MANY-TO-MANY MATCHING CHOICE FUNCTIONS and REVEALED PREFERENCE Alkan 2002, Alkan Gale 2003

College Admissions -> Marriage Problem (Gale Shapley 1961)
Men $M \ni m$, Women $W \ni w$, total orders
$w>_{m} w^{\prime} \quad m>_{w} m^{\prime}$
Monogamous Matching μ is a set of pairs ($m w$) each m, w in at most one pair.
Pair m, w blocks μ if they prefer each other to
their μ mates.
μ is STABLE if there are no blocking pairs.
College Admissions
Each college C has quota q maximum number of students it can admit.
Reduces to marriage problem by "replication".
This is the "classical case"
Problem of "diversity"

First Generalization [Blair 1985]
Each college has a choice function C.
Given set X of students, $C(X) \subseteq X$.
For classical case $C(X)=\{q$ highest ranked $\}$
if $|X| \geq q, C(X)=X$ otherwise.
EXAMPLE
Students: men m, m^{\prime} women w, w^{\prime}
College with quota 2
Choice function :
$m w m^{\prime} w^{\prime}->m w, \quad m w m^{\prime}->m w$,
$m m^{\prime} w^{\prime}->m w^{\prime} \quad m w w^{\prime}->m w$
$w m^{\prime} w^{\prime}->w m^{\prime}$
This choice function is not classical,
for, say, $m>w>m^{\prime}>w^{\prime}$,
then we would have $C\left(m m^{\prime} w^{\prime}\right)=m m^{\prime}$.
The relations on the right follow from
DEFINITION. Choice function C is consistent if $C(X) \subseteq X^{\prime} \subseteq X \Longrightarrow$ $\subseteq C\left(X^{\prime}\right)=C(X)$.

We denote the range of C by \mathcal{A}

DEFINITION. If $X \neq Y \in \mathcal{A}$,
X is revealed preferred to Y, written $X \succ Y$,
if $\quad C(X \cup Y)=X$.

The relation \succ may not be transitive.
EXAMPLE

1. $m w m^{\prime} w^{\prime}->m w$
2. $m m^{\prime} w^{\prime}->m w^{\prime}$
3. $w m^{\prime} w^{\prime}->m^{\prime} w^{\prime}$
$>$ From 2. and 3. we have
$m w^{\prime} \succ m^{\prime} w^{\prime} \succ w m^{\prime}$
but from 1. $m w^{\prime}, m^{\prime} w$ are non-comparable.
DEFINITION. Choice function is persistent if $x \in X^{\prime} \subseteq X$ and $x \in C(X) \Longrightarrow$ $x \in C\left(\mathbf{x}^{\prime}\right)$.

For college admissions, if a student is chosen from a given pool of applicants she will be chosen from any smaller pool.

A market with no stable matching.
College A, quota 2 , choice function above.

College B has quota 1 .

	m		w	m^{\prime}	w^{\prime}
A	$A m$		$A w$		
	\downarrow		\uparrow	xx	xx
B	$B m$	\longrightarrow	$B w$	xx	xx

Recall, we have $\quad m w^{\prime} \succ m^{\prime} w^{\prime} \succ w m^{\prime}$
$\{A m w\}$ blocked by B, m,
$\left\{A m w^{\prime}\right\}$ blocked by (A, w),
$\left\{A m^{\prime} w\right\}$ blocked by $(A, w){ }^{\prime}$
$\left\{A m^{\prime} w^{\prime}\right\},\{B m\}$ blocked by (B, w),
$\left\{A m^{\prime} w^{\prime}\right\},\{B w\}$ blocked by (A, m).

