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Abstract. This paper introduces an additive fuzzy clustering model
for similarity data as oriented towards representation and visualization
of activities of research organizations in a hierarchical taxonomy of the
field. We propose a one-by-one cluster extracting strategy which leads
to a version of spectral clustering approach for similarity data. The de-
rived fuzzy clustering method, FADDIS, is experimentally verified both
on the research activity data and in comparison with two state-of-the-
art fuzzy clustering methods. Two developed simulated data generators,
affinity data of Gaussian clusters and genuine additive similarity data,
are described, and comparison of the results over this data are reported.

1 Introduction

Relational data have become popular in several important application areas
such as bioinformatics [25, 24, 34, 16], recommendation systems (e.g. [32]), Web
mining and text analysis [22, 14, 27, 6]. Our motivation comes from our interest
in mapping the activities of a research organization to a taxonomy of the field.
The prime objects here are topics of the taxonomy rather than the individual
members or teams in the organization, and the information is organized as an
index of similarity between the topics rather than the members. In such a setting,
it seems rather natural to assume an additive action of the hidden research
patterns as the underlying mechanism for the generation of the similarity index.
This leads us to develop a novel relational fuzzy clustering method, the Fuzzy
Additive Spectral Clustering (FADDIS), by combining a model-based approach
of additive clustering and the spectral clustering approach.

In spite of the fact that many relational fuzzy clustering algorithms have
been developed already [2, 3, 5, 7, 9, 10, 13, 26, 33, 35], they all involve manually
specified parameters such as the number of clusters or threshold of similarity
without providing any guidance for choosing them. Our method does provide
guidance for choosing the number of clusters. Moreover, it appears, it is quite
competitive in comparison to the state of the art fuzzy clustering algorithms.

The method itself is described in a technical report [18] and briefly outlined
in [20]. The main goal of this paper is to experimentally compare the FAD-
DIS algorithm with two state-of-the-art fuzzy clustering algorithms differently



extending fuzzy c-Means to the relational data. One of these fuzzy clustering
algorithms combines fuzzy c-means with a recently proposed fast-mapping tech-
nique proved superior to many other techniques, the Fast Map Fuzzy c-Means
(FMFCM) [5], and the other is an extension of the c-means to dissimilarity data,
the Non-Euclidean Relational Fuzzy c-Means (NERFCM) [10].

To be comprehensive in the experimentation, we developed two different
cluster structure generators, each involving a controlled extent of noise. The first
of them generates Gaussian entity-to-feature clusters with a different extent of
intermix. The second produces genuine similarity data according to the additive
fuzzy clustering model. Although the FADDIS does outperform the two other
algorithms in our experiments, it also shows some unexpected behavior, which
is yet to be investigated.

The rest of the paper is organized as follows. Section 2 describes the additive
model and FADDIS method. Section 3 describes the experiment and its results
over entity-to-feature Gaussian cluster sets. Section 4 describes the experiment
and its results over genuine similarity datasets generated according to the ad-
ditive fuzzy clustering data model. Section 5 illustrates application of FADDIS
to the representation of thematic clusters of research activities in a hierarchic
taxonomy of the field. Section 6 concludes the paper.

2 Additive Fuzzy Clustering Model and Spectral
FADDIS Algorithm

The similarity, or relational, data is a matrix W = (wtt′ ), t, t′ ∈ T , of similar-
ity indexes wtt′ , between objects t, t′ from a set of objects T . Specifically, the
elements of T can be leaves of a taxonomy tree such as a related hierarchical
taxonomy such as Classification of Computer Subjects by ACM (ACM-CCS) [1]
(see [18]). Then individual projects or members of a research organization can
be represented with fuzzy membership profiles over the subjects (leaves) of the
taxonomy. Given a project-to-subject profile matrix F , the similarity matrix can
be defined as W = FT F so that wtt is the inner product of subject columns t
and t′. These subject-to-subject similarity values are assumed to be manifested
expressions of some hidden patterns represented by fuzzy clusters. To develop
an additive model, we formalize a relational fuzzy cluster as represented by: (i)
a membership vector u = (ut), t ∈ T , such that 0 ≤ ut ≤ 1 for all t ∈ T , and
(ii) an intensity μ > 0 that expresses the extent of significance of the pattern
corresponding to the cluster. The intensity applies as a scaling factor to u so
that it is the product μu that expresses the hidden pattern rather than its in-
dividual co-factors. Given a value of the product μut, to separate μ and ut, a
conventional scheme applies: the scale of the membership vector u is constrained
on a constant level by a condition such as

