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Abstract. Recently concept lattices became widely used tools for intelligent data
analysis. In this paper, several algorithms that generate the set of all formal concepts
and diagram graphs of concept lattices are considered. Some modifications of well-
known algorithms are proposed. Algorithmic complexity of the algorithms is studied
both theoretically (in the worst case) and experimentally. Conditions of preferable
use of some algorithms are given in terms of density/sparseness of underlying formal
contexts. Principles of comparing practical performance of algorithms are discussed.

1. Introduction

Concept (Galois) lattices proved to be a useful tool in many applied domains:
machine learning, data mining and knowledge discovery, information retrieval, etc.
(Finn 1991, Carpineto and Romano 1996, Stumme et al. 1998, Ganter and
Kuznetsov 2000, Stumme et al. 2000). The problem of generating the set of all
concepts and the concept lattice of a formal context is extensively studied in the
literature (Chein 1969, Norris 1978, Ganter 1984, Bordat 1986, Buénoche 1990,
Dowling 1993, Kuznetsov 1993, Godin et al., 1995, Carpineto and Romano 1996,
Mephu Nguifo and Njiwoua 1998, Lindig 1999, Nourine and Raynaud 1999,
Stumme et al. 2000, Valtchev and Missaoui 2001). It is known that the number of
concepts can be exponential in the size of the input context (e.g. when the lattice
is a Boolean one) and the problem of determining this number is #P-complete
(Kuznetsov 1989, 2001). Therefore, from the standpoint of the worst-case complex-
ity, an algorithm generating all concepts and/or a concept lattice can be considered
optimal if it generates the lattice with polynomial time delay and space linear in the
number of all concepts (modulo some factor polynomial in the input size). On the
other hand, ‘dense’ contexts, which realise the worst case by bringing about
exponential number of concepts, may occur not often in practice. Moreover, various
implementation issues, such as dimension of a typical context, specificity of the
operating system used, and so on, may be crucial for the practical evaluation of
algorithms.
In this article, we consider several algorithms that generate all concepts and/or

concept lattice both theoretically and experimentally, for clearly specified data sets.
In most cases, it was possible to improve the original versions of the algorithms. We
present modifications of some algorithms and indicate conditions when some of
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them perform better than the others. Only a few known algorithms generating the
concept set construct the diagram graphs. We attempted to modify some algorithms
so that they can construct diagram graphs.
Algorithms considered in this paper are also employed in the JSM-method of

hypothesis generation (Finn 1991). In terms of Formal Concept Analysis (FCA)
(Ganter and Wille 1999), the main idea of the JSM-method is as follows: there is a
positive context and a negative context relative to a goal attribute. JSM-hypotheses
with respect to the goal attribute are intents of the positive context that are not
contained in intents of the negative context. Here, we are not going into details of
hypothesis generation (see Finn 1991, Ganter and Kuznetsov 2000) for details. It
suffices to mention that to generate JSM-hypotyheses, one needs to have an
algorithm that generates all concepts.
The paper is organized as follows. In section 2, we give main definitions and an

example. In section 3, we discuss the principles of comparing efficiency of algorithms
and make an attempt at their classification. In section 4, we give a short review of the
algorithms and analyze their worst-case complexity. In section 5, we present the
results of experimental comparison.

2. Main definitions

First, we give some standard definitions of Formal Concept Analysis (FCA) (Ganter
and Wille 1999).

Definition 1: A formal context is a triple of sets (G,M, I), where G is called a set of
objects, M is called a set of attributes, and I � G�M.

Definition 2: For A � G and B �M : A 0 ¼ fm 2Mj8geAðgImÞg;B 0 ¼ fg 2 G j
8m 2 BðgImÞg.

�X ! X 00 is a closure operator, i.e. it is monotonic ðX � Y ! X 00 � Y 00Þ, extensive
ðX � X 00Þ and idempotent ððX 00Þ 00 ¼ X 00Þ.

Definition 3: A formal concept of a formal context (G, M, I) is a pair (A, B), where
A � G;B �M;A 0 ¼ B, and B 0 ¼ A. The set A is called the extent, and the set B is
called the intent of the concept (A, B).

Definition 4: For a context (G, M, I), a concept X ¼ ðA;BÞ is less general than or
equal to a concept Y ¼ ðC;DÞ (or X � Y) if A � C or, equivalently, D � B.

Definition 5: For two concepts X and Y such that X � Y and there is no concept Z
with Z 6¼ X ;Z;X � Z � Y, the concept X is called a lower neighbour of Y, and Y is
called an upper neighbour of X. This relationship is denoted by X � Y.

Definition 6: We call the (directed) graph of the relation � a diagram graph. A plane
(not necessarily a planar) embedding of a diagram graph where a concept has larger
vertical co-ordinate than that of any of its lower neighbours is called a line (Hasse)
diagram. The problem of drawing line diagrams (Ganter and Wille 1999) is not
discussed here.

Example 1: Below we present a formal context with some elementary geometric
figures and its line diagram. We shall sometimes omit parentheses and write, for
example, 12 instead of f1; 2g.
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3. On principles of comparison

The problem of comparing performance of algorithms for constructing concept
lattices and their diagram graphs is a challenging and multifaceted one. The first
comparative study of several algorithms constructing the concept st and diagram
graphs can be found in Guénoche (1990). However, the formulations of the
algorithms are sometimes buggy, and the description of the results of the experi-
mental tests lacks any information about data used for tests. The fact that the choice
of the algorithm should be dependent on the input data is not accounted for. Besides,
only one of the algorithms considered in Guénoche (1990), namlely that of Bordat
(1986), constructs the diagram graph; thus, it is hard to compare its time complexity
with that of the other algorithms.
A later review with more algorithms and more information on experimental data

can be found in Godin et al. (1995). Only algorithms generating diagram graphs are
considered. The algorithms that were not originally designed for this purpose are
extended by the authors to generate diagram graphs. Unfortunately, such extensions
are not always effective: for example, the time complexity of the version of the
NextClosure algorithm (called Ganter-Allaoui) dramatically increases with the
growth of the context size. This drawback can be cancelled by the efficient use of
binary search in the list produced by the original NextClosure algorithm. Tests were
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Figure 1. A formal context.

Figure 2. The lne diagram for the context from figure 1.
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conducted only for contexts with small number of attributes per object as compared
to the number of all attributes. Our experiments also show that the algorithm
proposed in Godin et al. (1995) works faster on such contexts than the other do.
However, in certain situations not covered in Godin et al. (1995), this algorithm is far
behind some other algorithms.
In our study, we considered both theoretical (worst-case) and experimental

complexity of algorithms. As for the worst-case upper bounds, the algorithms with
complexity linear in the number of concepts (modulo a factor polynomial of the
input size) are better than those with complexity quadratic in the number of
concepts; and the former group can be subdivided into smaller groups with respect
to the factor polynomial in input. According to this criterion, the present champion
is the algorithm by Nourine and Raynaud (1999). On the other hand, ‘dense’
contexts, which realize the worst case by bringing about exponential number of
concepts, may not occur often in practice.
Starting a comparison of algorithms ‘in practice’, we face a bunch of problems.