Second Generalization [Balinski-Baiou 2000]
Schedules.
An agent chooses a schedule $\mathbf{x}=(x(1), . ., x(n))$ consisting of amounts of n items, given a a positive n-vector \mathbf{b},
$\mathbf{x} \in \mathcal{B}=\{\S: \S \leq \mathbf{b}=(b(1), . ., b(n))\}$.
Choice function C on \mathcal{B}, with $C(\mathbf{x}) \leq \mathbf{x}$.
EXAMPLES
The classical choice function.
Ordered items $i \prec i+1$ and quota q.
Choose i so that $z=\sum_{1}^{i} x(i) \leq q, z+x(i+1)>q$.
$C(\mathbf{x})=(x(1), . ., x(i), x(z-q), 0,0, . ., 0)$
The diversified choice function. $C(\mathbf{x})=\mathbf{y}$
Choose c so that $\sum_{i} x(i) \wedge c=q$.
$C_{i}(\mathbf{x})=x(i) \wedge c$.

DEFINITIONS
\mathbf{x} is revealed preferred to \mathbf{y},
written $\mathbf{x} \succ \mathbf{y}$, if $C(\mathbf{x} \vee \mathbf{y})=\mathbf{x}$.

The choice function C is
consistent if $C(\mathbf{x}) \leq \mathbf{x}^{\prime} \leq \mathbf{x} \Longrightarrow C\left(\mathbf{x}^{\prime}\right)=C(\mathbf{x})$.
$\underline{\text { persistent }}$ if $\mathbf{x}^{\prime} \leq \mathbf{x} \Longrightarrow C\left(\mathbf{x}^{\prime}\right) \geq \mathbf{x}^{\prime} \vee C(X)$.
subadditive if $C(\mathbf{x} \vee \mathbf{y}) \leq C(\mathbf{x}) \vee \mathbf{y}$.
Stationary if $C(\mathbf{x} \vee \mathbf{y})=C(C(\mathbf{x}) \vee \mathbf{y})$.

LEMMA 1. Persistent \Longrightarrow Subadditive
LEMMA 2. Subadditive + consistent \Longrightarrow stationary.
Notation. We denote $C(\mathbf{x} \vee \mathbf{y})$ by $\mathbf{x} \curlyvee \mathbf{y}$.
LEMMA 3. If C is stationary then \succeq is a partial order and A is a lattice.

- We first show \curlyvee is associative, for
$\mathbf{x} \vee(\mathbf{y} \vee \mathbf{z})=C(\mathbf{x} \vee(\mathbf{y} \curlyvee \mathbf{z})=C(\mathbf{x} \vee C(\mathbf{y} \vee \mathbf{z})=$ $C((\mathbf{x} \vee(\mathbf{y} \vee \mathbf{z})=C((\mathbf{x} \vee \mathbf{y}) \vee \mathbf{z})=(\mathbf{x} \curlyvee \mathbf{y}) \curlyvee \mathbf{z}$
Next $\mathbf{x} \succeq \mathbf{y} \succeq \mathbf{z} \Longrightarrow \mathbf{x} \curlyvee \mathbf{y}=\mathbf{x}, \mathbf{y} \curlyvee \mathbf{z}=\mathbf{y}$ so $\mathbf{x} \curlyvee \mathbf{z}=(\mathbf{x} \curlyvee \mathbf{y}) \curlyvee \mathbf{z}=(\mathbf{x} \curlyvee(\mathbf{y} \curlyvee \mathbf{z})=\mathbf{x} \curlyvee \mathbf{y}=\mathbf{x}$, so \mathcal{A} is a lattice.

The Revealed Preference Lattice
In \mathcal{A} we have $\mathbf{x} \curlyvee \mathbf{y}=C(\mathbf{x} \vee \mathbf{y})$.
What is $\mathbf{x} \curlywedge \mathbf{y}$?
DEFINITION. For $\mathbf{x} \in \mathcal{A}$ the closure $\overline{\mathbf{x}}$ of \mathbf{x}
is given by $\overline{\mathbf{x}}=\sup \{\mathbf{y}: C(\mathbf{y})=\mathbf{x}\}$.
Since C is continuous we have $C(\overline{\mathbf{x}})=\mathbf{x}$
For classical college admissions the closure of X is $X+$ students ranked below all of X.

