THE ASSIGNMENT GAME : ONE-TO-ONE MATCHING WITH MONEY

an elementary self-contained exposition
Model \& Existence: Koopmans Beckmann 1957, Shapley Shubik 1970 (Roth\&Sotomayor Ch 8)
Strategy : Leonard 1983
Auction : Demange Gale Sotomayor 1986, Alkan 1989, 1992

An assignment game is a triple (B, S, w) where B and S are two finite sets of agents and w is an array whose entry $w_{b s} \geq 0$ denotes the worth of or the surplus achievable by the pair (b, s).

Examples: (i) Market for a set of objects on one side and a set of "unit-demander" buyers on the other, (ii) Partnership formation between two sides, e.g., entrepreneurs and venture capitalists.

A matching μ is a subset of $B \times S$ where no agent recurs, i.e., for any $(b, s),\left(b^{\prime}, s^{\prime}\right)$ in μ neither $b=b^{\prime}$ nor $s=s^{\prime}$. (With some notational abuse, we will write $b \in \mu$ as well as $(b, s) \in \mu$.)

An allocation is a matching μ and a pair of (nonnegative) payoff vectors $u \in R_{+}^{B}, v \in R_{+}^{S}$.
An allocation $(u, v ; \mu)$ is feasible if $u_{b}+v_{s} \leq w_{b s}$ for all $(b, s) \in \mu$ and if $u_{b}=v_{s}=0$ for $b \notin \mu, s \notin \mu$.

EQUIVALENCE OF PAIRWISE STABLE, CORE AND COMPETITIVE EQUILIBRIUM OUTCOMES

A feasible allocation $(u, v ; \mu)$ is stable if $u_{b}+v_{s} \geq w_{b s}$ for all $(b, s) \in B \times S$.
Note that if $(u, v ; \mu)$ is stable then $u_{b}=w_{b \mu(b)}-v_{\mu(b)}$ for $b \in \mu$ and $u_{b}=0$ for $b \notin \mu$; in particular, the payoff u is determined by (v, μ) (likewise v by (u, μ)).

For any assignment game (B, S, w), a game in coalitional form is obtained as follows : For every coalition $C=B^{\prime} \cup S^{\prime}$ where $B^{\prime} \subset B$ and $S^{\prime} \subset S$, define its worth $W(C)$ to be the maximum of $\sum_{(b, s) \in \eta} w_{b s}$ among all matchings $\eta \subset B^{\prime} \times S^{\prime}$. (If C contains no pair (b, s) then $W(C)=0$, in particular $W(b)=W(s)=0$ for every b and s, and $\left.W(b, s)=w_{b s}.\right)$

A matching μ for which $W(B \cup S)=\sum_{(b, s) \in \mu} w_{b s}$ is called an optimal assignment.
An imputation is a payoff $(u, v) \in R_{+}^{B} \times R_{+}^{S}$ such that $\sum_{b \in B} u_{b}+\sum_{s \in S} v_{s}=W(B \cup S)$. An imputation (u, v) is said to be in the core, or a core payoff, if $\sum_{b \in B^{\prime}} u_{b}+\sum_{s \in S^{\prime}} v_{s} \geq W\left(B^{\prime} \cup S^{\prime}\right)$ for every $B^{\prime} \subset B, S^{\prime} \subset S$.

Proposition 1 If (u, v) is a core payoff and μ is an optimal assignment then ($u, v ; \mu$) is a stable allocation.

Proof. Let (u, v) be a core payoff and μ an optimal assignment. Then $W(B \cup S)=\sum_{b \in B} u_{b}+$ $\sum_{s \in S} v_{s}$ (since (u, v) is an imputation) $=\sum_{b \notin B} u_{b}+\sum_{s \notin S} v_{s}+\sum_{(b, s) \in \mu}\left(u_{b}+v_{s}\right)$ (regrouping) $\geq \sum_{b \notin \mu} u_{b}+\sum_{s \notin \mu} v_{s}+\sum_{(b, s) \in \mu} W(b, s)$ (core inequalities for $\left.(b, s) \in \mu\right) \geq \sum_{(b, s) \in \mu} W(b, s)$ (since imputation payoffs nonnegative) $=\sum_{(b, s) \in \mu} w_{b s}=W(B \cup S)$ (since μ is optimal). So the inequalities must be equalities. Therefore $u_{b}+v_{s}=w_{b s}$ for all $(b, s) \in \mu$ and $u_{b}=v_{s}=0$ for all $b \notin \mu, s \notin \mu$; thus $(u, v ; \mu)$ is feasible. Of course, the stability inequalities $(b, s) \in B \times S$ are just the core inequalities for $(b, s) \in B \times S$.

An assignment market is a quadruple (B, S, r, z) where B is a set of buyers, S is a set of sellers each owning a single object, r_{s} is the reservation value of $s \in S$ for his object, and $z_{b s}$ is the maximum willingness to pay of $b \in B$ for object $s \in S$. We assume each buyer has need for at most one object.