First, algorithms, as described by their authors, often allow for different interpret-
ation of crucial details, such as the test of uniqueness of a generated concept. Second,
authors seldom describe exactly data structures and their realizations. Third,
algorithms behave differently on different databases (contexts). Sometimes authors
compare their algorithms with others on specific data sets. We would like to propose
that the community should reach a consensus with respect to databases to be used as
testbeds. Our idea is to consider two types of test-beds. On the one hand, some
‘classical’ (well-recognized in data analysis community) databases should be used,
with clearly defined scalings if they are many-valued. On the other hand, we propose
to use ‘randomly generated contexts’. The main parameters of a context
K ¼ ðG;M; IÞ seem here to be the (relative to jMj) number of objects jGj and the
(relative to jGj) number of attributes, the (relative, i.e. compared to jGkMj) size of
the relation I, average number of attributes per object intent (respectively, average
number of objects per attribute extent). The community should specify particular
type(s) or random context generator(s) that can be tuned by the choice of above (or
some other) parameters.
Another major difficulty resides in the choice of a programming language and

platform, which strongly affects the performance. A possible way of avoiding this
difficulty could be comparing not the time but the number of specified operations
intersections, unions, closures, etc.) from a certain library. However, here one
encounters the difficulty of weighting these operations in order to get the overall
performance. Much simpler would be comparing algorithms using a single platform.
In this article, we compare performance of several algorithms for clearly specified

random data sets (contexts), as well as for real data. As for ambiguities in original
pseudo-code formulations of the algorithms, we tried to find their most efficient
realizations. Of course, this does not guarantee that more efficient realizations
cannot be found.
In most cases, it was possible to improve the original versions of the algorithms.

Since only few known algorithms generating the concept set construct also the
diagram graph, we attempted to modify some algorithms making them able to
construct diagram graphs.
As mentioned above, data structures that realize concept sets and diagram graphs

of concept lattices are of great importance. Since their sizes can be exponential w.r.t.
the input size, some of their natural representations are not polynomially equivalent,

S. O. Kuznetsov and S. A. Obiedkov4
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as it is in the case of graphs. For example, the size of the incidence matrix of a

diagram graph is quadratic w.r.t. the size of the incidence list of the diagram graph

and thus cannot be reduced to the latter in time polynomial w.r.t. the input.

Moreover, some important operations, such as finding a concept, are performed

for some representations (spanning trees—Bordat 1986, Ganter and Reuter, 1991),

ordered lists (Ganter 1984), CbO trees (Kuznetsov 1993), 2–3 trees, see Aho et al.

(1983) for the definition) in polynomial time, but for some other representations

(unordered lists) they can be performed only in exponential time. A representation of

a concept lattice can be considered reasonable if its size cannot be exponentially

compressed w.r.t. the input and allows the search for a particular concept in time

polynomial in the input.

Table 1 presents an attempt at classification of algorithms. Note that this

classification refers to our versions of the algorithms rather than to original versions

(except for Titanic (Stumme et al. 2000), which realizes an approach completely

different from that of the other algorithms). Here, we do not address techniques for

building diagram graphs; the attributes of the context in table 1 describe only

construction of the concept set. The algorithm of Carpineto and Romano (1996) and

that of Valtchev and Missaoui (2001) do not fit in this classification, since they rely

on the structure of the diagram graph to compute concepts.

All the algorithms can be divided into two categories: incremental algorithms

(Norris 1978, Dowling 1993, Godin et al. 1995, Carpineto and Romano 1996),

which, at the ith step, produce the concept set or the diagram graph for i first objects

of the context, and batch ones, which build the concept set and its diagram graph for

the whole context from scratch (Chein 1969, Ganter 1984, Bordat 1986, Zabezhailo

et al. 1987, Kuznetsov 1993, Lindig 1999). Besides, any batch algorithm typically

adheres to one of the two strategies: top–down (from the maximal extent to the

minimal one) or bottom–up (from the minimal extent to the maximal one). However,

it is always possible to reverse the strategy of the algorithm by considering attributes

instead of objects and vice versa; therefore, we choose not to include this property

into the classification.

Generation of the concept set presents two main problems: (1) how to generate all

concepts; (2) how to avoid repetitive generation of the same concept or, at least, to

determine whether a concept is generated for the first time. There are several ways to

generate a new intent. Some algorithms (in particular, incremental ones) intersect a

generated intent with some object intent. Other algorithms compute an intent

explicitly intersecting all objects of the corresponding extent. There are algorithms

that, starting from object intents, create new intents by intersecting already obtained

intents. Lastly, the algorithm from (Stumme et al. 2000) does not use the intersection

operation to generate intents. It forms new intents by adding attributes to those

already generated and tests some condition on supports of attribute sets (a support

of an attribute set is the number of objects whose intents contain all attributes from

this set) to realize whether an attribute set is an intent.

In table 1, attributes m2–m6 correspond to techniques used to avoid repetitive

generation of the same concept. This can be done by maintaining specific data

structures. For example, the Nourine algorithm constructs a tree of concepts and

searches in this tree for every newly generated concept. Note that other algorithms

(e.g. Bordat and Close by One) also may use trees for storing concepts, which allows

efficient search for a concept when the diagram graph is to be constructed. However,
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these algorithms use other techniques for identifying the first generation of a concept

and, therefore, they do not have the m5 attribute in the context from table 1.

Some algorithms divide the set of all concepts into disjoint sets, which allows
narrowing down the search space. For example, the Chein algorithm stores concepts

in layers, each layer corresponding to some step of the algorithm. The original

version of this algorithm looks through the current layer each time a new concept is

generated. The version we used for comparison does not involve search to detect
duplicate concepts; instead, it employs a canonicity test based on the lexicographical

order (similar to that of NextClosure), which made it possible to greatly improve the

efficiency of the algorithm. We use layers only for generation of concepts: a new
intent is produced as the intersection of two intents from the same layer. In our

version of the algorithm, layers are much smaller than those in (Chein 1969). The

Godin algorithm uses a hash function (the cardinality of intents), which makes it
possible to distribute concepts among ‘buckets’ and to reduce the search. Several

algorithms (NextClosure, Close by One) generate concepts in the lexicographical

order of their extents assuming that there is a linear order on the set of objects. At

each step of the algorithm, there is a current object. The generation of a concept is
considered canonical if its extent contains no object preceding the current object. Our

implementation of the Bordat algorithm uses an attribute cache: the uniqueness of a

concept is tested by intersecting its intent with the content of the cache.
In many cases, we attempted to improve the efficiency of the original algorithms.

Only some of the original versions of the algorithms construct the diagram graph

(Bordat 1986, Godin et al. 1995, Lindig 1999, Nourine and Raynaud 1999, Valtchev
et al. 2000); it turned out that the other algorithms could be extended to construct

the diagram graph within the same worst-case time complexity bounds.

In the next section, we will discuss worst-case complexity bounds of the considered

algorithms. Since the output size can be exponential in the input, it is reasonable to
estimate complexity of the algorithms not only in terms of input and output sizes,

but also in terms of (cumulative) delay. Recall that an algorithm for listing a family

S. O. Kuznetsov and S. A. Obiedkov6

Table 1. Properties of algorithms constructing concept lattices.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

Bordat X X
NextClosure X X
Close by One X X
Lindig X X
Chein X X X
Nourine X X X
Norris X X X
Godin X X X X
Dowling X X X
Titanic X

M1—incremental; m2—uses canonicity based on the lexical order; m3—divides the set of
concepts into several parts; m4—uses hash function; m5—maintains an auxiliary tree
structure; m6—uses attribute cache; m7—computes intents by subsequently computing
intersections of object intents (i.e. fgg 0 \ fhg 0); m8—computes intersections of already
generated intents; m9—computes intersections of nonobject intents and object intents;
m10—uses supports of attribute sets.
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of combinatorial structures is said to have polynomial delay (Johnson 1988) if it
executes at most polynomially many computation steps before either outputting each
next structure or halting. An algorithm is said to have a cumulative delay d (Goldberg
1993) if at any point of time in any execution of the algorithm with any input p the
total number of computation steps that have been executed is at most d (p) plus
Kd (p), where K is the number of structures that have been output so far. If d (p) can
be bounded by a polynomial of p, the algorithm is said to have a polynomial
cumulative delay.