Isomorphism Theorem: The mapping
$\overline{\mathbf{x}} \longrightarrow \overline{\mathbf{x}}$ is a lattice isomorphism
from $\{\mathcal{A}, \succeq\}$ to $\{\mathcal{B}, \geq\}$.
Corollary $\mathbf{x} \curlywedge \mathbf{y}=C(\overline{\mathbf{x}} \wedge \overline{\mathbf{y}})$.
LEMMA $4 \mathbf{x} \wedge \overline{\mathbf{y}} \leq \mathbf{x} \curlywedge \mathbf{y}$
■ $\overline{\mathbf{x}} \geq \overline{\mathbf{x}} \wedge \overline{\mathbf{y}}$ so from persistence we have
$\mathbf{x} \curlywedge \mathbf{y}=C(\overline{\mathbf{x}} \wedge \overline{\mathbf{y}}) \geq C(\overline{\mathbf{x}}) \wedge \overline{\mathbf{x}} \wedge \overline{\mathbf{y}}=\mathbf{x} \wedge \overline{\mathbf{x}} \wedge \overline{\mathbf{y}}$
$=\mathbf{x} \wedge \overline{\mathbf{y}}$

Stability

A schedule is " i-satiated" if the agent would not choose to increase consumption of item i if it was available. Formally,

Notation Given a schedule \mathbf{x}, the vector $\mathbf{x}^{(i)}$
replaces the i th entry of \mathbf{x} by upper bound $b(i)$.
$\mathbf{x}^{(i)}=(x(1), ., x(i-1), b(i), x(i+1), . ., x(n))$.
DEFINITION Item i is stable in \mathbf{x} if $C\left(\mathbf{x}^{(i)}\right)=\mathbf{x}$.Otherwise it is unstable in \mathbf{x}.

Classical case, i is stable $\Longleftrightarrow \sum_{j=1}^{i} x(j)=q$.
Diversified case i is stable $\Longleftrightarrow x(i)=\max _{j}[x(j)]$.
LEMMA 5. \mathbf{x} or \mathbf{y} stable $\Longrightarrow \mathbf{x} \curlyvee \mathbf{y}$ stable.
\mathbf{x} and \mathbf{y} stable $\Longrightarrow \mathbf{x} \curlywedge \mathbf{y}$ stable.

Schedule Matching

Each f has a choice function C_{f}.
Each w has a choice function C_{w}.
DEFINITION. A matching \mathbf{x} is a $F \times W$ matrix where $x(f w)$ represents the amount of time
worker w works for firm f.
We assume given a positive $F \times W$ matrix \mathbf{b} such that $x(f w) \leq b(f w)$.
Denote by \mathbf{x}_{f} the f-row, \mathbf{x}_{w} the w-column of \mathbf{x}.
DEFINITIONS Matching \mathbf{x} is F-acceptable if $\mathbf{x}_{f} \in \mathcal{A}_{f}$ for all f. Similarly for W.

The pair f, w blocks the matching \mathbf{x} if
$f w$ is unstable in \mathbf{x}_{f} and in \mathbf{x}_{w}.
The matching \mathbf{x} is STABLE if there are no blocking pairs.

Existence We define sequence of alternately F-acceptable and W-acceptable matchings $\mathbf{y}^{n}, \mathbf{z}^{n}$ which converge to a stable matching.

Initial choice matrix for F is \mathbf{b}.
\mathbf{y}^{1} is defined by $\mathbf{y}_{f}^{1}=C_{f}\left(\mathbf{b}_{f}\right)$.
If \mathbf{y}^{1} is W-acceptable then stop. It is stable.
If not \mathbf{z}^{1} is defined by $\mathbf{z}_{w}^{1}=C_{w}\left(\mathbf{y}_{w}^{1}\right)$.
Define \mathbf{x}^{1}, new choice matrix by,
$x^{1}(f w)=b(f w)$ if $z^{1}(f w)=y^{1}(f w)$,

