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Introduction - High Dimensional Data

Massive amounts of high-throughput data can be collected
simultaneously due to technological advances.

Each observation is characterized with thousands of features (p).

MRI and FMRI images
Gene-expression microarrays
Spectroscopic studies
Web documents

Expensive measurement costs limit the size (n) of most datasets to
tens or low hundreds.

High Dimension Low Sample Sizes (HDLSS) - p >> n.
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Introduction - Classification

Classification is a supervised machine learning technique that maps
some combination of input variables into pre-defined classes.

Classification models estimate a decision rule from training data that
helps to predict the class of an unknown sample.

Classification problems appear in several applications:

Discrimination of cancer cells from non-cancer cells
Web-document classification
Categorization of images in Remote-Sensing applications

Several classification methods exist in literature like,

Support Vector Machines
Neural Networks
Logistic Regression
Linear Discriminant Analysis
Random Forests
Adaboost
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Classification on HDLSS datasets

The high-dimensional data poses significant challenges to standard
classification methods:

Poor generalization ability - curse of dimensionality
Geometric distortion - equidistant points
Unreliable parameter estimation - class covariance

G.V. Trunk. A Problem of Dimensionality: A Simple Example - IEEE
Transactions on Pattern Analysis and Machine Intelligence (1979)
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Motivation & Significance

Poor performance of standard classification methods.

Continued technological advances.

Biomarker-type information in biomedical applications.

Scalable and efficient classification models with good generalization
ability along with model interpretability for high dimensional data

problems.
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Dimensionality Reduction

The dimensionality reduction techniques decrease the complexity of
the classification model and thus improve the classification
performance.

Dimensionality reduction techniques can be categorized as:

Feature Extraction

Transform the input data into a set of meta-features that extract
relevant information from the input data for classification.
Limited model interpretability.

Feature Selection

Select a subset of features based on some optimality criteria
Advantage of model interpretability by a domain expert.
Biomarker-type information in biomedical applications.
Combinatorial optimization.
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Feature Selection

Feature Selection can be broadly classified as:

Filter methods
Wrapper methods
Embedded methods

Y. Saeys, I. Inza, & P. Larranaga. A review of feature selection techniques
in bioinformatics - Bioinformatics (2007)
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Filter Methods

Feature subsets are ranked using a feature relevance score and
low-ranking features are removed.

Filter methods are independent of the classification method.

Filter methods can be broadly categorized as:
Univariate techniques

Computationally efficient
Scalability
Ignore feature dependencies

Multivariate techniques

Feature dependencies
NP-hard problem
Higher computational complexity
Prone to over-fitting
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Wrapper Methods

Wrapper methods integrate the classifier hypothesis search within the
feature subset search.

A search procedure is defined in the feature space to select subsets of
features.

A specific feature subset is evaluated by training and testing a
specific classification model.

Advantages:

Feature dependencies
Interaction between feature subset selection and model selection

Disadvantages:

Over-fitting
Computationally intensive
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Embedded Methods

Embedded methods also integrate the classifier hypothesis search
within the feature subset search.

Feature selection is part of model building and is generally achieved
by regularization techniques.

Specific to a classification model.

Selects common subset of features for all classes. - global sparsity

P.M.Pardalos (CAO, LATNA) Sparse Classification Models December 7, 2012 10 / 67



Current Research

Sparse Proximal Support Vector Machines (sPSVMs)

Fisher-based Feature Selection Combined with Support Vector
Machines to Characterize Breast Cell Lines using Raman
Spectroscopy.
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FFS-SVM

Fisher-based Feature Selection Combined with Support Vector
Machines to Characterize Breast Cell Lines using Raman

Spectroscopy
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FFS-SVM

Introduction - Cancer

Cancer remains one the leading causes of death throughout the world.

Breast cancer is the most common type of cancer in women,
excluding skin cancers.

In 2009, approximately 40,107 women died from breast cancer, and
over 250,000 new cases were diagnosed.

Lack of cell and tumor specific treatments - personalized medicine.

Classify and characterize cell types for the selection of therapies for
use in-vivo.