4. Algorithms: a survey

In most cases, top–down algorithms consist of two basic steps:

. Compute the maximal concept (G, G’).

. For each computed concept, generate all its lower neighbours.

Top–down algorithms differ in their generation of lower neighbours and preventing
concepts from being generated more than once.
The computation of the minimal concept (M 0;M) is rather straightforward and

can be conducted after the termination of the algorithm. In order to avoid
unnecessary complications in the discussion of the algorithms, we do not allow for
the minimal concept when its extent is empty, and add the minimal element upon
construction of the rest of the lattice.
Some top-down algorithms have been proposed in Bordat (1986) and Zabezhailo

et al. (1987). The algorithm MI-tree from Zabezhailo et al. (1987) generates the
concept set, but does not build the diagram graph. In MI-tree, every new concept is
searched for in the set of all concepts generated so far.
The algorithm in Bordat (1986) uses a tree (a ‘trie’, cf. Aho et al. (1983)) for fast

storing and retrieval of concepts. Our version of this algorithm uses a technique that
requires OðjMjÞ time to realize whether a concept is generated for the first time
without any search. We also suggest a procedure Find (of complexity OðjMj2Þ if the
tree is constructed top-down or complexity OðjGj2Þ if the tree is constructed bottom-
up) that is used to find a concept if it was already generated. It is assumed that there
is a linear order on the set G (i.e. we can speak of the first, next and last elements). An
auxiliary tree is used to construct the diagram graph; it is implemented by the sets

Algorithms for generating concept lattices 7
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Ch: Ch((A, B)) is the set of children of the concept (A, B) in this tree. This tree is
actually a spanning tree of the diagram graph (i.e. the tree with all diagram graph
vertices and some of its edges). The set Ch of the currently processed concept consists
of its lower neighbours generated for the first time. If the algorithm is used in
conjunction with the procedure LowerNeighbours presented below, the sets Ch have
the following form: ChððA;BÞÞ ¼ fðC;DÞ j ðC;DÞ � ðA;BÞ & 8ðE;FÞððC;DÞ �
ðE;FÞ ! minðAnE [ EnAÞ 2 AÞg. In every set Ch, concepts are linearly ordered
according to the order in which they were added to the set.

Bordat
0. L :¼ 1
1. Process ((G, G’), G’)
2. L is the concept set.

Process ((A, B), C)
1. L :¼L [ {(A, B)}
2. LN := LowerNeighbours ((A, B))
3. For each (D, E) 2 LN
3.1. If C \ E¼B
3.1.1. C :¼C [ E
3.1.2. Process((D, E), C)
3.1.3. Ch((A, B)) :¼Ch((A, B)) [ {(D, E)}

3.2. Else
3.2.1. Find((G, G’), (D, E))

3.3. (A, B) is an upper neighbour of (D, E)

Find ((A, B), (C, D))
{(A, B) is the concept where the search should be started, and
(C, D) is the concept to be found}
1. (E, F) is the first concept in Ch((A, B)) such that F � D
2. If F 6¼ D
2.1. Find ((E, F), (C, D))

3. Else (E, F) is the desired concept

LowerNeighbours ((A, B))
1. LN:¼ 1
2. C:¼B
3. g is the first object in A such that :({g}’ � C);

if there is no such object, g is the last element of A
4. While g is not the last element of A
4.1. E:¼{g}
4.2. F :¼{g}’
4.3. h :¼g
4.4. While h is not the last element of A
4.4.1. h is the next element of A
4.4.2. If :(F \{h}’�C)
4.4.2.1. E :¼E [{h}
4.4.2.2. F :¼F\{h}’

4.5. If F\C¼B
4.5.1. LN :¼LN [{(E, F)}

4.6. C :¼C[F

S. O. Kuznetsov and S. A. Obiedkov8
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4.7. g is the first object in A such that
:({g}’�C); if there is no such object,
g is the last element of A

5. LN is the set of lower neighbours of (A, B)

This is just one possible method for generating lower neighbours; a similar version
of the algorithm for constructing minimal intersections proposed by O.M. Anshakov
(Zabezhailo et al. 1987). The proof of the correctness of this algorithm, as well as of
another algorithm designed by Khazanovskii (Zabezhailo et al. 1987), can be found
in Obiedkov (1999).
If the diagram graph is to be constructed, the spanning tree of the diagram graph

given by sets Ch should be extended by some more edges. To restore these edges, one
should be able to perform the search for a concept in the spanning tree. We show
that the search for a concept can be performed in OðjMj2Þ time ðOðjMjÞ tests for
attribute subset containment). Indeed, suppose that we need to find a concept with
intent D. First, we examine concepts from the set Ch(G;G 0) in order to find some
concept (E;F) such that F � D. It is assumed that the concepts from Ch are
considered in the order in which they were put into this set. When we find (E, F),
such that F � D, we check whether F ¼ D; if not, we continue searching in the set
Ch corresponding to (E;F), and so on.

Statement 1: If (S, T) is a predecessor of (E, F) in the tree, (X, Y) is a left sibling of
(S, T) in the tree, and (V, W) is the parent of (S, T) and (X, Y) in the tree, then
F \ Y ¼W.

Proof: Let F \ Y ¼W1. SinceW � F andW � Y , we haveW �W1. AsW1 � Y ,
three cases are possible: (1) W �W1 � Y , (2) W1 ¼ Y , and (3) W1 ¼W . If (1)
holds, then there is a concept with the intent W1 descending from (V, W), and (X,
Y) cannot be a child of (V,W). If (2) holds, then (X, Y) is less general than (E, F). But
for an arbitrary concept U, all less general concepts are generated and added to the
tree prior to the examination of right siblings of U; thus, (E, F) is added to the tree
before (S, T) and (S, T) cannot be a predecessor of (E, F) in the tree.
Therefore, W ¼W1.
The trajectory of an intent D or TrðDÞ ¼ fD1; . . . ;Dng ¼ D, with Dn ¼ D, is the

set of all intents for which Find tests the relation Di � D during the search for D. The
trajectory length is the cardinality of the trajectory. Obviously, TrðDiÞ � TrðDjÞ if
the relation Di � D was tested before Dj � D. Let HðDjÞ ¼

S
i2TrðDjÞDi.

Statement 2: For an arbitrary intent D �M, the trajectory length of D is not greater
than |M|.