∑
t ut = 1 or

∑
t u2

t = 1; then the
remaining factor defines the value of μ. As will be seen from formula (4), the
latter normalization suits our fuzzy clustering model well and thus is accepted
further on. Also, to admit a possible pre-processing transformation of the given



similarity matrix W , we denote the matrix involved in the process of clustering
as A = (att′).

The additive fuzzy clustering model in (1) follows that of [29, 17, 28] and
involves K fuzzy clusters that reproduce the input similarities att′ up to additive
errors:

att′ =
K∑

k=1

μ2
kuktukt′ + ett′ , (1)

where uk = (ukt) is the membership vector of cluster k, μk its intensity (k =
1, 2, ..., K), and ett′ is the residual similarity not explained by the model.

The item μ2
kuktukt′ in (1) is the product of μkukt and μkukt′ expressing the

impacts of t and t′, respectively, in cluster k. This value adds up to the others
to form the similarity att′ between topics t and t′. The value μ2

k summarizes the
contribution of the intensity and will be referred to as the cluster’s weight.

To fit the model in (1), the least-squares approach is applied, thus mini-
mizing the sum of all e2

tt′ . Within that, the one-by-one principal component
analysis strategy is attended for finding one cluster at a time by minimizing the
corresponding one-cluster criterion

E =
∑

t,t′∈T

(btt′ − ξutut′)2 (2)

with respect to the unknown positive ξ weight and fuzzy membership vector
u = (ut), given similarity matrix B = (btt′).

In the beginning, matrix B is taken to be equal to matrix A. Each found
cluster (μ, u) is subtracted from B, so that the residual similarity matrix applied
for obtaining the next cluster is defined as B − μ2uu′. In this way, A indeed is
additively decomposed according to formula (1) and the number of clusters K
can be determined in the process.

The optimal value of ξ at a given u is proven to be

ξ =
u′Bu

(u′u)2
, (3)

which is obviously non-negative if B is semi-positive definite.
By putting this ξ in equation (2), one arrives at E = S(B)−ξ2 (u′u)2 , where

S(B) =
∑

t,t′∈T b2
tt′ is the similarity data scatter.

By denoting the last item as

G(u) = ξ2 (u′u)2 =
(

u′Bu
u′u

)2

, (4)

the similarity data scatter is decomposed as S(B) = G(u) + E where G(u)
is the part of the data scatter that is explained by cluster (μ,u), and E, the
unexplained part. Therefore, an optimal cluster is to maximize the explained
part G(u) in (4) or its square root



g(u) = ξu′u =
u′Bu
u′u

, (5)

which is the celebrated Rayleigh quotient: its maximum value is the maximum
eigenvalue of matrix B, which is reached at its corresponding eigenvector, in the
unconstrained problem.

This shows that the spectral clustering approach can be applied to find a
suboptimal maximizer of (5). According to this approach, one should find the
maximum eigenvalue λ and corresponding normed eigenvector z for B, [λ, z] =
Λ(B), and take its projection to the set of admissible fuzzy membership vectors.

A number of criteria for halting the process of sequential extraction of fuzzy
clusters follow from the above. The process stops if either of the conditions is
true:

S1 The optimal value of ξ (3) for the spectral fuzzy cluster becomes negative.
S2 The contribution of a single extracted cluster to the data scatter becomes

less than a pre-specified τ > 0 threshold.
S3 The residual data scatter becomes smaller than a pre-specified ε > 0 pro-

portion of the original similarity data scatter.

The described one-by-one Fuzzy ADDItive-Spectral cluster extraction method
is referred to as FADDIS. It combines three different approaches: additive cluster-
ing [29, 17, 28], spectral clustering [30, 23, 15, 36], and relational fuzzy clustering
[9, 2, 3, 7, 5]. Since FADDIS extracts clusters one-by-one, in the order of their
contribution to the data scatter, the algorithm is supposed to be oriented at
cluster structures at which the clusters contribute differently the more differ-
ent, the better. We refer to this supposed property of the data as the property
of different contributions.

