarity pivot algorithms
descent methods

penalty function methods
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ariate Partition Approach




This is an approach for solving a single-level mathematical
programming problem based on its equivalent multilevel
programming formulation.

The basic idea of this approach is to partition all the vdesb
appearing in the optimization problem into two or more gi®u|
and then, solving some small-sized problems with respect tc
each group of variables, to generatamproved exploratory
approximate solutiof the initial problem.

Based on the improved exploratory approximate solutiow, ne
partition groups of variables can be constructed, and the
corresponding small-sized problems can be solved as bfor
order to obtain a better approximate solution.
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With this approach we can formulate
optimization problems as multi-level
optimization problems.

In fact, there are well-known algorithms which are
related or can be regarded as specific
Implementations of the MPA.
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Multivariate Partition Approach

= Consider the following problem:

i f(z), (1)

whereD is a robust set and(x) is continuous inD.

mlLet{A;,,i=1,...,p} be apartition of
S={x,...,z,},p> 1.
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(1) is equivalent to the following multilevel
optimization problem:

: n ...+ mi JAN TVA _
yo'l Elgo-l{yJZ 61302 {y Elél ( ]‘7 ) p)} }7

whereo = (o, ..., 0,) IS any permutation of
{1,2,...,p}. The components of the vectgy.
coincide with the elements af; and D,,. is defined
as a feasible domain of,..

Op op
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Multivariate Partition Approach

Example.Let D = {z : ||z]| < 1} C R
= Let the partition ofS = {x1, 22} be{A;, Ay},
whereA; = {z1} andA,; = {z-}.
= If the permutatiorv = ( 1) thenD, = (D, Dy),
whereD, = [-1, 1], { \/1—$2,\/1—$2}

= Aggregated variables aig = x5, € D, and
Y1 — 11 - Dl.
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Among various multilevel formulations of problem
(1), the bilevel optimization formulation seems to b
most useful to the implementation of the MPA.

LetS ={z,...,z,},andlet{/~,I"} be a
partition of an index sef, = {1,...,n}.

Denote byS— and.S™ the corresponding subset &f
with respect ta/ — and/, respectively.

{S—,S57} is a partition of the seS.
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The bilevel optimization formulation is as follows:

-
uin g(S57),

whereg(S~) is the global minimum of the problem

min f(S™,S5™)

yteD g+

I~ and/" are called theeference index seind the

active index setS— andS™ are called the set of
reference variableand the set ofctive variables.
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For any partition{ A;|: = 1, ..., p} of the setS and

any permutatiom = (o, ..., 0,) of the index set
I, lety, = (yo,, .- ., ys,) e afeasible point with
respect to the domain vectdl, = (D,,,..., D, ).

By thethe multivariate partition approach (MPAD
the initial problem (1) we mean the method that
Improves the performance of the feasible paint
using the following strategy:
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Let S~ = S\A,, be a set of reference variables for
each: € [,. Solving the followers’ problem in the

above bilevel formulation we can obtain an
Improved valugj,. of the active variable

y—i_:yO'ZEDS—l':DO—I;gDO'Z

Improved Point. Based on the improved point

Up = (Uors - - - » Us,) @nd the feasible point,, an
Improved feasible poing: can be determined by a
search and decision scheme.

From Local to Global in Numerical Optimization —p. €



Under some conditions it can be proved that the
MPA converges.

H. X. Huang and P.M. Pardaloslultivariate
Partition Approach for Optimization Problems,
Cybernetics and Systems Analysis Vol. 38, No. 2
(2002), pp. 265-275.
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Examples of the MPA

» K-Means Type Algorithms

m Coordinate Descent Method
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The K-means method (MacQueen, 1967) is one 0f
the most popular clustering methods which have
been applied in a variety of fields including pattern
recognition, information retrieval, document
extraction, and microbiology analysis, etc.