Proof: By the definition of Tr(D), for any Dj, Dk 2 TrðDÞ such that j < k, either
HðDjÞ ¼ HðDkÞ or HðDjÞ � HðDkÞ. We show that HðDjÞ � HðDkÞ. Three cases
are possible: (1) Dj is a predecessor of Dk in the tree, (2) Dj is a left sibling of Dk in
the tree, and (3) Dj is a left sibling of a predecessor of Dk in the tree. For the
first two cases, the proof is trivial. Consider the third case. If HðDjÞ ¼ HðDkÞ,
8a 2 Dk9i < k : a 2 Di. Hence, a 2 Dk \Di, and, by Statement 1, all elements of
Dk belong to P, the parent of Dk in the tree, and Dk ¼ P. This contradicts to the
fact that each intent corresponds biuniquely to a vertex of the tree.
Thus, HðDjÞ � HðDkÞ and the sequence HðDiÞ; i ¼ f1; . . . ; kg is strictly increas-

ing. On the other hand, HðDkÞ �M for any k. Therefore, k � jMj.
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The second parameter C in Process is a set of all attributes contained in the intent
of the concept (A, B) being Processed and the intents of all its left siblings and all left
siblings of all its predecessors (w. r. t. the tree). Thus, if, for some concept (D, E) that
is a lower neighbour of ðA;BÞ;C \ E 6¼ BðB � C \ EÞ, then (D, E) was generated
earlier. Indeed, this means that there are concepts (V, W), (X, Y), and (S, T) such
that (X, Y) is a left sibling of (S, T); either ðS;TÞ ¼ ðD;EÞ or (S, T) is a predecessor
of (D, E); (V,W) is the parent of (X, Y) and (S, T); and E \ Y 2WðW � E \ YÞ. It
is impossible that W � E \ Y � Y (see the proof of Statement 1). So, E \ Y ¼ Y ,
which ensures that (D, E) has already been generated as a descendant of (X, Y).
The time complexity of the algorithm that finds the lower neighbours of a concept

is OðjGj � jMj2Þ. Any concept can be Processed only once; therefore, the time
complexity of Bordat is OðjGjjMj2jLjÞ, where |L| is the size of the concept lattice.
Moreover, this algorithm has a polynomial delay. In fact, at each vertex of the tree it
either produces a new concept making at most |M| closures, or backtracks at most
min(|M|, |G|) times and either halts at the root of the tree or obtains a new concept
before attaining the root. Thus, at most O(|G||M|2) computation steps are performed
before Bordat generates a next concept or halts.
If there is no need to build the diagram graph, everything below the line 3.1.2 in

Process could be omitted.
Let us use the context from Example 1 to illustrate how the algorithm works. We

do not go into details of generation of lower neighbours and their search. The first
generation of every concept is given in boldface. Subscripts of literals C are used to
distinguish between different recursion levels.

. (1234,111111111111111) the maximal concept

. C0 :¼ 1

. (123, c), (14, d), (34, b) are the lower neighbours of the concept ð12345;1Þ
(generated by the LowerNeighbours procedure in this very order)

. C0 \ c ¼ 1 ! C0 :¼ c;Processðð123; cÞ; cÞ
. C1 :¼ c
. (12, ac), (3, bc) are the lower neighbours of (123, c)
. C1 \ ac ¼ c ! C1 :¼ ac, Process ((12, ac), ac)

. C11 :¼ ac

. (1, acd) is the lower neighbour of (12, ac)

. C11 \ acd ¼ ac ! C11 :¼ acd; Ch((12, ac)) :¼ {(1, acd)}
. Ch((123, c)) :¼ {(12, ac)}
. C1 \ bc ¼ c ! Chðð123; cÞÞ :¼ fð12; acÞ; ð3; bcÞg

. Chðð1234;1Þ :¼ fð123; cÞg

. C0 \ d ¼ 1 ! C0 :¼ cd;Processðð14; dÞ; cdÞ
. C2 :¼ cd
. (1, acd), (4, bd) are the lower neighbours of (14, d)
. C2 \ acd ¼ cd 6¼ d ! Findð1; acdÞ
. C2 \ bd ¼ d ! C22 :¼ bcd;Chðð14; dÞÞ :¼ fð4; bdÞg

. Chðð1234;1ÞÞ :¼ fð123; cÞ; ð14; dÞg

. C0 \ b ¼ 1 ! C0 :¼ bcd;Processðð34; bÞ; bcdÞ
. C3 :¼ bcd
. (3, bc), (4, bd) are the lower neighbours of (34, b)
. C33 \ bc ¼ bc 6¼ b ! Findð3; bcÞ
. C3 \ bd ¼ bd 6¼ b ! Findð4; bdÞ
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. Chðð1234;1Þ :¼ ð123; cÞ; ð14; dÞ; ð34; bÞ

Next, we consider the family of algorithms based on computation of closures for
subsets of G. They follow the below scheme:

1. While some condition is true do
1.1. For some set A � G; compute (A0;A0).
1.2. If this is the first time the concept ðA 00;A 0Þ is generated (or, in some

algorithms, if this is definitely the last time it is generated), add it to the
concept set.

Individual algorithms differ in the condition used to exit the loop, the method for
selecting subsets to compute the closures, the technique for checking whether a
concept was generated earlier (the canonicity test: for any concept, there is a unique
canonical generation, which is specified in each particular algorithm), and the
method for computing closures.
The simplest (naı̈ve) algorithm corresponding to this scheme computes closures of

all subsets of G but the empty one. It performs the canonicity test by searching
through all concepts generated so far. The loop runs 2n times, where n ¼ jGj. Thus,
the number of iterations is equal to or greater than the number of concepts. At each
step of the loop, the generated concept is tested for canonicity, which requires the
time linear in the number of concepts. Therefore, the algorithm has the time
complexity quadratic in the number of concepts.
The algorithm NextClosure proposed by Ganter computes closures for only some

of subsets of G and uses an efficient canonicity test, which does not address the list of
generated concepts and requires little storage space.
The following technique for selecting subsets is used. It is assumed that there is a

linear order (

�

) on G. The algorithm starts by examining the set consisting of the
object maximal with respect to

�

(max(G)), and finishes when the canonically
generated closure is equal to G. Let A be a currently examined subset of G. The
generation of A 00 is considered canonical if A 00nA contains no g

�

maxðAÞ. If the
generation of A 00 is canonical (and A 00 is not equal to G), the next set to be examined
is obtained from A 00 as follows:

A 00 [ fggnfh j h 2 A 00&g �hg; where g ¼ maxðfh j h 2 GnA 00gÞ: ð1Þ

Otherwise, the set examined at the next step is obtained from A in a similar way, but
the added object must be less (w.r.t. �) than the maximal object in A:

A [ fggnfh j h 2 A&g �hg; where g ¼ maxðfh j h 2 GnA&h �max ðAÞgÞ ð2Þ

The algorithm runs as below:

NextClosure
1. L :¼ 1; A :¼ 1, g:¼max (G)
2. While A 6¼G
2.1. A :¼A[fggnfh jh 2 A&g �hg
2.2. If fh j 2 A 00nA&h �gg ¼ 1
2.2.1. L :¼ L [ fðA 00;A 0Þg
2.2.2. g :¼ maxðfh jh 2 GnA 00gÞ
2.2.3. A :¼ A 00

2.3. Else
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2.3.1. g :¼ maxðfh jh 2 GnA&h �ggÞ
3. L is the concept set

The NextClosure algorithm produces the set of all concepts in time O(|G|2|M||L|)

and has polynomial delay O(|G|2|M|).