To make the cluster structure in the similarity matrix sharper, one may apply
the spectral clustering approach to pre-process a raw similarity matrix W into
A by using the so-called normalized Laplacian transformation which is related
to the popular clustering criterion of normalized cut [15]. The normalized cut
criterion can be expressed, in a relaxed form, as the minimum non-zero eigenvalue
of the Laplacian matrix. To change this to the criterion of maximum eigenvalue
in (5), we further transform this matrix to its pseudo-inverse matrix, which also
increases the gaps between eigenvalues.

3 Experimentally Testing FADDIS on Relational Data
Derived from the Entity-to-Feature Data

In this section, FADDIS is compared to two most effective methods for fuzzy
clustering that are extensions of the popular c-means fuzzy clustering method to
relational data: NERFCM [10] and FMFCM [5]. The NERFCM has been derived
as an analogue to the classical c-means at the situation in which the Euclidean
distance data is derived from the original entity-to-feature data. The FMFCM



also starts from the distance data to produce a number of approximating features
after which the fuzzy c-means itself applies to the extracted entity-to-feature
data. FADDIS applies to the affinity data derived by using the Gaussian kernel:

wtt′ = exp(−
∑V

v=1(ytv − yt′v)2

2σ2
),

where Y = (ytv) is a data matrix over t ∈ T and v = 1, 2, ..., V , with V the
number of features. The diagonal elements are set to be equal to 0: wtt = 0 [30,
23]. The parameter σ is chosen by empirical tuning [21].

This study has been conducted with generated data based on the data gen-
erator used in [5]. Specifically, 4 clusters of data points are generated from a
bivariate spherical Gaussian distribution with the standard deviation σ = 950.
The centers of the clusters are defined as c1 = (1500, 1500), c2 = (−1500, 1500),
c3 = (−1500,−1500), c4 = (1500,−1500), so that they are located on bisectors
of the quadrants of the Cartesian plane at the same distance from the origin.
The clusters have cardinalities of 50, 100, 200, 150 data points, respectively, 500
entities altogether. In this paper, a scale parameter sn is introduced as a factor
to the center of the cluster to be added to all data points, to model stretching
the data points to or out of the origin. At sn < 0, the clusters stretch in to the
origin, whereas they move out from the origin at sn > 0. Figure 1 illustrates the
type of generated data for different values of the scale parameter sn. A data set
generated at sn = 0 on the left, and a stretched out dataset generated at sn = 1
on the right.
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(a) Dataset generated at sn = 0
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(b) Dataset generated at sn = 1

Fig. 1: Dataset with two different scales of noise

The entity-feature generated data sets are pre-processed into dissimilarity
data, to be given as input to the NERFCM algorithm, by using the matrix D of
Euclidean distances between generated data points. For the FADDIS algorithm,
the generated entity-to-feature data is transformed into affinity data using the



Gaussian kernel defined as wij = exp(−d2(yi, yj)/p/18), where d is Euclidean
distance and p is the dimensionality of the data set (in our study p = 2). Then
the Laplace Pseudo-Inverse transformation applies to transform the affinity data
matrix W into the matrix A to which FADDIS algorithm is applied, which does
sharpen the cluster structure in this case, as previous studies have shown [18, 8].

Ten data sets have been generated for each of the values of the scale parameter
sn. The three algorithms have been run and the results have been evaluated
according to the Adjusted Rand index (ARI) [12] to score the similarity between
generated and computed clusterings. Also, we tested the ability of FADDIS to
recover the number of clusters. In the case of FMFCM and NERFCM the number
of clusters K must be prespecified; these algorithms have been applied at K =
3, 4, 5, after which the results have been evaluated by the extended Xie-Beni
validation index [31].

Table 1 shows the means and standard deviations of the ARI index for the 10
data sets generated at each level of the scale parameter. In each row the highest
ARI value is marked in boldface and (*). For the FADDIS algorithm the mode
of the number of clusters retrieved by the algorithm is also presented.

