THE ASSIGNMENT GAME : ONE-TO-ONE MATCHING WITH MONEY an elementary self-contained exposition

Model & Existence: Koopmans Beckmann 1957, Shapley Shubik 1970 (Roth&Sotomayor Ch 8) Strategy : Leonard 1983

Auction : Demange Gale Sotomayor 1986, Alkan 1989, 1992

An assignment game is a triple (B, S, w) where B and S are two finite sets of agents and w is an array whose entry $w_{bs} \ge 0$ denotes the worth of or the surplus achievable by the pair (b, s).

Examples: (i) Market for a set of objects on one side and a set of "unit-demander" buyers on the other, (ii) Partnership formation between two sides, e.g., entrepreneurs and venture capitalists.

A matching μ is a subset of $B \times S$ where no agent recurs, i.e., for any (b, s), (b', s') in μ neither b = b' nor s = s'. (With some notational abuse, we will write $b \in \mu$ as well as $(b, s) \in \mu$.)

An allocation is a matching μ and a pair of (nonnegative) **payoff** vectors $u \in R^B_+$, $v \in R^S_+$.

An allocation $(u, v; \mu)$ is **feasible** if $u_b + v_s \leq w_{bs}$ for all $(b, s) \in \mu$ and if $u_b = v_s = 0$ for $b \notin \mu, s \notin \mu$.

EQUIVALENCE OF PAIRWISE STABLE, CORE AND COMPETITIVE EQUILIBRIUM OUTCOMES

A feasible allocation $(u, v; \mu)$ is **stable** if $u_b + v_s \ge w_{bs}$ for all $(b, s) \in B \times S$.

Note that if $(u, v; \mu)$ is **stable** then $u_b = w_{b\mu(b)} - v_{\mu(b)}$ for $b \in \mu$ and $u_b = 0$ for $b \notin \mu$; in particular, the payoff u is determined by (v, μ) (likewise v by (u, μ)).

For any assignment game (B, S, w), a game in **coalitional form** is obtained as follows : For every coalition $C = B' \cup S'$ where $B' \subset B$ and $S' \subset S$, define its **worth** W(C) to be the maximum of $\sum_{(b,s)\in\eta} w_{bs}$ among all matchings $\eta \subset B' \times S'$. (If C contains no pair (b,s) then W(C) = 0, in particular W(b) = W(s) = 0 for every b and s, and $W(b,s) = w_{bs}$.)

A matching μ for which $W(B \cup S) = \sum_{(b,s) \in \mu} w_{bs}$ is called an **optimal assignment**.

An **imputation** is a payoff $(u, v) \in R^B_+ \times R^S_+$ such that $\sum_{b \in B} u_b + \sum_{s \in S} v_s = W(B \cup S)$. An imputation (u, v) is said to be in the **core**, or a **core payoff**, if $\sum_{b \in B'} u_b + \sum_{s \in S'} v_s \ge W(B' \cup S')$ for every $B' \subset B, S' \subset S$.

Proposition 1 If (u, v) is a core payoff and μ is an optimal assignment then $(u, v; \mu)$ is a stable allocation.

Proof. Let (u, v) be a core payoff and μ an optimal assignment. Then $W(B \cup S) = \sum_{b \in B} u_b + \sum_{s \notin S} v_s$ (since (u, v) is an imputation) $= \sum_{b \notin B} u_b + \sum_{s \notin S} v_s + \sum_{(b,s) \in \mu} (u_b + v_s)$ (regrouping) $\geq \sum_{b \notin \mu} u_b + \sum_{s \notin \mu} v_s + \sum_{(b,s) \in \mu} W(b,s)$ (core inequalities for $(b,s) \in \mu$) $\geq \sum_{(b,s) \in \mu} W(b,s)$ (since imputation payoffs nonnegative) $= \sum_{(b,s) \in \mu} w_{bs} = W(B \cup S)$ (since μ is optimal). So the inequalities must be equalities. Therefore $u_b + v_s = w_{bs}$ for all $(b,s) \in \mu$ and $u_b = v_s = 0$ for all $b \notin \mu$, $s \notin \mu$; thus $(u, v; \mu)$ is feasible. Of course, the stability inequalities $(b, s) \in B \times S$ are just the core inequalities for $(b, s) \in B \times S$.

An assignment market is a quadruple (B, S, r, z) where B is a set of buyers, S is a set of sellers each owning a single object, r_s is the reservation value of $s \in S$ for his object, and z_{bs} is the maximum willingness to pay of $b \in B$ for object $s \in S$. We assume each buyer has need for at most one object.