The Close by One (CbO) algorithm uses a similar notion of canonicity and a

similar method for selecting subsets (Kuznetsov 1993). However, it employs an

intermediate structure that helps to compute closures more efficiently using the

generated concepts. The NextClosure algorithm computes A 00 by subsequently

intersecting object intents and checking which objects from GnA contain the

resulting intent. The CbO algorithm obtains each new closure from a concept it

generated at a previous step by intersecting its intent with intent of an object that

does not belong to its extent. The original version of the CbO algorithm uses a tree as

an intermediate structure. The tree can be used for the construction of the diagram

graph or as an alternative to the diagram graph for storing the concept set allowing

one to easily update this set when new objects are to be taken into account. If we

regard this structure only as an auxiliary one, a simple stack is sufficient, as any

branch of the tree becomes useless after a new branch is started.

First, let us show how a stack can be incorporated into the NextClosure

algorithm. If a concept is generated canonically, it is placed into the stack. Having

decided on the next set, the algorithm searches the stack for a concept that could be

used to compute the closure. Suppose that A is the last set that was examined, B is

the set to be examined next, and g is the object added to A or A 00 to obtain B. If

B ¼ fgg, we clear the stack. Otherwise, we wish to efficiently compute B 0 without
subsequently intersecting the intents of objects from B.With this in mind, we search

the stack for a concept (C, D) such that B 0 ¼ D \ fgg 0. If jBj > 1, there is such a

concept in the stack; its extent C ¼ ðBnfggÞ 00; since g ¼ maxðBÞ, the closure of

Bnfgg must have been computed by the moment when B is considered. The stack

consists of pairs hðV ;WÞ; hi, where (V, W) is a concept and h is the object used to

generate this concept. To find (C, D), we should find the first element of the stack

with h �g (removing all the preceding elements of the stack).

The last (bottom) element of the stack always has the form hðfhg 0; hÞ; hi, where
h 2 G. The set chosen at some iteration of the NextClosure algorithm either consists

of only one element or is a superset of the last one-element set {h} that was examined

and does not contain objects less (w.r.t. �) than h. Obviously, the stack will never

become empty when looking for a concept, and the algorithm will succeed.

If k ¼ jGj, it is necessary to perform \-operation k� 1 times (provided that A 0 is
computed by intersection of fgg 0 for all g 2 A) if the stack is not used. If the stack is
used, only one application of \ is needed, but some additional time is required to test

�and remove (not more than k� 1 and usually much less) elements from the stack.

One of the advantages of the original NextClosure algorithm is that it needs little

storage space, as it does not use generated concepts to generate other ones. The

version with the stack uses more memory, however the number of concepts in the

stack never exceeds |G|.

The algorithm with a tree can be obtained from the algorithm with a stack as

follows.

1. The algorithm starts generating the tree from a dummy root with an empty

extent; this root is declared to be the current node;
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2. When a new node is added to the tree (Step 1.1), it is joined with the current
node by an edge and declared the current node;

3. Instead of clearing the stack (Step 2.1), the root is declared to be the current
node;

4. All actions with the head of the stack are changed for similar actions with the
current node;

5. Instead of removing the head of the stack (Step 3.2.1), the parent of the
current node is declared to be the current node.

Note that there are two possible strategies of using the stack: (1) first, choose g and
the set B to be considered next, then search the stack for a concept that could be used
to generate the new intent (this strategy is described above); or (2) search the stack
for a concept that could be used to generate the new intent; when found, choose the
object g and the set to be considered next. The CbO algorithm implements the
second strategy, which uses the stack more intensively. For this algorithm, unlike for
the NextClosure algorithm, the set whose closure is computed at some step of CbO
cannot be described by the formulas (1) and (2): it equals the extent of a gener-
ated concept supplemented by one object. Here, we present the simplest recursive
version of CbO. The algorithm computes concepts according to the lexicographic
order defined on the subsets of G (concepts whose extents are lexicographically
less are generated first): A is lexicographically less than B if A � B, or B 6� A
and minððA [ BÞnðB \ AÞÞ 2 A. The NextClosure algorithm generates concepts
in a different lexicographic order: A is lexicographically less than B if
minðA [ BÞnðA \ BÞÞ 2 B. The order in which concepts are generated by CbO seems
to be preferable if the diagram graph is constructed: the first generation of the
concept is always canonical, which makes it possible to find a concept in the tree
when it is generated for the second time and to draw appropriate diagram graph
edges. NextClosure-style lexicographical order allows binary search, which is helpful
when the diagram graph is to be constructed after the construction of the set of all
concepts.

Close by One
1. L :¼ 1
2. For each g 2 G
2.1. Process ðfgg;g; ðfgg 00;gÞÞ

3. L is the concept set.

Process (A, g, (C, D))
fC ¼ A 00;D ¼ A 0g
1. If fh jh 2 CnA&h �gg ¼ 1
1.1. L :¼: [fðC;DÞg
1.2. For each f 2 fh jh 2 G&g �hg
1.2.1. Z : C [ ffg
1.2.2. Y :¼ D \ ffg 0

1.2.3. X :¼ Y 0ð¼ Z [ fh jh 2 GnZ&Y � fhg 0gÞ
1.2.4. Process ðZ;f; ðX;YÞÞ

To construct the diagram graph with the CbO algorithm, we can use a tree. Unlike
the tree from Bordat, this tree is not a part of the diagram graph. Assume that child
nodes of any tree node are linearly ordered with respect to the lexicographic order. A
path in the tree is a sequence of its nodes starting from the root such that any node is
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followed by its child node or right sibling (a is the right sibling of b if ñ is the parent
of a and b, and b< a with respect to the order on the child nodes of c). The length of
such a path is limited by jGj þ 1. The diagram graph can be constructed as follows.
Each time some concept is generated non-canonically, the algorithm searches the tree
for the canonical generation of this concept (which requires time linear in the
number of objects) and the corresponding edge is added. While searching, we make
the following path in the tree: the last node of the path is the desired concept; each
node of the path is either the first child of the previous node (if the previous node is
less general than the desired concept) or its first right sibling (otherwise). The time
complexity of Close by One (CbO) is OðjGj2jMkLjÞ, and its polynomial delay is
OðjGj3jMjÞ.
Another realization of a bottom-up algorithm is presented in Lindig (1999). The

idea is to generate the bottom concept and then, for each concept that is generated
for the first time, generate all its upper neighbours. Lindig uses a tree of concepts
that allows one to check whether some concept was generated earlier. The
description of the tree is not detailed in Lindig (1999), but it seems to be the
spanning tree of the inverted diagram graph (i.e. with the root at the bottom of the
diagram graph), similar to the tree from Bordat. Finding a concept in such a tree
takes OðjGj � jMjÞ time. In fact, the below algorithm may be regarded as a bottom-
up version of the Bordat algorithm.
The procedures Find and Next are not described here for the reasons of space.