The results show that FADDIS algorithm always recovers the correct number
of clusters with stop condition (S2). Also, FADDIS finds the best ARI values for
the data sets generated with the higher levels of cluster intermix (sn ≤ 0). In
these cases the NERFCM and FMFCM found their best partitions for a wrong
number of clusters (K = 3). In contrast the NERFCM and FMFCM outperform
the FADDIS algorithm for lower levels of cluster intermix (sn > 0)1. Yet, one
should notice that the number of clusters is an input to the former algorithms.

Table 1: Bivariate Normal DG with different scale values of cluster intermix – Adjusted
Rand Index (ARI) avg/std for FADDIS, NERFCM and FMFCM

FADDIS NERFCM FastMap FCM
sn GK+Lapin K K = 3 K = 4 K = 5 K = 3 K = 4 K = 5
-5 0.47/0.048* 4 0.47/0.05* 0.44/0.05 0.37/0.035 0.47/0.047* 0.44/0.045 0.37/0.03
0 0.68/0.029* 4 0.66/0.034 0.64/0.058 0.53/0.032 0.66/0.035 0.61/0.096 0.54/0.013
5 0.83/0.022 4 0.76/0.018 0.84/0.016* 0.67/0.036 0.76/0.018 0.84/0.016* 0.67/0.031
10 0.91/0.029 4 0.82/0.015 0.93/0.021* 0.74/0.025 0.82/0.015 0.93/0.021* 0.75/0.029
20 0.98/0.022 4 0.86/0.008 0.99/0.009* 0.85/0.07 0.86/0.008 0.99/0.009* 0.82/0.067
50 1/0* 4 0.87/0.007 1/0* 0.87/0.075 0.87/0.007 1/0* 0.87/0.07

4 Testing FADDIS with Genuine Similarity Data

4.1 The Fuzzy Cluster Core Data Generator

In this section, we propose a similarity data generator following the additive
model (1). As usual in fuzzy clustering, we assume that each entity has one
“core” cluster to which it belongs most. Therefore, the data generation process

1 The values of the extended Xie-Beni index are concordant with the ARI values for
both NERFCM and FMFCM.



starts with the generation of the “core” clusters. Then we apply the same three
algorithms to the generated data.

Given the size N of an entity set I, and the number of clusters K, the
proposed Fuzzy Cluster Core Data Generator (FCC DG), generates an N × N
similarity data matrix G according to the underlying (FADDIS) model W =
UΛUT , as follows:

G = UΛUT + αE, (6)

where:

- N × K fuzzy membership matrix U is randomly generated using a fuzzy
“core” clusters generating procedure.

- Positive real valued K × K diagonal weight matrix Λ with diagonal posi-
tive values λk of the cluster weights equal to λk = μ2

k is defined according
to model (1). Since the vectors uk in (1) are assumed normed, the weights
take in the norms of the generated vectors uk. To test the supposed prop-
erty of different contributions of the FADDIS, the weights are also made
proportional to (K − k + 1)β , for k = 1, 2, . . . , K, so that the greater the
β > 0, the greater the difference. Therefore, the weights are defined by
λk = (K − k + 1)β ∗ ‖uk‖.

- Elements of symmetric N × N error matrix E are independently generated
from a Gaussian distribution N(0, 1), and then symmetrized so that ett′ =
(ett′ + et′t)/2.

- The value α ∈ [0, 1] is the parameter that controls the level of error intro-
duced into the model W = UΛUT .

This generator builds a fuzzy cluster structure by conventionally relaxing
a crisp partition. Given a crisp partition R of the entity set I, where R =
R1, . . . , RK with non-overlapping clusters Rk, a fuzzy relaxation builds each k-
th fuzzy cluster uk having the corresponding crisp cluster Rk as its core in such
a way that the maximum membership values uik will be at entities i ∈ Rk(k =
1, . . . , K) while the other components of uk are close to 0.

Given the number K of core clusters covering the entire data set, I, the data
generator builds each core cluster by filling it in with fuzzy membership values,
such that: (a) the membership values of k-th fuzzy cluster uk are very high at
k-th core (e.g. uik > 2/3 for i ∈ Rk); and (b) the fuzzy clusters form a fuzzy
partition so that

∑
k uik = 1 at each entity i ∈ I. After all the membership

vectors uk are generated, the norms of uk’s are computed and assigned as fac-
tors in the clusters’ weights, in order to “adjust” them to the additive fuzzy
clustering model. Then the final membership matrix has its membership vectors
uk normalized.

