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1 Global Continuous (or Discrete) Op-
timization Problem

f ∗ = f(x∗) = global minx∈Df(x) (or maxx∈Df(x))
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1 Global Continuous (or Discrete) Op-
timization Problem
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2 Why these problems are difficult?

Over an unbounded domain (D = R
n orD = Z

n), no

algorithm can be designed for integer programming, nonlinear

equations, continuous global optimization and constraint

satisfaction problems.

Diophantine Equation Problem (Hilbert 23 problems):
Given a polynomial functionP (x1, ..., xn) with integer

coefficients, decide whether the following equation has a

solution:






P (x1, ..., xn) = 0,

xi : integer, i = 1, ..., n?

There exists no recursive function to decide whether the

diophantine equation problem has a solution.
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2 Why these problems are difficult?

The main focus of computational complexity is to
analyze theintrinsic difficulty of optimization problems
and to decide which of them are likely to be tractable.
The pursuit for developing efficient algorithms also leads
to elegant general approachesfor solving optimization
problems, and revealssurprising connectionsamong
problems and their solutions.

The general problem isNP-hard. Furthermore,
checking existence of a feasible point that satisfies
the optimality conditions is alsoNP-hard.

How to check convexity!
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2 Why these problems are difficult?

Challenging problems:
Phase transitions problems

Average case complexity

Smoothed Analysis
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3 DC Optimization Problems

Many powerful techniques in global optimization
are based on the fact that many objective functions
can be expressed as thedifference of two convex
functions (so calledd.c. functions).

If D(x) is an objective function inRn, then the
representationD(x) = p(x) − q(x), wherep, q are
convex functions is said to be ad.c. decomposition
of D.

The space of d.c. functions isclosedunder many
operations frequently encountered in optimization
(i.e., sum, product, max, min, etc).

Hartman 1959: Every locally d.c. function is d.c.
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3 DC Optimization Problems

For simplicity of notation, consider the d.c.
program:

min f(x) − g(x)

s.t. x ∈ D
(1)

whereD is apolytopein Rn with nonempty interior,
andf andg areconvex functionsonRn.

By introducing an additional variablet, Problem (1)
can be converted into the equivalent problem:
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3 DC Optimization Problems

• Global Concave Minimization:

min t− g(x)

s.t. x ∈ D, f(x) − t ≤ 0
(2)

with concave objective functiont− g(x) andconvex
feasible set{(x, t) ∈ Rn+1 : x ∈ D, f(x) − t ≤ 0}. If
(x∗, t∗) is an optimal solution of (2), thenx∗ is an
optimal solution of (1) andt∗ = f(x∗).

Therefore, any d.c. program of type (1) can be
solved by an algorithm for minimizing a concave
function over a convex set.
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4 DI Optimization Problems

Monotonicity with respect to some variables (partial
monotonicity) or to all variables (total monotonicity) is a
natural property exhibited by many problems
encountered in applications. The most general problem
of d.i. monotonic optimization is:

min f(x) − g(x)

s.t. fi(x) − gi(x) ≤ 0, i = 1, . . . ,m
(3)

where are all functions are increasing onRn
+.
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4 DI Optimization Problems

Assume without loss of generality thatg(x) = 0.

{∀i fi(x) − gi(x) ≤ 0} ⇔ max
1≤i≤m

{fi(x) − gi(x)} ≤
0 ⇔ F (x) −G(x) ≤ 0, where

F (x) = max
i

{fi(x) +
∑

i6=j

gj(x)},

G(x) =
∑

i

gi(x)

F (x) andG(x) are both increasing functions.
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4 DI Optimization Problems

Problem reduces to:

min f(x)

s.t. F (x) + t ≤ F (b),

G(x) + t ≥ F (b),

0 ≤ t ≤ F (b) − F (0),

x ∈ [0, b] ⊂ Rn
+.

A setG ⊆ Rn
+ normal if for any two pointsx, x′

such thatx′ ≤ x, if x ∈ G, thenx′ ∈ G.
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4 DI Optimization Problems

Numerous global optimization problems can be
reformulated as monotonic optimization problems. Such
problems include multiplicative programming,
nonconvex quadratic programming, polynomial
programming, and Lipschitz optimization problems.
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5 Challenging problems

Find thebestD.C. decomposition.

Find thebestD.I. decomposition.
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6 Is Continuous Optimization different
than Discrete Optimization?