$$
=z^{1}(f w) \text { if } z^{1}(f w)<y^{1}(f w)
$$

\mathbf{y}^{2} is defined by $\mathbf{y}_{f}^{2}=C_{f}\left(\mathbf{x}_{f}^{1}\right)$, etc.
Note, \mathbf{x}^{n} non increasing so converges to $\tilde{\mathbf{x}}$
so $\mathbf{y}^{n} \longrightarrow \tilde{\mathbf{y}}$ and $\mathbf{z}^{n} \longrightarrow \tilde{\mathbf{z}}$ by continuity of C_{f}, C_{w}.
Also $\mathbf{x}^{n} \geq \mathbf{y}^{n} \geq \mathbf{z}^{n}$
Claim $\tilde{\mathbf{y}}=\tilde{\mathbf{z}}$ because $x^{n}(f w)-x^{n+1}(f w) \longrightarrow 0$ so $y^{n}-z^{n} \longrightarrow 0$.
Using consistency and persistence one shows that $\tilde{\mathbf{y}}$ is stable.

The Stable Matching Lattice

The revealed preference ordering for individuals extends naturally to matchings.

We write $\mathbf{x} \succeq_{F} \mathbf{y}$ if $\mathbf{x} \geq_{f} \mathbf{y}$ for all f.
Define $\mathbf{z}^{F}=\mathbf{x} \curlyvee_{F} \mathbf{y}$ if $\mathbf{z}^{f}=\mathbf{x}_{f} \curlyvee_{f} \mathbf{y}_{f}$ for all f.
and similarly for W.
We would like to show that the set of stable matchings is a lattice under order \succ_{F} or \succ_{W}.

However,
EXAMPLE Firms A, B, C, D, E
Workers a, b, c, d, z with preferences,

\underline{A}	$\frac{B}{b}$	\underline{C}	\underline{D}	\underline{E}	\underline{a}	\underline{b}	\underline{c}	\underline{d}	\underline{e}	\underline{z}
$a *$	$b^{\#}$	$c *$	$d^{\#}$	$C^{\#}$	$D *$	$A^{\#}$	$B *$	$E^{\#} *$	$A^{\#}$	
$c z^{\#}$	$d z *$	$a^{\#}$	$b *$	$e^{\#}$	$A *$	$B^{\#}$	$C *$	$D^{\#}$		$B *$

$c z^{\#} \quad d z * \quad a^{\#} \quad b * \quad e^{\#} * A * \quad B^{\#} \quad C * \quad D^{\#} \quad B *$

The matching * and \# are both stable but
$* \curlyvee_{F} \#=\{A a, B b, C c, D d, E e\}$ is blocked by E, z.
Some further condition is needed.

The size of a schedule \mathbf{x} written $|\mathbf{x}|$ is the sum of its entries $\sum_{i} x(i)$.
DEFINITION (Alkan 2002) C is size monotone if
$\mathbf{x} \leq \mathbf{y}$ implies $|C(\mathbf{x})| \leq|C(\mathbf{y})|$.
Note if C is "quota filling" it is size monotone, so both classical and diversified choice functions are size monotone.

Polarity Theorem. If \mathbf{x}, \mathbf{y} are stable matchings
then $\mathbf{x} \succ_{F} \mathbf{y}$ if and only if $\mathbf{y} \succ_{W} \mathbf{x}$.
Method of proof. Let $\mathbf{z}^{F}=\mathbf{x} \curlyvee_{F} \mathbf{y}, \mathbf{z}_{F}=\mathbf{x} 人_{F} \mathbf{y}$.
Using stability, persistence, we show $\mathbf{z}^{F} \leq \mathbf{z}_{W}$
$>$ From size monotone $\left|\mathbf{z}_{f}\right| \leq\left|\mathbf{z}^{f}\right|$ and $\left|\mathbf{z}_{w}\right| \leq\left|\mathbf{z}^{w}\right|$ so $\left|\mathbf{z}_{F}\right|=\sum_{F}\left|\mathbf{z}_{f}\right| \leq$ $\sum_{F}\left|\mathbf{z}^{f}\right|=\left|\mathbf{z}^{F}\right| \leq$
$\left|\mathbf{z}_{W}\right|=\sum_{W}\left|\mathbf{z}_{w}\right| \leq \sum_{W}\left|\mathbf{z}^{w}\right|=\left|\mathbf{z}^{W}\right| \leq\left|\mathbf{z}_{F}\right|$
so $\left|\mathbf{z}_{W}\right|=\left|\mathbf{z}^{F}\right|$ so $\mathbf{z}_{W}=\mathbf{z}^{F}$.
Corollary. $\left|\mathbf{z}_{f}\right|=\left|\mathbf{z}^{f}\right|$ and $\left|\mathbf{z}_{w}\right|=\left|\mathbf{z}^{w}\right|$ for all f, w.