An example of a data set generated from the FCC DG for K = 3 clusters,
N = 700 entities, and β = 0.0, visualized according to the Visual Assessment
of Cluster Tendency (VAT) tool [4], is shown in Figure 2. The 3 clusters are
shown in the main diagonal in dark grey, and their relative sizes can be seen.
The clusters form a clear-cut structure.



VAT Matrix

Topics

T
op

ic
s

100 200 300 400 500 600 700

100

200

300

400

500

600

700

Fig. 2: VAT visualization of the cluster structure for a data set generated by the
FCC DG for K = 3 and N = 700.

4.2 Setting of the experiment and its results

The main goal of this experimental study is to compare the FADDIS algorithm
with FMFCM and NERFCM in recovering the cluster structures generated by
the FCC DG for different levels of generated Gaussian noise.

Particular attention is given to the FADDIS algorithm, whose analysis of the
clustering results are made according to the following parameters:

(i) Number of clusters retrieved by the FADDIS algorithm and corresponding
stop condition achieved;

(ii) Per generated cluster k and corresponding computed cluster k̂, measure:
(a) Recovery membership error (RME) of generated cluster k with member-

ship vector uk = [uik], and computed membership, ûk = [ûik]:

RME (uk) =
N∑

i=1

u2
ik

|uik − ûik|
uik

such that,

N∑
i=1

u2
ik = 1

Notice that the RME error is an averaged relative difference weighted
by u2

ik, in order to normalize the error measure. The maximum value of
the error is one.

(b) Recovery intensity error (RIE) of generated and computed intensities,
μk, and μ̂k,

RIE(μk) =
|μk − μ̂k|

μk
.



(c) Percentage of the matching between generated Rk cores (k = 1, 2, . . . , K)
and the crisp cores retrieved from the computed partitions, after defuzzi-
fication by maximum membership;

(iii) Similarity between generated and found partitions, made according to the
Adjusted Rand index (ARI) (this is to compare all the three algorithms).

The datasets have been generated in three groups corresponding to three
different numbers of clusters: K = 3, 4, 5. The experiments were cross-combined
according to the following settings: (i) Total number of entities of the data set
N = 50, 200, 400, 700; (ii) α values of the standard deviation of noise, α =
{0, 0.05, 0.1, 0.15, 0.25, 0.5}. (iii) For each value of K, 10 distinct datasets had
been generated for each tuple (N, α, β), resulting in a total of 720 datasets for
each K value, and so a total of 2160 datasets. In the case of NERFCM, the
similarity data matrix G (6) is transformed into a dissimilarity matrix D, such
that, D = max(G) − G.

In our preliminary experiments, we observed that the ability to recover a
cluster structure significantly decreases for the values of α > 0.1. Thus, the
statistics are presented for α ∈ {0, 0.05, 0.1} only. In the next tables, the best
value in each row is marked with (*).

Table 2 shows the means/std and mode values of the recovered number of
clusters by the FADDIS algorithm. For K = 3, 4, 5 one can see that when the β
value increases from β = 0.0 to β = 1.0 the percentage of data sets for which the
correct number of clusters is recovered also increases. The only exception occurs
for K = 5, N = 200, where the best values are achieved for β = 0.5. In all the
cases, the most working stop condition of the FADDIS algorithm is condition
S2.

Table 2: FCC DG - Summary data of the percentage avg/std of correct extracted clus-
ters and mode of the number of extracted clusters for std of added Gaussian noise=[0,
0.1] for FADDIS in best conditions for K = {3, 4, 5}

FADDIS
β = 0.0 β = 0.5 β = 1.0

N (%) Mode (%) Mode (%) Mode

K = 3

50 50.0/0.0 3 62.5/9.6 3 85.0/5.8* 3
200 60.0/0.0* 3 32.5/20.6 2 60.0/0.0* 3
400 30.0/21.6 3 62.5/15.0 3 80.0/0.0* 3
700 17.5/17.1 2 40.0/35.6 2 65.0/19.1* 3