Extract biomarker-type information that contribute to the
differences between cell-types.
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FFS-SVM

Introduction - Raman Spectroscopy

Raman Spectroscopy has demonstrated the potential to significantly aid in
the research, diagnosis and treatment of various cancers.
Raman spectroscopic analysis of biological specimens provides a spectral
fingerprint rich in molecular compositional information without disrupting
the biological environment.

http://w4.phys.uvic.ca/medphys/people/AJ/jirasek.html
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FFS-SVM

Research Objective

Construct a classification framework that would combine feature
selection and classification to characterize Breast cell lines using Raman

Spectroscopy.
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FFS-SVM

Data Collection

Raman spectra of five breast cell lines MCF7, BT474,
MDA-MB-231 (cancer cell lines) and MCF10A,MCF12A
(non-cancer cell lines) are collected by Renishaw 2000 InVia
Spectrometer System coupled to a Leica Microscope.

25-40 spectra (n) were collected from each cell line.

Apparent outliers were removed by visual inspection.
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FFS-SVM

Data Preprocessing

X-axis
standardization

Savitsky-Golay
Smoothing

Background
Subtraction

Normalization
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Each spectrum is characterized by 1200 measurements (p) between
wavenumbers 601 cm−1 and 1800 cm−1

Raman spectral datasets (p >> n) can be characterized as HDLSS
datasets.
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FFS-SVM

Fisher-based Feature Selection (FFS)

Several comparative studies have been performed on univariate and
multivariate filter techniques for gene expression datasets.

Surprisingly, it has been shown that the univariate selection techniques
yield consistently better results than multivariate techniques.

The differences are attributed to the difficulty in extracting the
feature dependencies from limited sample sizes.

In a Raman spectrum, most biologically relevant molecular species
correspond to the peaks.

A univariate filter-based technique based on Fisher Criterion called
Fisher-based Feature Selection (FFS) is developed and involves
the following stages:

Peak finding
Peak coalescing
Feature ranking
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FFS-SVM

FFS - Peak Finding

The set of peaks S for a specific cell line are defined as local maxima
given by:

S = {x∗|f (x∗) ≥ f (x) ∀x ∈ Nε(x∗)}, (1)

where x∗ represents the peak location, f (x∗) is the corresponding
intensity value of the average spectrum and Nε(x∗) represents an
ε-neighborhood around x∗.
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FFS-SVM

FFS - Peak Coalescing

The number of clusters NC is defined as:

NC = argmin
c

c∑
i=1

∑
xj∈Ci

(xj − µi )2 i = 1, 2, . . . , c (2)

Ci represents the cluster i , µi is the mean of cluster i , xj is the peak j
assigned to cluster i .
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FFS-SVM

FFS - Feature Ranking

The features are ranked based on Fisher Criterion.

For a given feature i , the fisher score is defined as:

Ji =
(µi1 − µi2)2

(s i1)2

n1
+

(s i2)2

n2

∀i ∈ S , (3)

where, µij , (s ij )
2 and nj are the sample mean, variance and the

number of data samples in class j and S is the set of selected peaks.

Fisher scores would be high for features having high mean inter-class
separation while the total within-class variance is small.

Fisher-based Feature Selection (FFS)
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Classification - Support Vector Machines Introduction

Support Vector Machines (SVMs)

Binary classifier

Linearly separable datasets

Margin maximization

V. Vapnik. The Nature of Statistical Learning Theory - Data Mining and
Knowledge Discovery (1995).
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Classification - Support Vector Machines SVMs

SVMs

Consider binary classification problem with the training set S defined
as:

S = {(xi, yi )|xi ∈ <p, yi ∈ {−1, 1}}, i = 1, 2, ...n (4)

Let the separating hyperplane P that maximizes the margin be
defined as:

P = {x ∈ <p | 〈w, x〉 − b = 0} (5)

The optimal (w,b) is found by solving the following optimization
problem:

min
w,b

1

2
||w ||2

s.t. yi (〈w, xi〉 − b) ≥ 1 ∀i = 1, 2, . . . , n

(6)
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Classification - Support Vector Machines SVMs

C-SVMs

SVMs are susceptible to the presence of outliers.

Linear separation in real-world datasets.

SVMs are modified as:

min
w,b,ξ

1

2
||w||2+C

n∑
i=1

ξi

subject to yi (〈w, xi〉 − b) ≥ 1− ξi , ξi ≥ 0, ∀i = 1, 2, . . . , n

(7)

C-Support Vector Machines (C-SVMs)
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Classification - Support Vector Machines SVMs

Multi-class SVMs

Two general approaches to extend SVMs to multi-class problems:
One-against-One (OAO) - n(n − 1)/2 binary classification tasks
One-against-All (OAA) - n binary classification tasks

Instead, SVMs is extended using hierarchical clustering.