At any price vector $p \in \mathbb{R}^S$ and for any buyer $b \in B$, let $u_{bs}(p) = u_{bs}(p_s) = z_{bs} - p_s$ be b's utility for buying object $s \in S$, and define his demand correspondence $D_b(p)$ as the set of all $s \in S$ with the largest utility $u_{bs}(p)$ among all the objects in S if this utility is nonnegative and as the empty set otherwise. At a price vector p, say that b is active if $u_{bs}(p)$ is positive for some s and that s is active if $p_s - r_s$ is positive.

Call (p, μ) a **competitive equilibrium** if at prices p the matching μ equates supply and demand, that is, if b is active then $b \in \mu$ and if s is active then $s \in \mu$ and $\mu(b) \in D_b(p)$ for all $b \in \mu$. (Wlog $p \ge r$.)

Note that (p, μ) is a competitive equilibrium for (B, S, 0, w) iff $(p + r, \mu)$ is a competitive equilibrium for (B, S, r, z). Also note that an assignment market (B, S, r, z) defines an assignment game (B, S, w) where $w_{bs} = \max \{z_{bs} - r_s, 0\}$ while an assignment game (B, S, w) defines an assignment market (B, S, r, z) for any r by setting $z_{bs} = w_{bs} + r_s$.

Wlog let r = 0 and (B, S, w) be an assignment game or market.

Proposition 2 If $(u, v; \mu)$ is a stable allocation then (v, μ) is a competitive equilibrium.

Proof. Let $(u, v; \mu)$ be a stable allocation. Then $u_b = w_{b\mu(b)} - v_{\mu(b)} \ge 0$ for $b \in \mu$ and $u_b = 0$ for $b \notin \mu$ and $v_s = 0$ for $s \notin \mu$. In particular, any b or s active at the price vector v belongs to

 μ . For $b \in \mu$, use the stability inequalities to see $u_b = w_{b\mu(b)} - v_{\mu(b)} \ge w_{bs} - v_s$ for all $s \in S$, that is $\mu(b) \in D_b(p)$.

Proposition 3 If (v, μ) is a competitive equilibrium then (u, v), where $u_b = w_{b\mu(b)} - v_{\mu(b)}$ for $b \in \mu$ and $u_b = 0$ for $b \notin \mu$, is a core payoff.

Proof. Exercise.

Proposition 4 (Corollary) The set of core, stable and competitive equilibrium payoffs are identical.

Call a matching μ a stable matching (a competitive equilibrium matching) if there is a stable allocation $(u, v; \mu)$ (a competitive equilibrium $(v; \mu)$).

Corollary A matching is a stable matching or a competitive equilibrium matching if and only if it is an optimal assignment.

EXISTENCE

Theorem 1 There exists a competitive equilibrium.

Proof. Call (p, μ) a seller equilibrium if the matching μ contains a (b, s) with $s \in D_b(p)$ for every s active at the price vector p. Let P denote the set of all seller equilibrium price vectors. Note P is nonempty (since $0 \in P$), bounded above and closed. Let p be an element of P with maximum coordinate sum. Let μ be a seller equilibrium matching at p which (among all seller equilibrium matchings) assigns the largest number of active buyers. We claim (p, μ) is a competitive equilibrium.

Suppose not. Then there is an active buyer $b \notin \mu$. Call *s* reachable from *b* if there is a sequence $(b_0, s_1), (b_1, s_1), ..., (b_n, s_n)$ such that $b = b_0, s_j \in D_{b_{j-1}}(p)$ and $(b_j, s_j) \in \mu$ for j = 1, ..., n. Note that all b_j in such a sequence are active, for otherwise the number of active buyers assigned can be increased (by assigning s_1 to *b* and modifying μ along the sequence.) Now let *T* be the set of all *s* reachable from *b*. Note that *q* defined by $q_s = p_s + \epsilon$ for $s \in T$ and $q_s = p_s$ for $s \notin T$ is a seller equilibrium price vector (under μ) for ϵ sufficiently small and positive. Contradiction.

Exercise : If p and q are two competitive equilibrium price vectors the so is their coordinatewise maximum $p \lor q$ and minimum $p \land q$. In particular, there is a minimum (buyer-optimal) equilibrium price vector, and a maximum (seller-optimal) one.

STRATEGY

Consider that you are one of a number of individuals, asked to report maximum-willingnessto-pay values for each of a number of objects, in a sealed auction which will award each participant at most one object, according to the (buyer-optimal) minimum price equilibrium for the reported values. Prove that it is a weakly dominant strategy for you to submit your true values. (Generalization of the Vickrey Second Price Auction in the heterogeneous objects unit-demand case. Leonard 1983.)