K = 4

50 47.5/9.6 4 60.0/8.2 4 70.0/18.3* 4
200 50.0/35.6 4 50.0/0.0 4 65.0/5.8* 4
400 27.5/18.9 5 55.0/10.0 4 72.5/5.0* 4
700 17.5/20.6 1 67.5/5.0 4 77.5/5.0* 4

K = 5

50 40.0/21.6 5 60.0/8.2 5 67.5/5.0* 5
200 37.5/26.3 5 52.5/5.0* 5 40.0/8.2 5
400 45.0/46.5 5 50.0/0.0 5 65.0/10.0* 5
700 25.0/23.8 1 35.0/5.8 6 42.5/5.0* 5



By analysing the Recovery Membership Error (RME) and the Recovery In-
tensity Error (RIE) (Table 3), one can see that the minimum values are achieved
for β = 1.0 for the collections of data sets with k = 3 and k = 4 clusters. For the
data sets with k = 5 clusters the minimum values are obtained for parameter
β = 0.5. Indeed, for β = 1.0 the RME and RIE mean errors are always inferior
to 0.2 which is a good value (the only exception is at K = 3 and N = 700). Also,
the errors almost always decrease with the increase of β, which is in accord with
the expected property of different contributions of FADDIS.

Table 3: Summary Table of the RME and RIE errors’ avg/std for std of added Gaussian
noise=[0, 0.1] for FADDIS in best conditions for K = {3, 4, 5}

RME RIE
N β = 0.0 β = 0.5 β = 1.0 β = 0.0 β = 0.5 β = 1.0

K = 3

50 0.25/0.08 0.24/0.02 0.14/0.02* 0.14/0.03 0.15/0.01 0.08/0.01*
200 0.28/0.08 0.54/0.12 0.15/0.01* 0.13/0.02 0.29/0.08 0.07/0.00*
400 0.45/0.34 0.18/0.11 0.14/0.01* 0.30/0.27 0.09/0.05* 0.09/0.00*
700 0.56/0.33 0.39/0.18 0.21/0.05* 0.35/0.24 0.25/0.14 0.13/0.05*

K = 4

50 0.22/0.07 0.13/0.02* 0.13/0.05* 0.11/0.01 0.07/0.01* 0.08/0.04
200 0.44/0.35 0.12/0.01* 0.12/0.01* 0.29/0.30 0.06/0.00* 0.06/0.00*
400 0.41/0.33 0.20/0.01 0.10/0.03* 0.28/0.29 0.10/0.00 0.05/0.01*
700 0.59/0.36 0.13/0.05* 0.17/0.01 0.43/0.30 0.07/0.02* 0.07/0.00*

K = 5

50 0.28/0.12 0.14/0.02* 0.17/0.01 0.15/0.04 0.07/0.01* 0.07/0.00
200 0.36/0.26 0.14/0.04 0.13/0.02* 0.21/0.18 0.07/0.01 0.06/0.01*
400 0.40/0.34 0.07/0.01* 0.12/0.01 0.28/0.29 0.04/0.00* 0.05/0.01
700 0.49/0.37 0.17/0.03* 0.18/0.01 0.35/0.33 0.10/0.01 0.06/0.00*

Table 4 presents the ARI index values for the three algorithms under consid-
eration, FADDIS, FMFCM, and NERFCM. The highest values are marked with
(*) and boldface: they always correspond to the FADDIS results. Specifically, the
higher ARI values are achieved for data sets generated with β = 1.0 for the data
sets with K = 3 and K = 4 clusters. For K = 5, the best values are achieved at
β = 0.5, in contrast to the expected property of different contributions.

Complementary, and in order to compare the results obtained by the FM-
FCM and NERFCM algorithms the (*) mark indicates the highest ARI value
between the results of these two algorithms. In almost all the cases the NER-
FCM outperforms FMFCM for the data sets generated with β = 0.0, which is in
contrast to the case of the entity-to-feature data at which FMFCM outperforms
NERFCM [5]. This illustrates the idea that the NERFCM is a genuine relational
clustering algorithm whereas the FMFCM is not.

Finally, the best values for the percentages of the crisp core matching are
concordant with the ARI index (not shown here).