At any price vector $p \in R^{S}$ and for any buyer $b \in B$, let $u_{b s}(p)=u_{b s}\left(p_{s}\right)=z_{b s}-p_{s}$ be b 's utility for buying object $s \in S$, and define his demand correspondence $D_{b}(p)$ as the set of all $s \in S$ with the largest utility $u_{b s}(p)$ among all the objects in S if this utility is nonnegative and as the empty set otherwise. At a price vector p, say that b is active if $u_{b s}(p)$ is positive for some s and that s is active if $p_{s}-r_{s}$ is positive.

Call (p, μ) a competitive equilibrium if at prices p the matching μ equates supply and demand, that is, if b is active then $b \in \mu$ and if s is active then $s \in \mu$ and $\mu(b) \in D_{b}(p)$ for all $b \in \mu .(W \log p \geq r$.

Note that (p, μ) is a competitive equilibrium for $(B, S, 0, w)$ iff $(p+r, \mu)$ is a competitive equilibrium for (B, S, r, z). Also note that an assignment market (B, S, r, z) defines an assignment game (B, S, w) where $w_{b s}=\max \left\{z_{b s}-r_{s}, 0\right\}$ while an assignment game (B, S, w) defines an assignment market (B, S, r, z) for any r by setting $z_{b s}=w_{b s}+r_{s}$.

Wlog let $r=0$ and (B, S, w) be an assignment game or market.
Proposition 2 If $(u, v ; \mu)$ is a stable allocation then (v, μ) is a competitive equilibrium.
Proof. Let $(u, v ; \mu)$ be a stable allocation. Then $u_{b}=w_{b \mu(b)}-v_{\mu(b)} \geq 0$ for $b \in \mu$ and $u_{b}=0$ for $b \notin \mu$ and $v_{s}=0$ for $s \notin \mu$. In particular, any b or s active at the price vector v belongs to
μ. For $b \in \mu$, use the stability inequalities to see $u_{b}=w_{b \mu(b)}-v_{\mu(b)} \geq w_{b s}-v_{s}$ for all $s \in S$, that is $\mu(b) \in D_{b}(p)$.

Proposition 3 If (v, μ) is a competitive equilibrium then (u, v), where $u_{b}=w_{b \mu(b)}-v_{\mu(b)}$ for $b \in \mu$ and $u_{b}=0$ for $b \notin \mu$, is a core payoff.

Proof. Exercise.

Proposition 4 (Corollary) The set of core, stable and competitive equilibrium payoffs are identical.

Call a matching μ a stable matching (a competitive equilibrium matching) if there is a stable allocation $(u, v ; \mu)$ (a competitive equilibrium $(v ; \mu))$.

Corollary A matching is a stable matching or a competitive equilibrium matching if and only if it is an optimal assignment.

EXISTENCE

Theorem 1 There exists a competitive equilibrium.

Proof. Call (p, μ) a seller equilibrium if the matching μ contains a (b, s) with $s \in D_{b}(p)$ for every s active at the price vector p. Let P denote the set of all seller equilibrium price vectors. Note P is nonempty (since $0 \in P$), bounded above and closed. Let p be an element of P with maximum coordinate sum. Let μ be a seller equilibrium matching at p which (among all seller equilibrium matchings) assigns the largest number of active buyers. We claim (p, μ) is a competitive equilibrium.

Suppose not. Then there is an active buyer $b \notin \mu$. Call s reachable from b if there is a sequence $\left(b_{0}, s_{1}\right),\left(b_{1}, s_{1}\right), \ldots,\left(b_{n}, s_{n}\right)$ such that $b=b_{0}, s_{j} \in D_{b_{j-1}}(p)$ and $\left(b_{j}, s_{j}\right) \in \mu$ for $j=1, \ldots, n$. Note that all b_{j} in such a sequence are active, for otherwise the number of active buyers assigned can be increased (by assigning s_{1} to b and modifying μ along the sequence.) Now let T be the set of all s reachable from b. Note that q defined by $q_{s}=p_{s}+\epsilon$ for $s \in T$ and $q_{s}=p_{s}$ for $s \notin T$ is a seller equilibrium price vector (under μ) for ϵ sufficiently small and positive. Contradiction.

Exercise : If p and q are two competitive equilibrium price vectors the so is their coordinatewise maximum $p \vee q$ and minimum $p \wedge q$. In particular, there is a minimum (buyer-optmal) equilibrium price vector, and a maximum (seller-optimal) one.

STRATEGY

Consider that you are one of a number of individuals, asked to report maximum-willingness-to-pay values for each of a number of objects, in a sealed auction which will award each participant at most one object, according to the (buyer-optimal) minimum price equilibrium for the reported values. Prove that it is a weakly dominant strategy for you to submit your true values. (Generalization of the Vickrey Second Price Auction in the heterogeneous objects unit-demand case. Leonard 1983.)

