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Motivation |

* There are large amount of network data that can
be represented as bipartite and tripartite graphs

e Standard techniques like maximal bicliques
search result in huge number of patterns (in the
worst case exponential w.r.t. of input size)...

e Therefore we need some relaxation of this notion
and good measures of interestingness of biclique
communities



Motivation Il

Applied lattice theory provide us with a notion of formal concept which is
the same thing as biclique

L. C. Freeman, D. R. White. Using Galois Lattices to Represent Network
Data Sociological Methodology 1993 (23).
Social Networks 18(3), 1996

— L. C. Freeman, Cliques, Galois Lattices, and the Structure of Human Social
Groups.

— V. Duquenne, Lattice analysis and the representation of handicap
associations.

— D. R. White. Statistical entailments and the Galois lattice.

JW. Mohr, Vincent D. The duality of culture and practice: Poverty relief in
New York City, 1888—1917 Theory and Society, 1997

Camille Roth et al., Towards Concise Representation for Taxonomies of
Epistemic Communities, CLA 4th Intl Conf on Concept Lattices and their
Applications, 2006

And many other papers on application to social network analysis with FCA
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Motivation Il

* Concept-based bicluster (lgnatov et al., 2010) is a
scalable approximation of a formal concept
(biclique)

— Less number of patterns to analyze
— Less computational time (polynomial vs exp.)

— Manual tuning of bicluster (community) density
threshold

— Tolerance to missing (object, attribute) pairs
* For analyzing three-way network data like

folksonomies we proposed triclustering
(Ilgnatov et al., 2011)



Formal Concept Analysis
[Wille, 1982, Ganter & Wille, 1999]

Definition 1. Formal Context is a triple (G, M, | ), where G is a
set of (formal) objects, M is a set of (formal) attributes, and /
c G xM is the incidence relation which shows that object g

G posseses an attribute m € M.

Example

Car

House

Laptop

Bicycle

Kate

X

Mike

Alex

David




Formal Concept Analysis

Definition 2. Derivation operators (defining Galois connection)

Al:={me M | gimforallg € A} is the set of attributes common to all
objectsin A

B':={ge G | gimforallm € B} is the set of objects that have all
attributes from B

Example

Car | House | Laptop | Bicycle {Kate, /\/[ike}/z{(:ar}

Kate | x X {Laptop}’ = {Mike, Alex, David}
Mike | x X
Alex X X {Car, Housej}' = {}G

David X X X {} l.=M




Formal Concept Analysis

Definition 3. (A, B) is a formal concept of (G, M, |) iff
AcCcG BcM, Al=B,and B'=A.

A is the extent and B is the intent of the concept (A, B).

B (G,M,I) is a set of all concepts of the context (G, M, I)

Example
Car | House | Laptop | Bicycle
Kate X X
Mike | x X
Alex X X
David X X X

A pair ({Kate, Mike},{Car}) is a
formal concept

({Alex, David} ,{Laptop}) doesn‘t
form a formal concept, because
{Laptop}'#{Alex, David}

({Alex, David} {House, Laptop})
is a formal concept




FCA and Graphs

Kate

a b |c|d
Kate |[x X -
Mike |x X
Alex X |[X
David X [X |X
Formal Context Bipartite graph
Formal Cocept Biclique
(maximal rectangle)




Formal Concept Analysis

Definition 4. A formal concept (A,B) is said to be more general than (C,B), that
is (A,B) > (C,D) iff A < C (equivalently D — B)

The set of all concepts of the context (G, M, I) ordered by relation > forms a
complete lattice B (G,M, 1) called concept lattice (Galois lattice).

Example

Car | House | Laptop | Bicycle ({Alex, David, Mike} ,{Laptop})
Kate | Xx X is more general than concept
Mike | x X ({Alex, David} {House, Laptop})
Alex X X
David X X X




Concept Lattice Diagram
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Biclustering

Definition 1 If (g,m) € I, then (m’, g") is called an object-attribute or oa-

bicluster with density p(m’,q') = |f'ﬂ£:jl|'hl};§'| )|
g
Geometrical inerpretation / A -|

— —




Biclustering Example

Car | House | Laptop | Bicycle
Kate X X
Mike | x X
Alex X X
David X X X

Since (House, David) is in the context
(House', David')= ({Alex, David}, {House,Laptop, Bicycle})
p(House', David')=5/6




Biclustering properties

 Number of all biclusters for a context (G,M, /)
not greater than |/| vs 2mnlGLIMI} formal
concepts. Usually |/| « 2mintlGLIMI} especially

for sparse contexts.

* Probably dense biclusters (p(bicluster)= p,,..)
are good representation of communities,
because all users inside the extent of every
dense bicluster have almost all interests from
Its intent.



Triadic FCA and Folksonomies

Definition 1. Triadic Formal Context is a quadruple (G, M, B, Y ), where G is a
set of (formal) objects, M is a set of (formal) attributes, B is a set of conditions,
and Y < G xM xB is the incidence relation which shows that objectg € G
posseses an attribute m € M under condition.