5 Representation of Activities in a Taxonomy of the Field

As has been pointed out above, the motivation in developing the FADDIS
method comes from a novel methodology of visualization of the activities of
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Table 5: A fuzzy cluster of research activities undertaken in a research centre by
FADDIS

Membership Code ACM-CCS
value Topic
0.69911 I.5.3 Clustering
0.3512 I.5.4 Applications in I.5 PATTERN RECOGNITION
0.27438 J.2 PHYSICAL SCIENCES AND ENGINEERING (Applications in)
0.1992 I.4.9 Applications in I.4 IMAGE PROCESSING AND COMPUTER VISION
0.1992 I.4.6 Segmentation
0.19721 H.5.1 Multimedia Information Systems
0.17478 H.5.2 User Interfaces
0.17478 H.5.3 Group and Organization Interfaces
0.16689 H.1.1 Systems and Information
0.16689 I.5.1 Models in I.5 PATTERN RECOGNITION
0.16513 H.1.2 User/Machine Systems
0.14453 I.5.2 Design Methodology (Classifiers)
0.13646 H.5.0 General in H.5 INFORMATION INTERFACES AND PRESENTATION
0.13646 H.0 GENERAL in H. Information Systems

a research organization such as a University department by mapping them to
a related hierarchical taxonomy such as Classification of Computer Subjects by
ACM (ACM-CCS) [1].

Our method generalizes the individual member/project profiles in two steps.
First step finds fuzzy clusters of the taxonomy subjects according to the working
of the organization. Second step maps each of the clusters to higher ranks of
the taxonomy in a parsimonious way. An expository outline of this strategy, its
motivations and potential benefits, made before the FADDIS has been developed,
can be found in [19].

As the FADDIS found clusters are not necessarily consistent with the tax-
onomy, each is considered as a query set to be interpreted in the taxonomy
by lifting each cluster to higher ranks of the taxonomy. The lifting is done by
our recursive algorithm for minimizing a penalty function that involves “head
subjects” on the higher ranks of the taxonomy together with their “gaps” and
“offshoots” [20].

To illustrate the approach, Table 5 presents a fuzzy cluster obtained in
our project, on the data from a survey2 involving 16 respondents and cov-
ering 46 ACM-CCS topics, by applying the FADDIS algorithm. This cluster
is then mapped to and parsimoniously generalized by the lifting method over
the ACM-CCS taxonomy in terms of “head subjects” (i.e H.-Information Sys-
tems and I.5-PATTERN RECOGNITION), their “gaps” (e.g. H.2-DATABASE
MANAGEMENT, H.3-INFORMATION STORAGE AND RETRIEVAL), and
“offshoots” (e.g. I.4.6- Segmentation, J.2- PHYSICAL SCIENCES AND EN-
GINEERING). The generalized representation of the cluster resulting from the
lifting method is visualized in Figure 3, pointing out its “head subjects”, “gaps”,
and “offshoots”.

2 Survey conducted in Centre for Artificial Intelligence (CENTRIA) of Faculdade de
Ciências e Tecnologia, Universidade Nova de Lisboa in 2009.
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Fig. 3: Visualization of the optimal lift of the cluster in Table 1 in the ACM-CCS
tree; the irrelevant tree leaves are not shown for the sake of simplicity.

6 Conclusion

The paper introduces and experimentally verifies an unconventional model of
fuzzy clusters in which the products of entity membership values contribute
towards similarity between the entities. This is motivated by the idea that the
similarity between research topics is obtained by adding up the working of differ-
ent groups on them so that the clusters according to this model can be considered
thematic clusters indeed. The model leads to a spectral fuzzy clustering method
FADDIS that is accompanied with a set of model-based cluster extracting stop-
conditions. This paper demonstrates that FADDIS is competitive on two types
of generated cluster structures. Moreover, FADDIS can be used sometimes for
recovering the correct number of clusters. Yet, there are some irregularities in its
working that deserve to be investigated further. One of the irregularities is the
experimentally observed deviations from the property of different contributions.
According to the definition of FADDIS, the more different the cluster weights in
the data, that is, the greater the β at the genuine similarity data generator, the
better should be the correspondence between the generated clusters and those
FADDIS-computed. This is true in most cases, but sometimes it is not. We are
going to address this in our future work. The other direction of further develop-
ments is applying FADDIS for visualization of activities to be captured by the
analysis of web posted documents.
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