Lindig
1. C :¼ ðM 0;MÞ
2. T is a concept tree consisting of the root node C
3. While C 6¼ �
3.1. For each X 2 UpperNeighbours (C)
3.1.1. X :¼ FindððM 0;MÞ;X;TÞ
3.1.2. If X ¼ �
3.1.2.1. Add X to T as a child of C

3.1.3. X is an upper neighbour of C
3.2. C :¼ NextðC;TÞ

4. The set of nodes of T is the concept set

UpperNeighbours ((A, B))
0. UN :¼ 1
1. Min :¼ GnA
2. For each g 2 GnA
2.1. D :¼ ðA [ fgg� 0
2.2. C :¼ D 0

2.3. If Min \ ðCnAnfggÞ ¼ 1
2.3.1. UN :¼ UN [ fðC;DÞg

2.4. Else
2.4.1. Min :¼ Minnfgg

3. Un is the set of upper neighbours of (A, B)

The time complexity of the algorithm is OðjGj2jMkLjÞ. Its polynomial delay is
OðjGj2jMjÞ.
The NextClosure algorithm generates the intent of each new concept by intersect-

ing intents of all objects from its extent. The CbO algorithm does the same by

S. O. Kuznetsov and S. A. Obiedkov14

FIRST PROOFS RH i:/T&F UK/Eta/Eta-0241.3d—J. Expt. Theor. Artif. Intell. (ETA) Paper 100241 Keyword



intersecting an object intent and intent of a generated concept. This strategy enables
one to incrementally process new data by updating and extending the results without
performing all the computations from scratch. The Norris algorithm given below is
basically an incremental version of CbO. However, there is another strategy:
represent the objects by extent–intent pairs and generate each new concept intent
as the intersection of intents of two existent concepts. The AI-tree (Zabezhailo et al.
1987) and Chein (Chein 1969) algorithms, which are very similar to each other, use
this strategy.

Chein
1. L1 :¼ ððfgg; fgg 0Þ jg 2 Gg
2. k :¼ 1
3. While jLkj > 1
3.1. Lkþ1 :¼ 1
3.2. For each fðA;BÞ; ðC;DÞg � Lk
3.2.1. F :¼ B \ D
3.2.2. If there is E � G such that ðE;FÞ 2 Lkþ1
3.2.2.1. E :¼ E [ A [ C

3.2.3. Else
3.2.3.1. Lkþ1 [ fðA [ B;FÞg

3.2.4. If F ¼ B
3.2.4.1. Mark ðA;BÞ in Lk

3.2.5. If F ¼ D
3.2.5.1. Mark ðC;DÞ in Lk

3.3. Lk :¼ LknfðV ;WÞ j ðV ;WÞ is marked in Lkg
3.4. k :¼ kþ 1

4.
S

k
Lk is the concept set

The algorithm admits slight modifications. In the original versions, concepts with
empty intents are ignored; therefore, steps 3.2.2–3.2.5 are performed only when F
is not empty. Assume that concepts in Lk are linearly ordered and the choice of
the subset {(A, B), (C, D)} at Step 3.2 is based on the following order (from the
least to the largest): K � Lk is less than K1 � Lk if minððK [ K1ÞnðK \ K1ÞÞ 2 K ,
where min(K) is the least element of K with respect to the linear order on Lk).
Then it is not necessary to add elements of C to E at Step 3.2.2.1 (provided that
(A, B) is less than (C, D) with respect to the linear order on the elements of Lk);
the algorithm will still work correctly. Besides, instead of marking concepts at
Steps 3.2.4.1 and 3.2.5.1, it is possible to remove them from Lk altogether, thus,
excluding them from the following consideration. However, it is not possible to
remove both concepts at once (in the case of the context {a, a, ab} this would lead to
an error). Let us illustrate this algorithm with the context from Example 1 (the
output of the algorithm consists of the concepts given in boldface in the lines not
marked with *).

L1:
1.1. (1, acd)
1.2. (2, ac) *
1.3. (3, bc)
1.4. (4, bd)
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2. L2:
2.1. (1, acd)þ

2.1.1. þ (2, ac): (12, ac)—mark 1.2
2.1.2. þ (3, bc): (13, c) *
2.1.3. þ (4, bd): (14, d)

2.2. (3, bc)þ
2.2.1. þ (4, bd): (34. b)

3. L3:
3.1. (12, ac)þ

3.1.1. þ (13, c): (123, c)—mark 2.1.2
3.1.2. þ (14, d): (124, 1) ! (1234, 1)—see 3.1.3 *
3.1.3. þ (34, b): ac \b ¼ 1—the same as in 3.1.2

3.2. (14, d)þ
3.2.1. þ (34, b): d \ b ¼ 1 the same as in 3.1.2

4. L4:
4.1. (123, c)þ
4.1.1. þð1234;1Þ: (1234, 1)—mark 3.1.2

It is rather obvious that the algorithm can be improved by considering only pairs of
those concepts from Lk that do not have a common ancestor in Lk-1. Concepts with
the extents {1, 2} and {2, 3} yield the same new intent as concepts with the extents {1,
2} and {1, 3}, since the unions of extents within each pair are identical. The same
holds for a pair of concepts with the extents {1, 2}, {3, 4} and a pair of concepts with
the extents {1, 2, 3}, {1, 2, 4}. As we consider the pairs ({1, 2}, {1, 3}) and ({1, 2, 3},
{1, 2, 4}), it is not worth to consider also the pairs ({1, 2}, {2, 3}) and ({1, 2}, {3, 4}).
Nevertheless, the search for a concept (Step 3.2.2) must be carried out through the
whole Lk set. Such an approach gives the following layers L3 and L4:

Chein-1
3. L3:

3.1. (12, ac)þ
3.1.1. þ (13, c): (123, c) mark 2.1.2
3.1.2. þ (14, d): (124, 1)

4. L4:
4.1. (123, c)þ
4.1.1. þ (1234, 1): (1234; 1Þ mark 3.1.2

It is possible to extend the Chein algorithm with a canonicity test similar to that of
the CbO algorithm. Such a test is much faster than the search in Lk, the size of which
is usually considerably larger than that of G. For experiments, we used the version
with the canonicity test. The time complexity of the modified algorithm is
OðjGj3jMkLjÞ. The algorithm has polynomial delay OðjGj3jMjÞ.
Due to their incremental nature, the algorithms considered below do not have

polynomial delay. Nevertheless, they all have cumulative polynomial delay.
Nourine and Raynaud (1999) propose an algorithm for the construction of the

lattice using a lexicographic tree with the best known worst-case complexity bound
OððjGj þ jMjÞjGkLjÞ. Edges of the tree are labelled with attributes, and nodes are
labeled with concepts whose intents consist of the attributes that label the edges
leading from the root to the node. Clearly, some nodes do not have labels. First, the
tree is constructed incrementally (similar to the Norris algorithm presented below).
An intent of a new concept C is created by intersecting an object intent g 0 with the
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intent of a concept D created earlier, and the extent of C is formed by adding g to the
extent of D, which takes OðjMj þ jGjÞ time. A new concept is searched for in the tree
using the intent of the concept as the key; this search requires OðjMjÞ time. When the
tree is created, it is used to construct the diagram graph. For each concept C, its
parents are sought for as follows. Counters are kept for every concept initialized to
zero at the beginning of the process. For each object, the intersection of its intent and
the concept intent is produced in OðjMjÞ time. A concept D with the intent equal to
this intersection is found in the tree in OðjMjÞ time and the value in the counter
increases; if the counter is equal to the difference between the cardinalities of the
concepts C and D (i.e. the intersection of the intent of C and the intent of any object
from D outside C is equal to the intent of D), the concept D is a parent of C.
The algorithm proposed by Norris (1978) is essentially an incremental version of

the CbO algorithm. The concept tree (which is useful only for diagram graph con-
struction) can be built as follows: first, there is only the dummy root; examine objects
from G and for each concept of the tree check whether the object under consider-
ation has all the attributes of the concept intent; if it does, add it to the extent;
otherwise, form a new node and declare it a child node of the current one; the extent
of the corresponding concept equals the extent of the parent node plus the object
being examined; the intent is the intersection of this object intent and the parent
intent; next, test the new node for the canonicity; if the test fails, remove it from the
tree. The original version of the algorithm from Norris (1978) does not construct the
diagram graph, and no data structure is explicitly mentioned.
If it is not necessary to construct the diagram graph, the Norris algorithm is

preferable to CbO, as the latter has to remember how the last concept was generated
(in the above version, it is implemented by the recursion; other variants include stack
and tree); this involves additional storage resources, as well as time expenses. The
Norris algorithm does not maintain any structure but the concept set. Besides, the
closure of an object set is never computed explicitly.