The goal of this method is to classify a given data s
through a certain number of clusters, such that sor
metric relative to the centroids of the clusters is
minimized.

From Local to Global in Numerical Optimization —p. €



We can define our problem mathematically as follows:

We are given a seX of a finite number of points In
R™:

X = (2 2%, ..., 2")wherex' e RY, i =1,2,...,n.

We aim at finding a partitiod; # 0,
7=12,....k:

X = Uq,, C;NC; = Qforall j # 1,

7=1

of X, which minimizes the squared error function:
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k
f(C1,Cs, ..., Cr) = glc', P, ) =) ) || = 2|

i=1 zieC,

wherec’ is the center of the clustér; defined by

: 1 :
d== > o', j=12,.,k (17)
|Gyl -

We note that, in optimal solutions, a cluster can be reptesen
by its centroid since each point should be assigned to the
cluster that has the closest centroid. Thus, we can thirtk tha
variables of our optimization problem are centroids of the
clusters.
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Algorithm K-Means
Step 1.Initialize the centroidsy), j = 1,2, ..., k. Setq = 0.

Step 2.Assign each point® (: = 1,2, ..., n) to the cluster that
has the closest centroid (j € {1,2,...,k}), thatis

)= argmiqglngxi — CéH2-

Step 3.When all points have been assigned, fet 1,2, ...k,
calculate the new positioaﬂj]'+1 of the centroid; using Equation
(17).

Step 4If ¢ = ¢, forall j = 1,2,...k, then stop, otherwise

setq = ¢ + 1 and go to Step 2.

From Local to Global in Numerical Optimization —p. €



We note that Equation (17) finds a local solution of problem

min g(c',...,c")

s.t. ¢ e R?

while all other centroids (except centroiflare fixed.
Therefore, we can see that themeans algorithm is a special
case of the multivariate partition approach.

One way to find a solution, which is close to a global
minima,for the above problem is to locate centrpiak

z!, ..., 2" and choose the one with the least valug aimong
them after reassigning the points to the centroids. Thig isle
closely related to j-means clustering algorithm (Hanseh an
Mladen OVé, 200 1) : From Local to Global in Numerical Optimization — p. €
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If n =porA; ={x;} fori =1,... ninthe partition of the
multivariate partition approach, then many existing
optimization algorithms designed for solving Problem (8 a
closely related to this partition including tleseordinate
descent method

Basically, each coordinate axis is searched, and a descent |
only made along a unit vector. The cyclic Coordinate Descer
Method minimizes a functiorf(x4, . . ., x,,) cyclically with
respect to the coordinate variables.

That Is, firstr; IS searched, then,, etc. Various variations are
possible. One advantage of these methods is their easy
Implementation.
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Meneses et al. (2005) proposed a GRASP (Greedy
Randomized Search Procedure), which is a special ca
of coordinate descent method, for solving the following
nonlinear programming problem with box constraint:

min f(x)
st. [ <z <u,

wheref(x) : R” — R, andl, v are lower and upper
bounds for the values of the variahte
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GRASP starts with an initial point = 2.

Then, for each =1, ..., n, we solve a problem of one
variablex; while other coordinate values of the current solutio
x are fixed. These problems are solved by discretizing the
solution space using the grid density

Based on solutions to these problems, the method finds an
Improved feasible point. Then the above procedure will be
repeated.

If the number of iterations with no improvements achieves
value N (some positive integer number), the value:a
reduced to its half, and the process is restarted.
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ations of the MPA

nnard-Jones Problem

)herical Code Problem



Problem: Compute the native 3 dimensional
conformation (folded state) of a (globular) protein giver
Its amino acid sequence, possibly in the presence of

additional agents (e.g., drugs).
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Given a cluster ofV atoms in 3—dimensional space, the
potential energy function of the cluster is defined as th
summation (over all of pairs) of the two-body interatom
pair potentials. Let the codey = {z1,--- ,zy} be the
collection of centers oV atoms. The potential energy
function is defined as follows:

V(Pv) = > olllei =), (18)

1<i<j<N

where||.|| is the Euclidean norm and) is the
Interatomic pair potential.
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There are many potential functions that have been
considered, for example, thennard-Jones
potential energy function:

v(r) =r % —2r°

The global minimization of potential energy
functions plays an important role in the
determination of ground states or stable states of
certain classes of molecular clusters and proteins.
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Lennard-Jones Problem

mLet Py = {z,--- ,xn} be acode in which points
are mutually different.