An agglomerative hierarchical cluster tree is generated from the
pairwise euclidean distances of the average spectra of cell lines.

Four binary classification
tasks:

Cancer Vs. Non-Cancer
MCF7 Vs. Rest Cancer
MCF10A Vs. MCF12A
MDA-MB-231 Vs.
BT474

4 5 6 7 8 9 10

BT474

MDAMB231

MCF7

MCF10A

MCF12A

Distance/Arbitr. Units
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Classification - Support Vector Machines SVMs

FFS-SVMs Classification framework

Given any two cell lines, the classification framework is built as:

Spectral Preprocessing

Fisher-based Feature Selection

Peak Finding
Peak Coalescing
Feature Ranking

C-SVMs Classification

Cross Validation using repeated random sub-sampling (100
repetitions).

FFS-SVMs Classification framework
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Classification - Support Vector Machines SVMs

Classification Accuracies

Classification Task # of selected features Accuracy (%) Sensitivity (%) Specificity (%)
Cancer Vs Non-Cancer 38 99.5 99.8 98.6

MCF7 Vs Rest-Cancer 32 99.3 96.6 100

BT474 Vs MDA-MB231 42 97.4 91.7 100

MCF10A Vs MCF12A 42 91 97.1 62

Table: Sensitivity, Specificity and average classification accuracy for the four
binary classification tasks obtained from C-SVMs and validated using random
sub-sampling(100 repetitions).
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Classification - Support Vector Machines SVMs

Accuracy Comparison

Cancer vs. Non-Cancer MCF7 vs. Rest-Cancer BT474 vs. MDA-MB231 MCF10A vs. MCF12A

SVMs
Accuracy(%) 99.2 100 97.6 93.4

Sensitivity(%) 100 100 94.8 100

Specificity(%) 99.4 100 99.5 80.6

PCA-SVMs
Accuracy(%) 99.4 98.4 98.6 92.8

Sensitivity(%) 100 95.1 96.4 99.3

Specificity(%) 98.2 100 99.5 72.9

PCA-LDA
Accuracy(%) 99.5 98.3 96.4 85.8

Sensitivity(%) 99.9 98.9 88.2 82.8

Specificity(%) 98.6 97.6 99.3 96.6

FFS-SVMs
Accuracy(%) 97.3 98.9 98.0 89.0

Sensitivity(%) 100 96.7 93.4 97.6

Specificity(%) 93.3 100 100 62.3

Table: Sensitivity, Specificity and average classification accuracies of four
frameworks SVMs, PCA-SVMs, PCA-LDA and FFS-SVMs for the four binary
classification tasks. The classification accuracies are obtained from
cross-validation using random subsampling(100 repetitions).
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Classification - Support Vector Machines SVMs

Selected Features

Cancer vs. Non-Cancer MCF7 vs. Rest-Cancer BT474 vs. MDA-MB231 MCF10A vs. MCF12A
1047 1341 1049 1047

811 986 1063 1320

823 1322 760 1156

765 1658 830 1174

1450 1405 1085 1211

1660 1066 1318 941

829 622 1518 811

1086 1159 604 1338

1621 1799 1129 719

785 1316 1661 967

Table: The top 10 features selected by FFS for the four binary classification tasks.
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Classification - Support Vector Machines SVMs

Biological Relevance of Selected Features

Cancer Vs. Non-Cancer
Five of the top ten discriminative features (811, 823, 765, 829, and
785 cm−1) all correlate to DNA and RNA vibrational modes.
The features 1086, 1450, 1621, and 1660 cm−1 indicate differences in
cell membrane composition and cell morphology.

MCF7 Vs. Rest-Cancer
The majority of the features correlate to vibrations observed from
structural proteins and the secondary protein structure.

MCF10A Vs. MCF12A
The analysis of features reveal that the most significant differences may
be related to lipid composition.