In combinatorial optimization and graph theory many
approaches have been developed that link the discrete
universe to the continuous universe throughgeometric,
analytic, and algebraictechniques. Such techniques
include global optimization formulations, semidefinite
programming, and spectral theory.
Examples:

Interior Point and Semidefinite Programming Algorithms

Lovász number

Goemans-Williamson Relaxation of the MAX-CUT

Solution of Gilbert-Pollak’s Conjecture (Du-Hwang)
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6 Is Continuous Optimization different
than Discrete Optimization?

Examples:

z ∈ {0, 1} ⇔ z − z2 = z(1 − z) = 0

Integer constraints are equivalent to continuous nonconvex
constraints (complementarity!)

Discrete Optimization ⇐⇒ Continuous Optimization

The key issue is:
Convex Optimization 6= Nonconvex Optimization

The Linear complementarity problem (LCP) is equivalent
to the linear mixed integer feasibility problem
(Pardalos-Rosen)
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7 Continuous Approaches to Discrete
Optimization Problems
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7 Continuous Approaches to Discrete
Optimization Problems
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7.1 Satisfiability Problems

The satisfiability problem (SAT) is central in
mathematical logic, computing theory, and many
industrial application problems. Problems in computer
vision, VLSI design, databases, automated reasoning,
computer-aided design and manufacturing, involve the
solution of instances of the satisfiability problem.
Furthermore, SAT is the basic problem in computational
complexity. Developing efficient exact algorithms and
heuristics for satisfiability problems can lead to general
approaches for solving combinatorial optimization
problems.
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7.1 Satisfiability Problems

Let C1, C2, . . . , Cn ben clauses, involvingm Boolean variables

x1, x2, . . . , xm, which can take on only the valuestrue or false (1 or

0). Define clausei to be

Ci =

mi
∨

j=1

lij ,

where the literalslij ∈ {xi, x̄i | i = 1, . . . ,m}.

In theSatisfiability Problem (CNF )

n
∧

i=1

Ci =

n
∧

i=1

(

mi
∨

j=1

lij)

one is to determine the assignment of truth values to them variables that

satisfy alln clauses.
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7.1 Satisfiability Problems

Given aCNF formulaF (x) from {0, 1}m to {0, 1} with n clauses

C1, . . . , Cn, we define a real functionf(y) from Em to E that transforms

the SAT problem into an unconstrainedglobal optimization problem:

min
y∈Em

f(y) (4)

where

f(y) =

n
∑

i=1

ci(y). (5)

A clause functionci(y) is a product ofm literal functionsqij(yj)

(1 ≤ j ≤ m):

ci =

m
∏

j=1

qij(yj), (6)
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7.1 Satisfiability Problems

where

qij(yj) =



















|yj − 1| if literal xj is in clauseCi

|yj + 1| if literal x̄j is in clauseCi

1 if neitherxj nor x̄j is in Ci

(7)

The correspondence betweenx andy is defined as follows (for1 ≤ i ≤ m):

xi =



















1 if yi = 1

0 if yi = −1

undefined otherwise

F (x) is true iff f (y)=0 on the correspondingy∈ {−1, 1}m.
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7.1 Satisfiability Problems

Next consider a polynomial unconstrainedglobal optimization

formulation:

min
y∈Em

f(y), (8)

where

f(y) =

n
∑

i=1

ci(y). (9)

A clause functionci(y) is a product ofm literal functionsqij(yj)

(1 ≤ j ≤ m):

ci =

m
∏

j=1

qij(yj), (10)
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7.1 Satisfiability Problems

where

qij(yj) =



















(yj − 1)2p if xj is in clauseCi

(yj + 1)2p if x̄j is in clauseCi

1 if neitherxj nor x̄j is in Ci

(11)

wherep is a positive integer.

The correspondence betweenx andy is defined as follows (for1 ≤ i ≤ m):

xi =



















1 if yi = 1

0 if yi = −1

undefined otherwise

F (x) is true iff f (y)=0 on the correspondingy∈ {−1, 1}m.
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7.1 Satisfiability Problems

These models transform the SAT problem from a
discrete, constrained decision problem into an
unconstrained global optimization problem.
A good property of the transformation is thatthese
models establish a correspondence between the
global minimum points of the objective function
and the solutions of the original SAT problem.
A CNFF (x) is trueif and only iff takes the global
minimum value0 on the correspondingy.
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7.1 Satisfiability Problems
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7.2 The Maximum Clique Problem

Consider a graphG = G(V,E), whereV = {1, . . . , n}
denotes the set of vertices (nodes), andE denotes the set
of edges. Denote by(i, j) an edge joining vertexi and
vertexj. A clique ofG is a subsetC of vertices with the
property that every pair of vertices inC is joined by an
edge. The maximum clique problem is the problem of
finding a clique setC of maximal cardinality.