= We partition index sef into two disjoint setd " and
I~.
= |t Is easy to observe that

V(Py) =V (Py(I7))+

+V(Py(I7),Pnv(I7)) + V(Pn(I7))
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Lennard-Jones Problem

» Where
V(IPy(IF) = > |l — ]| 7%=
i,j€l* 1<
-2 Y o — "
i,j€1* 1<
= and
V(Py(I),Py(I7) = ) V({ziz;})

el t jel~
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\We can consider an equivalent bilevel optimization
problem

min{V (Px(I7)) + V(Pn(I7))},

stx, eR’ Viel

whereV (Py(17))} is the globally optimal solution
of the sub-problem:

min{V (Py(I")) + V(Pn(I"), Pn(I7))}

st.ax; eR?, Vjel"
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The Spherical Code (SC) Problems referred to as
how to distribute points on the unit sphere accordir
to a certain ‘generalized energy’.

The SC problem has been the focus of research In
various fields such as physics, molecular biology,
signal transmission, chemistry.

Some well-known problems such e Tammes
problem the Fekete problerandthe maximum
volume arrangementsan be considered as SC
problems with different objectives.
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The Tammes problem is defined as how to platce
points on a sphere in thedimensional space so as to
maximize the minimum distance (or equivalently the
minimum angle) between any two points.

Er = max min ||z; — x|
|z |=1, 1<i<N  1<j<k<N
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Spherical Code Problem

mLetS"” = {z| ||x|| = 1} denote the unit sphere in
R™.

= Let Py denote a spherical code wifth points on
SN, l.e. Py = {5131, e ,ZCN}

= S-energyassociated with the spherical coflg is
defined as

(Dicj i — | if s # 0
1 TR
D icjIn (IIxi—lel) if s =0.

’lU(S,PN) = 9

\
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Spherical Code Problem

» Thes-extremal energy'y(s) for N points onS” is
defined by

minp, cg» w(s, Py)if s >0

Ex(s) = {

maxp, cg» w(s, Py) if s <0

= The spherical codé€;  is called thes-extremal
spherical codef it satisfies

w(s, Py n) = En(s)
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The points in thé)-extremal spherical codgy ,; are

calledelliptic Fekete pointElearly, these points
maximize the product of the distances between an
two points inPy, I.e.

max I i<jp<n||®; — o]
[zi||=1, 1<i<N

The points in the -extremal spherical code;  are

calledFekete pointsTheFekete point$n the R’
represent the locations of charged particles on the
unit sphere that repel each other according to
Coulomb’s law.
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Spherical Code Problem

= A s-extremal spherical cods a globally optimal
solution of the following problem:

minfs(PN) = fs(ajla---vajN)

stx, €S5",+1=1,...,n.
where

~ fw(s, Py)if s >0
fs(PN) = {—w(s, Py)if s <0
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Spherical Code Problem

= We can consider an equivalent bilevel optimization
problem

min{ fs(Px (1)) + fo(Pn(17))},

Stx;, €85", Viel

wheref,(Py(17))} is the globally optimal solution
of the sub-problem:

min{ fs(Pn(I7)) + fs(Pn(I7), Pn(17))}

sta; € S", Vjelr
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“Seekers after gold dig up much earth and
find little”

“The lord whose oracle is at Delphi neither
speaks nor conceals, but gives signs”

- HERACLITUS
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