MDA-MB-231 Vs. BT474
Several of the features listed have assignments related to fatty acids
and lipids.
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Sparse Proximal Support Vector Machines

Sparse Proximal Support Vector Machines (sPSVMs)
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Sparse Proximal Support Vector Machines (sPSVMs) Motivation

Motivation

Several embedded methods like Regularized Logistic
Regression(RLRs), Sparse Support Vector Machines (S-SVMs) etc.,
induce global sparsity.

Class-specific features - local sparsity.

Biomarker-type information in biomedical applications.

Research Objective:

Construct a new binary classifier that incorporates class-specific feature
selection.

Sparse Proximal Support Vector Machines (sPSVMs)

P.M.Pardalos (CAO, LATNA) Sparse Classification Models December 7, 2012 32 / 67



Proximal Support Vector Machines (PSVMs) Introduction

Proximal Support Vector Machines (PSVMs)

Binary Classifier

Non-parallel hyperplanes

Closest to one class and farthest
from the other class

Two generalized eigenvalue
problems

O. L. Mangasarian & E. W. Wild, Multisurface Proximal Support Vector
Machine. Classification via Generalized Eigenvalues - IEEE Transactions on
Pattern Analysis and Machine Intelligence (2005)
M. R. Guarracino, C. Cifarelli, O. Seref & P. M. Pardalos, A Classification
Method based on Generalized Eigenvalue Problems - Optimization methods and
Software (2005)
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Proximal Support Vector Machines (PSVMs) PSVMs formulation

PSVMs formulation

Let A ∈ <m×p and B ∈ <n×p represent the two classes. The hyperplane
close to class A is given by:

PA = {x ∈ <p | 〈wA, x〉 − bA = 0} (8)

The hyperplane PA is found by solving the following optimization problem:

min
wA∈<p ,bA∈<

‖AwA − ebA‖2

‖BwA − ebA‖2
(9)
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Proximal Support Vector Machines (PSVMs) PSVMs formulation

PSVMs formulation

Adding Tikhonov regularization term to (9),

min
wA∈<p ,bA∈<

‖AwA − ebA‖2+ν‖[w ′
A bA]‖2

‖BwA − ebA‖2
(10)

ν is the regularization term.
Let,

GA = [A − e]′[A − e] + νI ,HB = [B − e]′[B − e], z ′ = [w ′A bA]
(11)

Re-writing (10),

min
z∈<p+1

r(z) =
z′GAz

z′HBz
(12)

Rayleigh Quotient Problem
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Proximal Support Vector Machines (PSVMs) PSVMs Solution

Rayleigh Quotient Properties

min
z∈<p+1

r(z) =
z′Gz

z′Hz
(13)

Boundedness:
Assuming H is positive definite, r(z) is bounded between [λ1, λp+1],
where λ1 and λp+1 are the minimum and maximum eigenvalues of
the following generalized eigenvalue problem GEV(G,H):

Gz = λHz (14)

Stationarity:

5r(z) =
Gz− r(z)Hz

z′Hz
(15)

The stationary points are given by the eigenvectors of the generalized
eigenvalue problem (14).
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Proximal Support Vector Machines (PSVMs) PSVMs Solution

PSVMs Solution - Hyperplane PA

min
z∈<p+1

r(z) =
z′GAz

z′HBz
(16)

or,

max
z∈<p+1

r(z) =
z′HBz

z′GAz
(17)

The solution is given by the eigenvector corresponding to the maximum
eigenvalue of the following generalized eigenvalue problem GEV(HB ,
GA):

HBz = λGAz (18)
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Proximal Support Vector Machines (PSVMs) PSVMs Solution

PSVMs Solution - Hyperplane PB

Similarly, the hyperplane PB (closest to class B and farthest from class A)
given by:

PB = {x ∈ <p | 〈wB, x〉 − bB = 0} (19)

can be found by solving for the eigenvector corresponding to maximum
eigenvalue of the following generalized eigenvalue problem GEV(HA,
GB):

HAz = λGBz (20)

GB = [B − e]′[B − e] + νI ,HA = [A − e]′[A − e], z ′ = [w ′B bB ]
(21)
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Sparse Proximal Support Vector Machines Introduction

Sparse Proximal Support Vector Machines (sPSVMs)

sPSVMs are constructed by inducing sparsity in the hyperplanes
obtained from PSVMs.

Sparsity is defined as the optimal vectors z∗A and z∗B having only few
non-zero components.