Proof: Let $(B, S, (w_{bs}))$ be an assignment game. Recall that if (p, μ) is a competitive price equilibrium then μ is an optimal assignment, i.e. $\sum_{(b,s)\in\mu} w_{bs} = W(B\cup S)$ where $W(B\cup S)$ is the maximum worth of the grand coalition, $B\cup S$, among all assignments, and (u, p), given by $u_b = w_{b\mu(b)} - p_{\mu(b)}$ for $b \in \mu$ and $u_b = 0$ otherwise, is a core imputation, i.e. $\sum_{b\in B} u_b + \sum_{s\in S} p_s = W(B\cup S)$.

The important observation here is that if (p,μ) is the minimum price equilibrium, then for any buyer $b \in B$, there is a μ -alternating path to either an object $s \in \mu$ with $p_s = 0$ or a buyer $b \notin \mu$ with $u_b = 0$. (Otherwise it would be possible to lower p_s to $p_s - \epsilon$ for ϵ sufficiently small for all s reachable from b by a μ -alternating path and still have an equilibrium.)

The next observation is that hence (p,μ) is a competitive equilibrium for $(B \setminus b, S, (w_{bs}))$. (To see this, modify μ by its alternate along the μ – alternating path either leaving the end object $s \in \mu$ with $p_s = 0$ unmatched or assigning the end object to the end buyer $b \notin \mu$ with $u_b = 0$)

Therefore $W(B \setminus b \cup S) = \sum_{b \in B \setminus b} u_b + \sum_{s \in S} p_s$, so $u_b = W(B \cup S) - W(B \setminus b \cup S)$. Since $W(B \cup S) = w_{b\mu(b)} + W(B \setminus b \cup S \setminus s)$, one has $p_{\mu(b)} = W(B \setminus b \cup S) - W(B \setminus b \cup S \setminus \mu(b))$. In particular *b* cannot acquire $\mu(b)$ at a lower price by misreporting. To see that *b* cannot achieve a utility higher than u_b by getting a different object either, note $W(B \cup S) \ge w_{bs} + W(B \setminus b \cup S \setminus s)$ whence $u_b \ge w_{bs} - (W(B \setminus b \cup S) - W(B \setminus b \cup S \setminus s))$ for any *s*.

AUCTION

Start at p = 0. Increase prices simultaneously over an "Overdemanded Set of Objects" until there occurs a change in demand. Repeat. (Demange Gale Sotomayor "Multiobject Auction" 1986)

For any bipartite graph $G \subset B \times S$ and $b \in B$ denote $G_b = \{s \in S \text{ such that } (b, s) \in G\}$. A set

 $T \subset S$ is "overdemanded" if for every nonempty subset U of T, $|U| < |\{b \in B \text{ such that } G_b \subset T \text{ and } G_b \cap U \neq C \}$

Note that, given a price vector p and a maximal matching μ in the buyers' demand graph at p, the set of all objects μ -reachable from any single unmatched (active) buyer is an overdemanded set. It can be shown that, picking the overdemanded set in each step, generates a path that stops at the buyer-optimal price vector. The same holds if prices are raised over "the" overdemanded set of objects, S^o , identified in the lemma below. (If prices are raised over the maximal overdemanded set $S^o \cup S^e$ then the auction lands at the seller-optimal price vector, etc..)

Maximal Matching Decomposition Lemma (in Alkan "Equilibrium in a matching market with general preferences") : The vertices in $B \cup S$ have a unique partition $B = B^o \cup B^e \cup B^u$ and $S = S^o \cup S^e \cup S^u$ such that $|B^o| > |S^o|, |B^e| = |S^e|, |B^u| < |S^u|$ and $G \cap (B^o \times (S^e \cup S^u)) =$ $G \cap (B^e \times S^o) = \emptyset$. Furthermore, $\mu(B^o) = S^o, \mu(B^e) = S^e, \mu(S^u) = B^u$ for every maximal matching μ in G.

(The lemma above is a special case of the Gallai-Edmonds Theorem for bipartite graphs.)

Exercise (An Alternate Auction Procedure) : Consider a "discrete approximation" of a given assignment market where money is denominated in an indivisible unit. Show the convergence to a stable allocation of the following Price Adjustment cum Deferred Acceptance Procedure : Given prices p(t), each buyer chooses any object in his demand set to "propose", next each object chooses any one top-paying buyer who has proposed to "reject" all others, then $p(t + 1)_{bs}$ goes up to $p(t)_{bs} + 1$ if s has rejected b and stays the same otherwise. Note the "rate of convergence" of this auction procedure by considering the case of 3 identical buyers competing for 2 identical objects.