Example. Folksonomy
as triadic context (U, T, R, Y),
where

U is a set of users
T is a set of tags

R is a set of resources




Concept forming operators in triadic case

Table 1. Prime and double prime operators of 1-sets

Prime operators of
l-sets

Their double prime
counterparts

m’ = { (g.b) |(g,m.b) €Y}

g ={ (m,b) |(g.m.,b) €Y}

b = { (9,m) |(g,m,b) € Y}

m"” ={m |(g,b) em’ and (g,m,b) €Y}
g'={g|(mb) g’ and (g.m.,b)eY}

b= [2 (g, m) €b and (g, m,b) e Y}

To define triclusters we propose box operators

g~ ={g: | (9i,b:) € m or (gi,m;) € V)
m= = {m; | (my,b;) € ¢’ or (g;,m;) €V}
b2 = { b; | (g:, b)) € m' or (ms,b;) € ¢'}.



Triclustering
[Ignatov et al., 2011]

Let K = (G, M, B,Y) be a triadic context. For a certain triple (¢, m,b) € Y, the
triple T = (g, m, b) is called a tricluster.
The density of a certain tricluster (A, B, C') of a triadic context K = (G, M, B,Y)

is given by the fraction of all triples of Y in the tricluster, that is p(A, B,C') =
INAxBxC|
A[[B]|C]

Table 2. A toy example with Bibsonomy data for users {ui, us, us}, resources {ri,ra, ra}
and tags {t1,t2,ta}

t1 ta 13 t1 ta i3 t1 ta i3

Uq * % Uq :w: * % Uq :w: * %

uz | X % % w2 | X % uz | X X %
ug | % X X ug | X X ug | X
-r‘l o ra

T = ({u1,u2,us}, {t1,t2,t3}, {r1,r2,73}) with p = 0.89

One dense tricluster VS 33 =27 formal triconcepts



Pseudo Triclustering for Social
Networks

Let Ky = (U, I,X C U xI) be a formal context which describes what interest
i € I a particular user u € U has. Similarly, let Ko = (U,G,Y CU x G) be a
formal context which indicates what group g € G user u € U belongs to.

We can find dense biclusters as (users,interesets) pairs in Ky using oa-
biclustering algorithm which is described in Ignatov et. al (2010). These biclus-
ters will be exactly groups of users that have similar interests. In the same way
we can find communities of users which belong to similar groups of Vkontakte
social network as dense biclusters (users, groups).

To this end we need to mine a (formal) tricontext Kyjq = (U, I,G,Z C U x
I x G), where (u,i,g) isin Z iff (u,i) € X and (u,g) € Y. A partlcular tricluster

has a form Ty = (i* Ng¥ ,u™,u") for every (u, g,i) € Z with J%(Egi > O, where
@ is a predefined threshold hetween 0 and 1.



Formal context (Uy;, I, X)
(minimal density py;)

Algorithm

Formal context (ng, G, Y)
(minimal density py, )

Set of biclusters
Bicl,,

Biclusters’ extent similarity u = C

]

Set of pseudo-triclusters
(Possible constraint: pgpg = Pyin)

Set of biclusters
Bicly,



Algorithm

Let Bicl,, be a set of user-interest biclusters and Bicl,. be a set of
user-group biclusters.

For each (Uy;I) € Bicly, and (U, G) € Bicly, triple
(Uul- N ng,I,G) is added to triclusters’ set if Uy,; NU,, # @ and

U, :NU
_ [aUug| o - 0o
|UniVUyg]

Thus, u is used as a measure of quality of these pseudo-triclusters.

Another measure is an average density of biclusters:

PL(Uyi)]+p[(Uye,G)]
x :
Test setting: Intel Core i7-2600 system with 3.4 GHz and 8 GB RAM
Constraints for the formal contexts used: p = 0.5.




Data

Pseudo-triclustering algorithm was tested on the data of
Vkontakte, Russian social networking site. Student of two major
technical and two universities for humanities and sociology were

considered:

153985 46312 95619 102046




Biclustering results
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Pseudo triclustering results
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Pseudo triclustering results
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Examples. Biclusters

* p=83,33% Gen. pair: {3609, home}
G: {3609, 4566} M: {family, work, home}

* p=83,33% Gen. pair: {30568, orthodox
church}

G: {25092, 30568} M: {music, monastery,
orthodox church}

* p=100% Gen. pair: {4220, beauty}
G: {1269, 4220, 5337, 20787} M: {love, beauty}



Examples. Tricluster

* Measures:

1 : 100%;

Average p : 54,92%
Users: {16313, 24835}

Interests: {sleeping, painting, walking, tattoo,
hamster, impressions}

Groups: {365, 457, 624,..., 17357688, 17365092}



Conclusion

* |tis possible to use pseudo-triclustering method
for tagging groups by interests in social
networking sites and finding tricommunities. E.g.,
if we have found a dense pseudo-trciluster
(Users, Groups, Interests) we can mark Groups by
user intersts from Interests.

* |t also make sense to use biclusters and tricluster
for making recommendations. Missing pairs and
triples seem to be good candidates to
recommend potentionaly interesting users,
groups and interests.



Conclusion

 The approach needs some improvements and fine tune
in order to increase the scalability and quality of
communities

— Strategies for approximate density calculation

— Choosing a good thresholds for n-clusters density and
communities similarity

— More sophisticated quality measures like recall and
precision in Information Retrieval

* |t needs comparison with other approaches like iceberg
lattices (Stumme), stable concepts (Kuznetsov), fault-
tolerant concepts (Boulicaut) and different n-clustering
techniques from bioinformatics (Zaki, Mirkin, etc.)

e Current version also requires expert’s feedback on the
output data analysis and interpretation



Questions?