The non-zero coefficients of optimal sparse vectors ẑ∗A and ẑ∗B may be
interpreted as class-specific features.
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Sparse Proximal Support Vector Machines Regularization in Linear Regression

Regularization in Linear Regression (LR)

Sparsity via regularization has been well studied in the context of
linear regression.

Given a dataset S defined as:

S = {(xi, yi ) | xi ∈ <p, yi ∈ <}, i = 1, 2, ...n (22)

the linear regression problem finds a coefficient vector w that best
maps the input vector x to the output y .

The following least squares (LS) problem is solved to obtain w:

min
w

||y − X w||2 (23)

X ∈ <n×p, y ∈ <n,w ∈ <p

P.M.Pardalos (CAO, LATNA) Sparse Classification Models December 7, 2012 40 / 67



Sparse Proximal Support Vector Machines Regularization in Linear Regression

Regularization in Linear Regression

Sparsity is induced in linear regression problems via l1-norm

min
w

||y − X w||22+λ‖w‖1 (24)

Well known efficient algorithms like Least Angle Regression
(LARS) exist in literature to solve (24)

B. Efron, T. Hastie, I. Johnstone & R. Tibshirani, Least angle regression. -
The Annals of statistics (2004)

P.M.Pardalos (CAO, LATNA) Sparse Classification Models December 7, 2012 41 / 67



Sparse Proximal Support Vector Machines Regularization in Linear Regression

sPSVMs - Idea

Idea:

Transform PSVMs to an equivalent least-squares (LS) problem
and induce sparsity via l1-norm
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Sparse Proximal Support Vector Machines Regularization in Linear Regression

Equivalence between Eigendecomposition and Linear
Regression

Theorem 1: Consider a real matrix X ∈ <n×p with rank r ≤ min(n, p).
Let matrices V ∈ <p×p and D ∈ <p×p satisfy the following relation:

V T (XTX )V = D (25)

where, D = diag(σ2
1, σ

2
2, . . . σ

2
r , 0, 0, . . . , 0)p×p. Assume

σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
r . For the following least-squares problem,

min
α,β

n∑
i=1

||Xi − αβTXi ||2+λβTβ

subject to αTα = 1

(26)

βopt ∝ V1, where Xi is the ith− row of matrix X and V1 is the eigenvector
corresponding to the largest eigenvalue σ2

1.

H. Zou, T. Hastie, & R. Tibshirani. Sparse Principal Component Analysis.
- Journal of computational and graphical statistics (2006).
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Sparse Proximal Support Vector Machines Regularization in Linear Regression

PSVMs via Least-Squares Approach

Consider the generalized eigenvalue problem in PSVMs given by:

HBz = λGAz (27)

GA = [A −e]′[A −e]+νI ,HB = [B −e]′[B −e], z ′ = [w ′A bA]
(28)

Assuming GA and HB are positive-definite, the cholesky
decomposition of the matrices give:

GA = LALT
A = UT

A UA (29)

HB = LBLT
B = UT

B UB (30)

LA, LB are lower triangular matrices, and UA,UB are upper triangular
matrices.
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Sparse Proximal Support Vector Machines Regularization in Linear Regression

Relation between generalized eigenvalue problems and
SVD

Substituting (29) and (30) in (27),

HBz = λGAz (31)

LBLT
B z = λUT

A UAz (32)

U−TA LBLT
B z = λUAz (33)

U−TA LBLT
B U−1

A UAz = λUAz (34)

(LT
B U−1

A )T (LT
B U−1

A )UAz = λUAz (35)

Let, X̂ = LT
B U−1

A and v = UAz

(X̂T X̂ )v = λv (36)
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Sparse Proximal Support Vector Machines Regularization in Linear Regression

PSVMs via Least-Squares Approach

PSVMs can now be solved by an equivalent least squares problem.

Using Theorem 1 and substituting X = LT
B U−1

A , β = UAβ̂ in (26),

min
α,β̂

n∑
i=1

||(LT
B U−1

A )i − αβ̂TUT
A (LT

B U−1
A )i ||2+λβ̂TUT

A UAβ̂

s.t. αTα = 1

(37)

Substituting UT
A UA = GA and (LT

B U−1
A )i = U−TA UB,i ,

min
α,β̂

n∑
i=1

||U−TA UB,i − αβ̂TUB,i ||2+λβ̂TGAβ̂

s.t. αTα = 1

(38)
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Sparse Proximal Support Vector Machines Regularization in Linear Regression

PSVMs via Least-Squares Approach

Re-writing in a nicer way,

min
α,β̂

||UBU−1
A − UB β̂α

T ||2+λβ̂TGAβ̂

s.t. αTα = 1
(39)

β̂opt is proportional to z∗A representing the hyperplane PA in PSVMs.