Applications:
• project selection, classification theory, fault
tolerance, coding theory, computer vision, economics,
information retrieval, signal transmission theory,
aligning DNA and protein sequences, and other
specific problems.
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Multivariable polynomial formulations

If x∗ is the solution of the following (continuous) quadratic program

max f(x) =
∑n

i=1 xi −
∑

(i,j)∈E xixj = eT x − 1/2xT AGx

subject to0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n

then,f(x∗) equals the size of the maximum independent set.

If x∗ is the solution of the following (continuous) polynomial

program

max f(x) =
∑n

i=1(1 − xi)
∏

(i,j)∈E xj

subject to0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n

then,f(x∗) equals the size of the maximum independent set.

In both cases a polynomial time algorithm has been developed

that finds independent sets of large size.
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Multivariable polynomial formulations
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Motzkin-Strauss type approaches

Consider the continuousindefinite quadratic
programming problem

max fG(x) =
∑

(i,j)∈E

xixj = 1
2x

TAGx

s.t. x ∈ S = {x = (x1, . . . , xn)
T :

n
∑

i=1

xi = 1,

xi ≥ 0 (i = 1, . . . , n)},

(12)

whereAG is the adjacency matrix of the graphG.
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Motzkin-Strauss type approaches

If α = max{fG(x) : x ∈ S}, thenG has a maximum
cliqueC of sizeω(G) = 1/(1 − 2α). This
maximum can be attained by settingxi = 1/k if
i ∈ C andxi = 0 if i /∈ C.

(Pardalos and Phillips 1990) IfAG hasr negative
eigenvalues, then at leastn− r constraints are active
at any global maximumx∗ of f(x). Therefore, ifAG

hasr negative eigenvalues, then the size|C| of the
maximum clique is bounded by|C| ≤ r + 1.
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The Call Graph

The“call graph” comes from telecommunications traffic. The

vertices of this graph are telephone numbers, and the edges are calls

made from one number to another (including additional billing data,

such as, the time of the call and its duration). The challengein

studying call graphs is that they are massive. Every day AT & T

handles approximately 300 million long-distance calls.

Careful analysis of the call graph could help with infrastructure
planning, customer classification and marketing.

How can we visualize such massive graphs? To flash a terabyte of

data on a 1000x1000 screen, you need to cram a megabyte of data

into each pixel!
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Recent Work on Massive Telecommu-
nication Graphs

In our experiments with data fromtelecommunication traffic, the

corresponding multigraph has53,767,087 vertices and over 170
million of edges.
A giant connected component with 44,989,297vertices was

computed. Themaximum (quasi)-clique problem is considered in

this giant component.
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Optimization on Massive Graphs

Several other graphs have been considered:

Financial graphs

Brain models

Drug design models

Biological networks
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Optimization on Massive Graphs
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7.3 Multiquadratic Optimization
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BR
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AL
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CL

(A)
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7.3 Multiquadratic Optimization

Estimation of Short Term Largest Lyapunov
Exponents (STLmax)

Sincethe brain is a nonstationary system,
algorithms used to estimate measures of the brain
dynamics should be capable of automatically
identifying and appropriately weighing existing
transients in the data. In a chaotic system, orbits
originating from similar initial conditions (nearby
points in the state space) diverge exponentially
(expansion process). Therate of divergenceis an
important aspect of the system dynamics and is
reflected in the value ofLyapunov exponents.
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7.3 Multiquadratic Optimization

Spatiotemporal Dynamical Analysis

We employ theT -index (from the well-known
paired T-statistics for comparisons of means) as a
measure of distance between the mean values of
pairs ofSTLmax profiles over time. TheT -index at
time t between electrode sitesi andj is defined as:

Ti,j(t) =
√
N × |E{STLmax,i − STLmax,j}|/σi,j(t)

whereE{·} is the sample average difference for the
STLmax,i − STLmax,j estimated over a moving
windowwt(λ).
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7.3 Multiquadratic Optimization