MAIN THEOREM The set of stable matchings a lattice Λ under \succ_{F} and \succ_{W}.

Sketch of Proof:
Must show that $\mathbf{z}^{F}=\mathbf{x} \curlyvee_{F} \mathbf{y}$ is W - acceptable and Stable.
The first follows from the Polarity Theorem.
To prove stability, suppose for some f we have
$f w$ is unstable in \mathbf{z}^{f}. Then by Lemma 5 it is unstable in both \mathbf{x}_{f} and \mathbf{y}_{f}. Therefore by stability $f w$ is stable in both \mathbf{x}_{w} and \mathbf{y}_{w} so by the second part of Lemma $5, f w$ is stable in \mathbf{z}_{w}, hence it is stable in \mathbf{z}_{W}, but from polarity $\mathbf{z}_{W}=\mathbf{z}^{F}$ so \mathbf{z}^{F} is stable.

Properties of the Stable Matching Lattice.

1. The lattice Λ_{F} has max and min elements.
2. "Unisize" : $\mathbf{x}, \mathbf{y} \in \boldsymbol{\Lambda} \Longrightarrow\left|\mathbf{x}_{f}\right|=\left|\mathbf{y}_{f}\right|$
from the corollary to the Polarity Theorem.
3. If $\mathbf{x}, \mathbf{y} \in \boldsymbol{\Lambda}$ and C is quota filling and $\left|\mathbf{x}_{f}\right|<q$ then $\mathbf{x}_{f}=\mathbf{y}_{f}$.

Proof. If $\mathbf{x} \neq \mathbf{y}$ then $|\mathbf{x} \vee \mathbf{y}|>|\mathbf{x}|$ so, from quota filling, $|\mathbf{x} \curlyvee \mathbf{y}|>|\mathbf{x}|$ but this contradicts unisize.
4. $\mathbf{x} \wedge \mathbf{y} \leq \mathrm{x} \curlyvee \mathrm{y}$ and $\mathrm{x} \wedge \mathrm{y} \leq \mathrm{x} \curlywedge \mathbf{y}$.

For college admissions this says that those students admitted in both \mathbf{x} and \mathbf{y} are admitted in both $\mathbf{x} \curlyvee \mathbf{y}$ and $\mathbf{x} \curlywedge \mathbf{y}$.
5. $\mathbf{x}, \mathbf{y} \in \Lambda, \Longrightarrow \mathbf{x} \vee \mathbf{y}=(\mathbf{x} \curlyvee \mathbf{y}) \vee(\mathbf{x} \curlywedge \mathbf{y})$
6. Classical case $\mathbf{x}, \mathbf{y} \in \boldsymbol{\Lambda} \Longrightarrow \mathbf{x} \succeq \mathbf{y}$ or $\mathbf{y} \succeq \mathbf{x}$. Not true for general case.
A prefers $m w . \quad B$ prefers $m^{\prime} w^{\prime}$

	m	w	$m \prime$	w^{\prime}
A	$A m$	$A w$	$A m^{\prime}$	$A w^{\prime}$
	\downarrow	\downarrow	\uparrow	\uparrow
B	$B m$	$B w$	$B m^{\prime}$	$B w^{\prime}$