Norris
1. L :¼ 1
2. For each g 2 G

2.1. Add (g, L)
3. L is the concept set

Add (g, L)
1. For each ðA;BÞ 2 L
1.1 If B � fgg 0

1.1.1. A :¼ A [ fgg
1.2. Else
1.2.1. D :¼ B \ fgg 0

1.2.2. If fh jh 2 GnA&h has already been
Added &D � fhg 0g ¼ 1

1.2.2.1. L :¼ L [ fðA [ fgg;DÞg
2. If fh jh 2 G&h has already been Added & fgg 0 � fhg 0g ¼ 1
2.1. L :¼ L [ ðfgg; fgg 0Þ

The time complexity of the algorithm is OðjGj2jMkLjÞ.
The algorithm proposed by Godin et al. (1995) has the worst-case time complexity

quadratic in the number of concepts. This algorithm uses a heuristic based on the
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size of attribute sets. The algorithm always computes the bottom concept, which is
called inf.

Godin
1. inf :¼ ð1;1Þ;L :¼ 1
2. For each g 2 G
2.1. Add ðg;LÞ

3. L is the concept set

Add ðg;LÞ
1. If inf ¼ ð1;1Þ
1.1. inf :¼ ðfgg; fgg 0Þ
1.2. L :¼ finfg

2. Else
2.1. If :ðfgg 0 � the intent of infÞ
2.1.1. If the extent of inf ¼ 1
2.1.1.1. The intent of inf :¼ the intent of inf [ fgg 0

2.1.2. Else
2.1.2.1. L :¼ L [ ð1, the intent of inf [ fgg 0Þ
2.1.2.2. ð1; the intent of inf [ fgg 0Þ is an upper

neighbour of inf
2.1.2.3. inf :¼ ð1; the intent of inf [ fgg 0Þ

2.2. From i :¼ 0
to maxðfj j 9ðA;BÞððA;BÞ 2 L&jBj ¼ jÞgÞ

2.2.1. Ci :¼ fðA;BÞ j ðA;BÞ 2 L&jBj ¼ ig
2.2.2. C 0

i :¼ 1
2.3. From i :¼ 0

to maxðfj j 9ðA;BÞððA;BÞ 2 L&jBj ¼ jÞgÞ
2.3.1. For each ðA;BÞ 2 Ci
2.3.1.1. If B � fgg 0

2.3.1.1.1. A : A [ fgg
2.3.1.1.2. C 0

i :¼ C 0
i [ fðA;BÞg

2.3.1.1.3. If B ¼ fgg 0

2.3.1.1.3.1. Exit the algorithm
2.3.1.2. Else
2.3.1.2.1. Int :¼ B \ fgg 0

2.3.1.2.2. If :9ðA1;B1ÞððA1;B1Þ 2 C 0
jIntj&B1 ¼ IntÞ

2.3.1.2.2.1. L :¼ L [ fðA [ fgg;IntÞg
2.3.1.2.2.2. C 0

jInt= :¼ C 0
jInt= [ fðA [ fgg;IntÞg

2.3.1.2.2.3. ðA [ fgg;IntÞ is an upper neighbour of
ðY;yÞ

2.3.1.2.2.4. UpdateEdges ððA [ fgg;IntÞ; ðA;BÞÞ
2.3.1.2.2.5. If Int ¼ fgg 0

2.3.1.2.2.5.1. Exit the algorithm

The UpdateEdges procedure proposed by Godin is quite time-consuming (at least
theoretically). Valtchev and Missaoui (2001) suggest another strategy for updating
edges, improving theoretical complexity and, apparently, practical performance of
the algorithm. However, this change does not improve the performance of the
algorithm when the diagram graph is not constructed. In their implementation of
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Godin, Valtchev and Missaoui use a trie for concept lookup, which allows achieving
better performance (or at least, better theoretical complexity).
Only the lines 2.1.2.2, 2.3.1.2.2.3, and 2.3.1.2.2.4 of the above algorithm deal with

the diagram graph construction. Below, we demonstrate how the algorithm
constructs the concept set (without the diagram graph) for the context from Example
1. Each generated concept is shown together with the object (gi) and the concept
(except for the cases where the new concept is generated at Step 2.1.2 as a
specification of inf) that were used to create it.

. g1: inf := (1, acd) c1

. g2, c1: (12, ac) c2

. g3: inf := (1, abcd) c3

. g3, c2: (123, c) c4

. g3, c1: (12, c)—in C 0
1, there is a concept (c4) with the intent {c}

. g3, c3: (3, bc) c5

. g4, c4: (1234, 1) c6

. g4, c2: (124, 1)—in C 0
0, there is a concept (c6) with the intent 1

. g4, c5: (34, b) c7

. g4, c1: (14, d) c8

. g4, c3: (4, bd) c9

To check whether the new concept (with the intent Int) has already been generated,
C 0

jintj is searched for a concept with the intent Int (Step 2.3.1.2.2). This search is
efficient when the context is fairly sparse. Otherwise, a canonicity test similar to that
of the above algorithms is preferable (i.e. check whether Int is contained in some
object from GnA already processed). If it is, the concept with this intent must have
been generated (since more general concepts are processed first). If the diagram
graph is not constructed, such test ensures in the worst case the time complexity of
the algorithm linear in the number of concepts. For the 12� 12-context of the form
(A;A; 6¼) (the corresponding binary matrix is filled with ones except for the
diagonal), the number of necessary relation test (� and¼ for attribute sets) decreases
from � 485 000 to � 30 000. For the context 20� 20 with from 10 to 20 attributes
per object, the canonicity test needs about half less operations than the original
Godin test (however, it becomes necessary to test whether an object belongs to a set).
In fact, this modification yields something very similar to the Norris algorithm: the
only difference is the order in which concepts are treated; in the case of the Godin
algorithm, this order makes it possible to avoid some operations resulting in non-
canonical concepts by exiting the Add procedure. On sparse contexts, the version
with the canonicity test performs slower than the original Godin algorithm.
However, time difference between various algorithms processing sparse contexts is
generally not significant. Even if some algorithm performs several times slower than
another one, the difference is several seconds or even fractions of a second. The
algorithms with time complexity linear in the number of concepts perform
considerably faster than other algorithms on the contexts that need hours or, at
least, dozens of minutes to be processed. The Godin algorithm uses a cardinality
heuristic that may reduce search in some cases. The idea generalizes to the
introduction of an efficiently computable hash-function f defined on the set of
concepts such that any function value has a relatively small number of pre-images in
the given context (and distributing concepts among groups (buckets) so that the
concepts A and B fall within the same group if and only if f ðAÞ ¼ f ðBÞÞ. Moreover,
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when an object is being added, the groups are formed only from concepts containing
this object in their extents, which allows one to check promptly whether a concept
has been already generated by searching for it in the appropriate group. If the group
contains fewer concepts than there are objects processed so far, such test is preferable
to the canonicity test. The hash function used by Godin, i.e. the cardinality of
concept intents, does not always satisfy this condition. A possible workaround is to
choose one of the two tests at run-time: if there are more concepts in the group to be
searched than objects processed so far, the canonicity test is performed; otherwise,
the group is searched for the concept. However, computing cardinality may be
expensive. If M is large, the average size of a group might be significantly less than
the number of objects (in the case of a sparse context), which encourages one to use a
cardinality heuristic. However, if attribute sets are implemented so that several
attributes are encoded by a single number, which is useful from the storage space
perspective and allows efficient operations of intersection and union, then computa-
tion of the size of a concept intent takes much more time. As mentioned above, the
worst-case complexity of Godin is quadratic in the number of generated concepts.
This algorithm has cumulative polynomial delay, since in the worst case, for each
generated concept, it looks through the list of the same order of magnitude as the list
of already generated concepts, to find the concept with the same intent.
It is worth noting that the sets Ci may be based on concept extents, as well as