Electrode Selection Problem

The quadratically constrained quadratic 0-1 problem
is given by:

min xTAx

s.t.
∑n

i=1 xi = k

xTBx ≥ Tαk(k − 1)

x ∈ {0, 1}n
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7.3 Multiquadratic Optimization

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

Time (Minutes)

T
 −

 In
de

x

Warning Time Warning Time

Sites reselected

SZ#8 SZ#9 SZ#10 

Sites reselected

From Local to Global in Numerical Optimization – p. 40/91



7.3 Multiquadratic Optimization
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8 Hierarchical Optimization
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8 Hierarchical Optimization

The word hierarchy comes from the Greek word
“ ιǫραρχια”, a system of graded (religious)
authority .
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8 Hierarchical Optimization

The word hierarchy comes from the Greek word
“ ιǫραρχια”, a system of graded (religious)
authority .

Hierarchical structures are found in many complex
systems and in particular in biology.

Biological systemsare characterized by hierarchical
architectural designs in which organization is
controlled on length scales ranging from the
molecular to macroscopic. These hierarchical
architectures rely on critical interfaces that link
structural elements of disparate scale.
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8 Hierarchical Optimization

Nature makes very different systems (that have
specific hierarchical composite structures) out of very
similar molecular constituents.
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8 Hierarchical Optimization

Nature makes very different systems (that have
specific hierarchical composite structures) out of very
similar molecular constituents.

First, the structures are organized in discrete levels.
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8 Hierarchical Optimization

Nature makes very different systems (that have
specific hierarchical composite structures) out of very
similar molecular constituents.

First, the structures are organized in discrete levels.

Second, the levels of structural organization are held
together by specific interactions between
components.
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8 Hierarchical Optimization

Nature makes very different systems (that have
specific hierarchical composite structures) out of very
similar molecular constituents.

First, the structures are organized in discrete levels.

Second, the levels of structural organization are held
together by specific interactions between
components.

Finally, these interacting levels are organized into an
oriented distinct hierarchical composite system of
specific function.
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8 Hierarchical Optimization

The mathematical study of hierarchical structures can be
found in diverse scientific disciplines including
environment, ecology, biology, chemical engineering,
classification theory, databases, network design, game
theory and economics. The study of hierarchy occurring
in biological structures reveals interesting properties as
well as limitations due to different properties of
molecules. Understanding the complexity of hierarchical
designs requires “systems methodologies that are
amenable to modeling, analyzing and optimizing”
(Haimes Y.Y. 1977) these structures.
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8 Hierarchical Optimization

Hierarchical optimization (or multi-level) can be
used to study properties of these hierarchical
designs. Inhierarchical optimization, the
constraint domain is implicitly determined by a
series of optimization problems which must be
solved in a predetermined sequence.
Hierarchical optimization is a generalization of
mathematical programming. The simplest two-level
(or bilevel) programming problem describes a
hierarchical system which is composed of two levels
of decision makers and is stated as follows:
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8 Hierarchical Optimization

(BP) min
y∈Y

ϕ(x(y), y) (13)

subject toψ(x(y), y) ≤ 0 (14)
where x(y) = arg min

x∈X
f(x, y) (15)

subject to g(x, y) ≤ 0, (16)

whereX ⊂ Rn andY ⊂ Rm are closed sets,
ψ : X × Y → Rp andg : X × Y → Rq are
multifunctions,ϕ andf are real-valued functions. The
set
S = {(x, y) : x ∈ X, y ∈ Y, ψ(x, y) ≤ 0, g(x, y) ≤ 0} is
theconstraint setof BP.
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8 Hierarchical Optimization

Multi-level programming problems have been
studied extensively in their general setting during
the last decade.

In general, hierarchical optimization problems are
nonconvex and therefore is not easy to find globally
optimal solutions.
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8 Hierarchical Optimization

It seems thathierarchical structures are harder to
manage than completely centralized systems.
Then,what are the rationalities for hierarchical
structures to exist?

Answers to such questions may help us to
understand the reason behind hierarchical structures
in biology.
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8 Hierarchical Optimization
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Algorithms

extreme point algorithms

branch-and-bound algorithms

complementarity pivot algorithms

descent methods

penalty function methods
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Surveys
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Multivariate Partition Approach
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Multivariate Partition Approach

This is an approach for solving a single-level mathematical

programming problem based on its equivalent multilevel

programming formulation.

The basic idea of this approach is to partition all the variables

appearing in the optimization problem into two or more groups

and then, solving some small-sized problems with respect to

each group of variables, to generate animproved exploratory

approximate solutionof the initial problem.