PSVMs-via-LS
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Sparse Proximal Support Vector Machines Solution Strategy

Solution Strategy

min
α,β̂

||UBU−1
A − UB β̂α

T ||2+λβ̂TGAβ̂

s.t. αTα = 1
(40)

Strategy:

The optimization problem is solved by alternating over α and β̂.
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Sparse Proximal Support Vector Machines Solution Strategy

Solving for α

The PSVMs-via-LS is given by:

min
α,β̂

||UBU−1
A − UB β̂α

T ||2+λβ̂TGAβ̂

s.t. αTα = 1
(41)

For a fixed β̂, the following optimization problem is solved to obtain
α.

min
α,β̂

||UBU−1
A − UB β̂α

T ||2

s.t. αTα = 1
(42)
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Sparse Proximal Support Vector Machines Solution Strategy

Solving for α

Expanding the objective function,

(UBU−1
A − UB β̂α

T )T (UBU−1
A − UB β̂α

T ) (43)

≈ −2αTU−TA HB β̂ + αTαβ̂HB β̂ (44)

Subsituting αTα = 1, the optimization problem in (42) reduces to:

max
α

αTU−TA HB β̂

s.t. αTα = 1
(45)

An analytical solution for this problem exists and the αopt is given by,

αopt =
U−TA HB β̂

‖U−TA HB β̂‖
(46)
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Sparse Proximal Support Vector Machines Solution Strategy

Solving for β̂

The PSVMs-via-LS is given by:

min
α,β̂

||UBU−1
A − UB β̂α

T ||2+λβ̂TGAβ̂

s.t. αTα = 1
(47)

Let Â be an orthogonal matrix such that [α; Â] is p × p orthogonal.
Then the objective function can be written as,

||UBU−1
A − UB β̂α

T ||2+λβ̂TGAβ̂ (48)

≈ tr(UBU−1
A − UB β̂α

T )T (UBU−1
A − UB β̂α

T ) (49)

≈ tr([α; Â][α; Â]T (UBU−1
A − UB β̂α

T )T (UBU−1
A − UB β̂α

T ) (50)

≈ tr([α; Â]T (UBU−1
A − UB β̂α

T )T (UBU−1
A − UB β̂α

T )[α; Â]) (51)

≈ tr((UBU−1
A − UB β̂α

T [α; Â])T (UBU−1
A − UB β̂α

T [α; Â])) (52)
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Sparse Proximal Support Vector Machines Solution Strategy

Solving for β̂

≈ tr([αT ; ÂT ]U−TA UT
B UBU−1

A [α; Â]− [αT ; ÂT ]U−TA UT
B UB β̂α

T [α; Â]

− [αT ; ÂT ]αβ̂TUT
B UBU−1

A [α; Â] + [αT ; ÂT ]αβ̂TUT
B UB β̂α

T [α; Â])

≈ tr([αT ; ÂT ]U−TA UT
B UBU−1

A [α; Â]− [αT ; ÂT ]U−TA UT
B UB β̂

− β̂TUT
B UBU−1

A [α; Â] + β̂TUT
B UB β̂)

≈ tr((UBU−1
A [α; Â])T (UBU−1

A [α; Â]) + (UB β̂)T (UB β̂)

− 2(UB β̂)TUBU−1
A [α; Â])

≈ tr((UBU−1
A [α; Â]− UB β̂)T (UBU−1

A [α; Â]− UB β̂))

≈ ||UBU−1
A [α; Â]− UB β̂||2

≈ ||UBU−1
A α− UB β̂||2 + ||UBU−1

A Â||2
(53)
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Sparse Proximal Support Vector Machines Solution Strategy

Solving for β̂

For a fixed α, utilizing (53), the optimization problem in (47) reduces
to ridge-regression:

min
β
||UBU−1

A α− UB β̂||2+λβ̂TGAβ̂ (54)

An analytical solution exists and β̂opt can be found by:

β̂opt = (HB + λGA)−1HBU−1
A α (55)
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Sparse Proximal Support Vector Machines Solution Strategy

Algorithm

Algorithm 1 PSVMs-via-LS (HB ,GA)

1. Initialize β̂.
2. Find the upper triangular matrix UA from the cholesky decomposition
of GA.
3. Find α from the following relation:

α =
U−TA HB β̂

‖U−TA HB β̂‖
(56)

4. Find β̂ as follows:

β̂ = (HB + λGA)−1HBU−1
A α (57)

5. Alternate between 3 and 4 until convergence.
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Sparse Proximal Support Vector Machines sPSVMs via LS

Sparse Proximal Support Vector Machines (sPSVMs)

The PSVMs-via-LS is given by:

min
α,β̂

||UBU−1
A − UB β̂α

T ||2+λβ̂TGAβ̂

s.t. αTα = 1
(58)

Sparsity is introduced by adding l1-norm in the above problem.

min
α,β̂

||UBU−1
A − UB β̂α

T ||2+λβ̂TGAβ̂ + δ||β̂||1

s.t. αTα = 1
(59)

Sparse Proximal Support Vector Machines (sPSVMs)

The sPSVMs (59) is again solved by alternating over α and β̂.
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Sparse Proximal Support Vector Machines sPSVMs via LS

Solving for α

The sPSVMs is given by:

min
α,β̂

||UBU−1
A − UB β̂α

T ||2+λβ̂TGAβ̂ + δ||β̂||1

s.t. αTα = 1
(60)

For a fixed β̂, an analytical solution exists for α and is given by,

αopt =
U−TA HB β̂

‖U−TA HB β̂‖
(61)
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Sparse Proximal Support Vector Machines sPSVMs via LS

Solving for β̂

For a fixed α, utilizing (52), sPSVMs in (59) can be written as:

min
β
||UBU−1

A α− UB β̂||2+λβ̂TGAβ̂ + δ||β̂||1 (62)

Expanding (62),

min
β̂

(UBU−1
A α− UB β̂)T (UBU−1

A α− UB β̂) + λβ̂TGAβ̂ + δ||β̂||1

min
β̂

− αTU−TA HT
B β̂ − β̂THBU−1

A α + β̂THB β̂ + λβ̂TGAβ̂ + δ||β̂||1

min
β̂

β̂T (HB + λGA)β̂ − αTU−TA HT
B β̂ − β̂THBU−1

A α + +δ||β̂||1

min
β̂

β̂T (HB + λGA)β̂ − 2αTU−TA HB β̂ + δ||β̂||1

(63)
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Sparse Proximal Support Vector Machines sPSVMs via LS

Solving for β̂

Assuming,
W T = [UB

√
(λ)UA], yT = [UBU−1

A α 0],

min
β̂

β̂TW TW β̂ − 2yTW β̂ + δ||β̂||1 (64)

LASSO Regression

Efficient algorithms like Least Angle Regression (LARS) exist to
solve (64).
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Sparse Proximal Support Vector Machines sPSVMs via LS

Algorithm

Algorithm 2 sPSVMs (HB ,GA)

1. Initialize β̂
2. Find the upper triangular matrix UA and UB from the cholesky de-
composition of GA and HB .
3. Find α from the following equation:

α =
U−TA HB β̂

‖U−TA HB β̂‖
(65)

4. Construct W and y as follows:

W = [UB

√
(λ)UA]T , y = [UBU−1

A α 0]T (66)

and solve the following LASSO regression to obtain β̂:

min
β̂

β̂TW TW β̂ − 2yTW β̂ + δ||β̂||1 (67)

5. Alternate between 3 and 4 until convergence.
P.M.Pardalos (CAO, LATNA) Sparse Classification Models December 7, 2012 59 / 67



Sparse Proximal Support Vector Machines Preliminary Results

Results

sPSVMs is compared with other classification methods SVMs, LDA
and PSVMs on publicly available datasets.

10-fold cross validation is performed and the average accuracies are
reported.

For each fold, λ is chosen as zero and a grid search is performed over
different values of ν and δ to choose the best values that yield the
highest classification accuracy.