Proof: Let $\left(B, S,\left(w_{b s}\right)\right)$ be an assignment game. Recall that if (p, μ) is a competitive price equilibrium then μ is an optimal assignment, i.e. $\sum_{(b, s) \in \mu} w_{b s}=W(B \cup S)$ where $W(B \cup S)$ is the maximum worth of the grand coalition, $B \cup S$, among all assignments, and (u, p), given by $u_{b}=$ $w_{b \mu(b)}-p_{\mu(b)}$ for $b \in \mu$ and $u_{b}=0$ otherwise, is a core imputation, i.e. $\sum_{b \in B} u_{b}+\sum_{s \in S} p_{s}=W(B \cup S)$.

The important observation here is that if (p, μ) is the minimum price equilibrium, then for any buyer $b \in B$, there is a μ-alternating path to either an object $s \in \mu$ with $p_{s}=0$ or a buyer $b \notin \mu$ with $u_{b}=0$. (Otherwise it would be possible to lower p_{s} to $p_{s}-\epsilon$ for ϵ sufficiently small for all s reachable from b by a μ-alternating path and still have an equilibrium.)

The next observation is that hence (p, μ) is a competitive equilibrium for $\left(B \backslash b, S,\left(w_{b s}\right)\right)$. (To see this, modify μ by its alternate along the μ-alternating path either leaving the end object $s \in \mu$ with $p_{s}=0$ unmatched or assigning the end object to the end buyer $b \notin \mu$ with $u_{b}=0$)

Therefore $W(B \backslash b \cup S)=\sum_{b \in B \backslash b} u_{b}+\sum_{s \in S} p_{s}$, so $u_{b}=W(B \cup S)-W(B \backslash b \cup S)$. Since $W(B \cup S)=$ $w_{b \mu(b)}+W(B \backslash b \cup S \backslash s)$, one has $p_{\mu(b)}=W(B \backslash b \cup S)-W(B \backslash b \cup S \backslash \mu(b))$. In particular b cannot acquire $\mu(b)$ at a lower price by misreporting. To see that b cannot achieve a utility higher than u_{b} by getting a different object either, note $W(B \cup S) \geq w_{b s}+W(B \backslash b \cup S \backslash s)$ whence $u_{b} \geq w_{b s}-(W(B \backslash b \cup S)-W(B \backslash b \cup S \backslash s))$ for any s.

AUCTION

Start at $p=0$. Increase prices simultaneously over an "Overdemanded Set of Objects" until there occurs a change in demand. Repeat. (Demange Gale Sotomayor "Multiobject Auction" 1986)

For any bipartite graph $G \subset B \times S$ and $b \in B$ denote $G_{b}=\{s \in S$ such that $(b, s) \in G\}$. A set
$T \subset S$ is "overdemanded" if for every nonempty subset U of $T,|U|<\mid\left\{b \in B\right.$ such that $G_{b} \subset T$ and $G_{b} \cap U \neq$
Note that, given a price vector p and a maximal matching μ in the buyers' demand graph at p, the set of all objects μ-reachable from any single unmatched (active) buyer is an overdemanded set. It can be shown that, picking the overdemanded set in each step, generates a path that stops at the buyer-optimal price vector. The same holds if prices are raised over "the" overdemanded set of objects, S^{o}, identified in the lemma below. (If prices are raised over the maximal overdemanded set $S^{o} \cup S^{e}$ then the auction lands at the seller-optimal price vector, etc..)

Maximal Matching Decomposition Lemma (in Alkan "Equilibrium in a matching market with general preferences") : The vertices in $B \cup S$ have a unique partition $B=B^{o} \cup B^{e} \cup B^{u}$ and $S=S^{o} \cup S^{e} \cup S^{u}$ such that $\left|B^{o}\right|>\left|S^{o}\right|,\left|B^{e}\right|=\left|S^{e}\right|,\left|B^{u}\right|<\left|S^{u}\right|$ and $G \cap\left(B^{o} \times\left(S^{e} \cup S^{u}\right)\right)=$ $G \cap\left(B^{e} \times S^{o}\right)=\varnothing$. Furthermore, $\mu\left(B^{o}\right)=S^{o}, \mu\left(B^{e}\right)=S^{e}, \mu\left(S^{u}\right)=B^{u}$ for every maximal matching μ in G.
(The lemma above is a special case of the Gallai-Edmonds Theorem for bipartite graphs.)

Exercise (An Alternate Auction Procedure) : Consider a "discrete approximation" of a given assignment market where money is denominated in an indivisible unit. Show the convergence to a stable allocation of the following Price Adjustment cum Deferred Acceptance Procedure : Given prices $p(t)$, each buyer chooses any object in his demand set to "propose", next each object chooses any one top-paying buyer who has proposed to "reject" all others, then $p(t+1)_{b s}$ goes up to $p(t)_{b s}+1$ if s s has rejected b and stays the same otherwise. Note the "rate of convergence" of this auction procedure by considering the case of 3 identical buyers competing for 2 identical objects.