Based on the improved exploratory approximate solution, new

partition groups of variables can be constructed, and the

corresponding small-sized problems can be solved as beforein

order to obtain a better approximate solution.
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Multivariate Partition Approach

With this approach we can formulate
optimization problems as multi-level
optimization problems.

In fact, there are well-known algorithms which are
related or can be regarded as specific
implementations of the MPA.
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Multivariate Partition Approach

Consider the following problem:

min
x∈D⊆Rn

f(x), (1)

whereD is a robust set andf(x) is continuous inD.

Let {∆i, i = 1, . . . , p} be a partition of
S = {x1, . . . , xn}, p > 1.

From Local to Global in Numerical Optimization – p. 56/91



Multivariate Partition Approach

(1) is equivalent to the following multilevel
optimization problem:

min
yσ1

∈Dσ1

{ min
yσ2

∈Dσ2

. . . { min
yσp∈Dσp

f(∆1, . . . ,∆p)} . . .},
(2)

whereσ = (σ1, . . . , σn) is any permutation of
{1, 2, . . . , p}. The components of the vectoryσi

coincide with the elements of∆i andDσi
is defined

as a feasible domain ofyσi
.
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Multivariate Partition Approach

Example. LetD = {x : ||x|| ≤ 1} ⊂ R
2.

Let the partition ofS = {x1, x2} be{∆1,∆2},
where∆1 = {x1} and∆2 = {x2}.

If the permutationσ = (2, 1) thenDσ = (D2, D1),

whereD2 = [−1, 1], D1 =
[

−
√

1 − x2
2,

√

1 − x2
2

]

Aggregated variables arey2 = x2 ∈ D2 and
y1 = x1 ∈ D1.
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Multivariate Partition Approach

Among various multilevel formulations of problem
(1), the bilevel optimization formulation seems to be
most useful to the implementation of the MPA.

Let S = {x1, . . . , xn}, and let{I−, I+} be a
partition of an index setIn = {1, . . . , n}.

Denote byS− andS+ the corresponding subset ofS
with respect toI− andI+, respectively.

{S−, S+} is a partition of the setS.
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Multivariate Partition Approach

The bilevel optimization formulation is as follows:

min
y−∈DS−

g(S−),

whereg(S−) is the global minimum of the problem

min
y+∈DS+

f(S−, S+)

I− andI+ are called thereference index setand the
active index set.S− andS+ are called the set of
reference variablesand the set ofactive variables.
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Multivariate Partition Approach

For any partition{∆i|i = 1, . . . , p} of the setS and
any permutationσ = (σ1, . . . , σn) of the index set
Ip, let yσ = (yσ1

, . . . , yσp
) be a feasible point with

respect to the domain vectorDσ = (Dσ1
, . . . , Dσp

).

By thethe multivariate partition approach (MPA)to
the initial problem (1) we mean the method that
improves the performance of the feasible pointyσ

using the following strategy:
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Multivariate Partition Approach

Let S− = S\∆σi
be a set of reference variables for

eachi ∈ Ip. Solving the followers’ problem in the
above bilevel formulation we can obtain an
improved valuẽyσi

of the active variable

y+ = yσi
∈ DS+ = D+

σi
⊆ Dσi

Improved Point. Based on the improved point
ỹp = (ỹσ1

, . . . , ỹσp
) and the feasible pointyσ, an

improved feasible pointy∗σ can be determined by a
search and decision scheme.
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Multivariate Partition Approach

Under some conditions it can be proved that the
MPA converges.

H. X. Huang and P.M. Pardalos,Multivariate
Partition Approach for Optimization Problems ,
Cybernetics and Systems Analysis Vol. 38, No. 2
(2002), pp. 265-275.
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Examples of the MPA

K-Means Type Algorithms

Coordinate Descent Method
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K-Means Algorithm

TheK-means method (MacQueen, 1967) is one of
the most popular clustering methods which have
been applied in a variety of fields including pattern
recognition, information retrieval, document
extraction, and microbiology analysis, etc.

The goal of this method is to classify a given data set
through a certain number of clusters, such that some
metric relative to the centroids of the clusters is
minimized.
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K-Means Algorithm

We can define our problem mathematically as follows:

We are given a setX of a finite number of points in
R

n:

X = (x1, x2, . . . , xn) wherexi ∈ R
d, i = 1, 2, . . . , n.