Final model for testing is chosen as the one that yields the highest
accuracy among the 10 folds.
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Sparse Proximal Support Vector Machines Preliminary Results

Results - Example (Spambase dataset)

The spambase dataset consists of 4601 samples and 57 features with
1813 samples in class 1 and 2788 samples in class 2.

ν and δ are varied in logspace between 10−3 − 104 and 10−5 − 1
respectively.

Fold Nu Delta Accuracy* # FeaturesA # FeaturesB

1 100 0.1 72.6% 14 4

2 10−3 10−5 69.8% 58 55

3 0.01 0.1 71.5% 17 7

4 100 10−5 73.9% 55 37

5 0.01 0.1 80.9% 14 4
6 10−3 0.1 76.3% 15 6

7 10−3 0.1 75% 18 4

8 100 0.1 73.5% 15 4

9 100 0.01 73.7% 28 11

10 100 0.01 74.6% 28 11

Table: Classification accuracies of the 10-folds for Spambase dataset
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Sparse Proximal Support Vector Machines Preliminary Results

Results

All the classification methods have been implemented in MATLAB.
LibSVM package is used for SVMs.
LDA is solved using the ’classify’ function in MATLAB.
PSVMs are solved using the ’eig’ function in MATLAB.
LARS package provided by the authors on their website is used for
sPSVMs.

Dataset Dimensions SVMs LDA PSVMs sPSVMs # featuresA # featuresB

WDBC 569*30 96.8% 95.6% 95.4% 97.5% 6 11

Spambase 4601*57 77.1% 90.7% 71.6% 78.6% 14 4

Ionosphere 351*34 91.2% 88.3% 84.6% 85.5% 2 2

WPBC 198*33 84.9% 72.2% 77.7% 82.8% 7 9

Mushroom 8124*126 98.6% 99.2% 100% 100% 42 41

German 1000*20 76.4% 71.8% 68.7% 71.7% 1 2

Waveform 5000*21 88.6% 82.9% 78.5% 78% 8 14

Table: Classification accuracies for different classification methods on publicly
available datasets.

P.M.Pardalos (CAO, LATNA) Sparse Classification Models December 7, 2012 62 / 67



Sparse Proximal Support Vector Machines Preliminary Results

Results - HDLSS datasets

sPSVMs has been tested on three publicly available HDLSS datasets.

The results are compared with other classification frameworks that
combine dimensionality reduction techniques with a standard
classification model.

The chosen dimensionality reduction techniques are Principal
Component Analysis (PCA), Fisher-based Feature Selection
(FFS) and Correlation-based Feature Selection (CFS).

The number of principal components in PCA are chosen such that
they account for 80% of the total variance in data.

The standard classification methods tested are SVMs, LDA and
PSVMs.

Classification accuracies are obtained using 10-fold cross validation.
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Sparse Proximal Support Vector Machines Preliminary Results

Results - HDLSS datasets

Dataset Dimensions SVMs PSVMs sPSVMs # featuresA # featuresB

Colon 62*2000 75.9% 87.1% 89% 13 8

DBWorld 64*4702 88.1% 90.7% 92.4% 1 2

DLBCL 77*5469 94.8% 81.8% 81.8% 2 7

Table: Classification accuracies for publicly available HDLSS datasets using
SVMs, PSVMs, and sPSVMs.

Colon dataset

SVMs PSVMs

FFS 92.4% 97%

CFS 83.9% 88.8%

PCA 90.7% 87.4%

DBWorld dataset

SVMs PSVMs

FFS 94.1% 97.1%

CFS 97.1% 97.1%

PCA 89.5% 82%

DLBCL dataset

SVMs PSVMs

FFS 96.3% 91.1%

CFS 98.8% 79.3%

PCA 96.3% 83.4%
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Sparse Proximal Support Vector Machines Preliminary Results

Results - HDLSS datasets

sPSVMs is compared with other embedded methods Regularized
Logistic Regression (RLR) and Sparse SVMs (S-SVMs) on the
HDLSS datasets.

Classification accuracies are obtained using a 10-fold cross validation.

Dataset RLR # features S-SVMs # features sPSVMs # featuresA # featuresB

Colon 83.9% 12 69.5% 16 89% 13 8

DBWorld 82.8% 9 82.6% 14 92.4% 1 2

DLBCL 96.1% 25 88.2% 12 81.8% 2 7

Table: Classification accuracies for different classification methods on publicly
available HDLSS datasets.
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