We aim at finding a partitionCj 6= ∅,
j = 1, 2, . . . , k:

X =
k

⋃

j=1

Cj, Cj ∩ Cl = ∅ for all j 6= l,

of X, which minimizes the squared error function:
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K-Means Algorithm

f(C1, C2, . . . , Ck) = g(c1, c2, . . . , ck) =
k

∑

j=1

∑

xi∈Cj

‖cj − xi‖2,

wherecj is the center of the clusterCj defined by

cj =
1

|Cj|
∑

xi∈Cj

xi, j = 1, 2, . . . , k. (17)

We note that, in optimal solutions, a cluster can be represented

by its centroid since each point should be assigned to the

cluster that has the closest centroid. Thus, we can think that

variables of our optimization problem are centroids of the

clusters.
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K-Means Algorithm

Algorithm K-Means

Step 1.Initialize the centroidscj0, j = 1, 2, . . . , k. Setq = 0.

Step 2.Assign each pointxi (i = 1, 2, . . . , n) to the cluster that

has the closest centroidcj (j ∈ {1, 2, . . . , k}), that is

j = argmin1≤l≤k‖xi − clq‖2.

Step 3.When all points have been assigned, forj = 1, 2, . . . , k,

calculate the new positioncjq+1 of the centroidj using Equation

(17).

Step 4.If cjq = cjq+1 for all j = 1, 2, . . . , k, then stop, otherwise

setq = q + 1 and go to Step 2.
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K-Means Algorithm

We note that Equation (17) finds a local solution of problem

min g(c1, . . . , ck)

s.t. cj ∈ R
d

while all other centroids (except centroidj) are fixed.

Therefore, we can see that theK-means algorithm is a special

case of the multivariate partition approach.

One way to find a solution, which is close to a global

minima,for the above problem is to locate centroidj at

x1, . . . , xn and choose the one with the least value ofg among

them after reassigning the points to the centroids. This idea is

closely related to j-means clustering algorithm (Hansen and

Mladenovíc, 2001). From Local to Global in Numerical Optimization – p. 69/91



K-Means Algorithm
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Coordinate Descent Method
If n = p or ∆i = {xi} for i = 1, . . . , n in the partition of the

multivariate partition approach, then many existing

optimization algorithms designed for solving Problem (1) are

closely related to this partition including thecoordinate

descent method.

Basically, each coordinate axis is searched, and a descent is

only made along a unit vector. The cyclic Coordinate Descent

Method minimizes a functionf(x1, . . . , xn) cyclically with

respect to the coordinate variables.

That is, firstx1 is searched, thenx2, etc. Various variations are

possible. One advantage of these methods is their easy

implementation.
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Coordinate Descent Method
Meneses et al. (2005) proposed a GRASP (Greedy
Randomized Search Procedure), which is a special case
of coordinate descent method, for solving the following
nonlinear programming problem with box constraint:

min f(x)

s.t. l ≤ x ≤ u,

wheref(x) : R
n → R, andl, u are lower and upper

bounds for the values of the variablex.
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Coordinate Descent Method
GRASP starts with an initial pointx = l+u

2
.

Then, for eachi = 1, . . . , n, we solve a problem of one

variablexi while other coordinate values of the current solution

x are fixed. These problems are solved by discretizing the

solution space using the grid densityh.

Based on solutions to these problems, the method finds an

improved feasible point. Then the above procedure will be

repeated.

If the number of iterations with no improvements achieves

valueN (some positive integer number), the value ofh is

reduced to its half, and the process is restarted.
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Coordinate Descent Method
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Applications of the MPA

Lennard-Jones Problem

Spherical Code Problem
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Lennard-Jones Problem

Problem: Compute the native 3 dimensional
conformation (folded state) of a (globular) protein given
its amino acid sequence, possibly in the presence of
additional agents (e.g., drugs).
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Lennard-Jones Problem

Given a cluster ofN atoms in 3–dimensional space, the
potential energy function of the cluster is defined as the
summation (over all of pairs) of the two-body interatomic
pair potentials. Let the codePN = {x1, · · · , xN} be the
collection of centers ofN atoms. The potential energy
function is defined as follows:

V (PN ) =
∑

1≤i<j≤N

v(||xi − xj||), (18)

where||.|| is the Euclidean norm andv(r) is the
interatomic pair potential.
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Lennard-Jones Problem

There are many potential functions that have been
considered, for example, theLennard-Jones
potential energy function:

v(r) = r−12 − 2r−6

The global minimization of potential energy
functions plays an important role in the
determination of ground states or stable states of
certain classes of molecular clusters and proteins.
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Lennard-Jones Problem

Let PN = {x1, · · · , xN} be a code in which points
are mutually different.

We partition index setI into two disjoint setsI+ and
I−.

It is easy to observe that

V (PN) = V (PN (I+))+

+V (PN (I+), PN (I−)) + V (PN (I−))

From Local to Global in Numerical Optimization – p. 79/91



Lennard-Jones Problem

where

V (PN (I±)) =
∑

i,j∈I±,i<j

||xi − xj||−12−

−2
∑

i,j∈I±,i<j

||xi − xj||−6

and

V (PN (I+), PN (I−)) =
∑

i∈I+,j∈I−

V ({xi, xj})

From Local to Global in Numerical Optimization – p. 80/91



Lennard-Jones Problem

We can consider an equivalent bilevel optimization
problem

min{V (PN(I−)) + V̄ (PN (I−))},

s.t.xi ∈ R
3, ∀i ∈ I−

whereV̄ (PN (I−))} is the globally optimal solution
of the sub-problem:

min{V (PN (I+)) + V (PN (I+), PN (I−))}

s.t.xj ∈ R
3, ∀j ∈ I+
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Lennard-Jones Problem
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Spherical Code Problem

The Spherical Code (SC) Problemis referred to as
how to distribute points on the unit sphere according
to a certain ‘generalized energy’.

The SC problem has been the focus of research in
various fields such as physics, molecular biology,
signal transmission, chemistry.

Some well-known problems such asthe Tammes
problem, the Fekete problemandthe maximum
volume arrangementscan be considered as SC
problems with different objectives.
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Spherical Code Problem

The Tammes problem is defined as how to placeN
points on a sphere in then-dimensional space so as to
maximize the minimum distance (or equivalently the
minimum angle) between any two points.

ET = max
||xi||=1, 1≤i≤N

min
1≤j<k≤N

||xj − xk||
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Spherical Code Problem

Let Sn = {x| ||x|| = 1} denote the unit sphere in
R

n.

Let PN denote a spherical code withN points on
SN , i.e.PN = {x1, . . . , xN}
S-energyassociated with the spherical codePN is
defined as

w(s, PN ) =

{
∑

i<j ||xi − xj||−s if s 6= 0
∑

i<j ln
(

1
||xi−xj ||

)

if s = 0.

From Local to Global in Numerical Optimization – p. 85/91



Spherical Code Problem

Thes-extremal energyEN(s) for N points onSn is
defined by

EN(s) =

{

minPN⊂Sn w(s, PN ) if s ≥ 0

maxPN⊂Sn w(s, PN ) if s < 0

The spherical codeP ∗
s,N is called thes-extremal

spherical codeif it satisfies

w(s, P ∗
s,N ) = EN(s)
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Spherical Code Problem

The points in the0-extremal spherical codeP ∗
0,N are

calledelliptic Fekete points.Clearly, these points
maximize the product of the distances between any
two points inPN , i.e.

max
||xi||=1, 1≤i≤N

Π 1≤j<k≤N ||xj − xk||

The points in the1-extremal spherical codeP ∗
1,N are

calledFekete points. TheFekete pointsin theR
3

represent the locations ofN charged particles on the
unit sphere that repel each other according to
Coulomb’s law.
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Spherical Code Problem

A s-extremal spherical codeis a globally optimal
solution of the following problem:

min fs(PN ) , fs(x1, . . . , xN)

s.t.xi ∈ Sn, i = 1, . . . , n.

where

fs(PN ) =

{

w(s, PN ) if s ≥ 0

−w(s, PN ) if s < 0
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Spherical Code Problem

We can consider an equivalent bilevel optimization
problem

min{fs(PN(I−)) + f̄s(PN(I−))},

s.t.xi ∈ Sn, ∀i ∈ I−

wheref̄s(PN (I−))} is the globally optimal solution
of the sub-problem:

min{fs(PN (I+)) + fs(PN (I+), PN (I−))}

s.t.xj ∈ Sn, ∀j ∈ I+
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Spherical Code Problem
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HERACLITUS

“Seekers after gold dig up much earth and
find little”

“The lord whose oracle is at Delphi neither
speaks nor conceals, but gives signs”

- HERACLITUS
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