intents. The sets C 0
i cannot be treated in this way, as, at Step 2.3.1.2.2, a concept with

certain intent is searched for; the extent of this concept is unknown.
Dowling (1993) proposed an incremental algorithm for computing knowledge

spaces. A dual formulation of the algorithm (with set-theoretical union replaced by
intersection) allows generation of the concept set. Despite the fact that the theor-
etical worst-case complexity of the algorithm is OðjMkGj2jLjÞ, the constant in this
upper bound seems to be too large and in practice the algorithm performs worse
than other algorithms.
Recently, Valtchev et al. (2000) proposed an algorithm (a.k.a. Divide and Conquer)

generalizing the incremental approach towards lattice creation. This algorithm
divides the context into two parts, either horizontally (i.e. splitting G) or vertically
(i.e. splittingM), constructs the diagram graph for each part, and assemble them into
the global lattice. Thus, this algorithm is particularly suitable for parallel computa-
tions. For details, we refer the reader to Valtchev et al. (2000). The theoretical
complexity of this algorithm is difficult to estimate in terms of input and output sizes.
The complexity of the procedure assembling lattices L1 and L2 into the global lattice
L is OððjGj þ jMjÞðjL1kL1j þ jLkMjÞ.

5. Results of experimental tests

The algorithms were implemented in Cþþ. The tests were run on a Celeron1–1000
computer, 384 MB RAM under Windows 20001. Here, we present a number of
charts that show how the execution time of the algorithms depends on various
parameters. More charts can be found in Kuznetsov and Obiedkov (2000).
For tests, we used randomly generated data. Contexts were generated based on

three parameters: jGj; jMj, and the number of attributes per object (denoted below as
jg 0j; all objects of the same context had equal numbers of attributes). Given jg 0j,
every row of the context (i.e. every object intent) was generated by successively
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calling the rand function from the standard C library to obtain the numbers of

attributes constituting the object intent, which lead to uniform distribution.

We implemented the following algorithms:

. Those that build only the set of concepts:

. Chein (with modifications described above and the CbO-style canonicity test,

which performs better than the original Chein algorithm);

. Close by One;

. NextClosure;

. Norris (with buckets from the Godin algorithm that allow avoiding some

useless operations);

. Bordat (actually, the improved version described above);

. Two versions of the Godin algorithm: GodinEx, where the sets C are based on

sizes of extents, and Godin, where they are based on sizes of intents; their

results are almost identical;

. Dowling (a dual version; see above);

. Those that build the diagram graph:

. Close by One;

. NextClosure (which uses binary search to find the canonical generation of a

concept);

. Norris (which uses a tree);

. Bordat (again, our version);

. Godin (where sets C are based on the concept extents);

. Lindig;

. Nourine;

. Valtchev (using horizontal splitting of the object set)

To improve the readability of charts, we sometimes omit algorithms that perform

much slower than the others.
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The Godin algorithm (and GodinEx) is a good choice in the case of sparse contexts.
However, when contexts become denser, its performance decreases dramatically. The
Bordat algorithm seems most suitable for large contexts, especially if it is necessary
to build the diagram graph. When jGj is small, the Bordat algorithm runs several
times slower than other algorithms, but, as jGj grows, the difference between Bordat
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and other algorithms becomes smaller, and, in many cases, Bordat finally turns out
to be the leader. For large and dense contexts, the fastest algorithms are bottom-up
canonicity-based algorithms (Norris, CbO, NextClosure).
It should be noted that the Nourine algorithm featuring the smallest time

complexity, has not been the fastest algorithm: even when diagonal contexts of the
form ðG;G; 6¼Þ (which corresponds to the worst case) are processed, its performance
was inferior to the Norris algorithm. Probably, this can be accounted to the fact that
we represent attribute sets by bit strings, which allows very efficient implementation
of set-theoretical operations (32 attributes per one processor cycle); whereas
searching in the Nourine-style lexicographic tree, one still should individually
consider each attribute labelling edges.
Figures 8–9 show the execution time for the contexts of the form ðG;G; 6¼Þ, which

yield 2|G| concepts. It is noteworthy that the algorithm of Valtchev is almost the best
in the worst case of ðG;G; 6¼Þ; being, sometimes, inferior to Norris. However, in other
situations, even in case of other dense contexts, it is far from being the fastest one.
Valtchev et al. (2000) suggest that this algorithm works better on database-like
contexts (obtained by nominal scaling). This must hold for the version using vertical
splitting (of the attribute set), but not for the version using horizontal splitting (the
one we implemented), since, even in database-like contexts, there are no special
relationships between objects (similar to the relationship between attributes obtained
by scaling from the same multi-valued attribute). Nevertheless, it can be possible to
introduce modifications such as sophisticated preliminary sorting that would make
this algorithm a fair choice in case of large databases with strong inner structure. We
believe that the potential of the Divide and Conquer approach is to be appreciated.
We also performed comparisons on the SPECT heart database (267 object, 23

attributes, 21549 concepts, 110589 edges in the diagram graph) available from the
UCI Machine Learning Repository (Blake and Merz 1998). The results are given in
figures 10–11.
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6. Conclusions

In this work, we attempted to compare, both theoretically and experimentally,
performance (time complexity) of some well-known algorithms for constructing
concept lattices. We discussed principles of experimental comparison of complexity,
making evaluation of other useful properties of algorithms a subject of further
research.
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A new algorithm (Stumme et al. 2000) was proposed quite recently. Its worst time
complexity is not better than that of the algorithms described above, but the authors
report on its good practical performance for databases with very large number of
objects (such as MUSHROOMS). Comparing the performance of this algorithm
with those considered above and testing the algorithms on large databases, including
‘classical’ ones, will be the subject of the further work. We can also mention works
(Carpineto and Romano 1996, Mephu Nguifo and Njiwoua 1998) where similar

Algorithms for generating concept lattices 25

0

5000

10000

15000

20000

25000

30000

10 11 12 13 14 15 16 17 18

|G| = |M|

T
im

e
in

m
se

c

Chein CbO NextClosure Norris Bordat GodinEx Godin Dowling

Figure 10. Concept set: contexts of theform ðG;G; 6¼Þ.

0

5000

10000

15000

20000

25000

30000

35000

10 11 12 13 14 15 16 17 18

|G| = |M|

T
im

e
in

m
se

c

CbO NextClosure Norris Bordat Godin Lindig Nourine Valtchev

Figure 11. Diagram graph: contexts of the form ðG;G; 6¼Þ.

FIRST PROOFS RH i:/T&F UK/Eta/Eta-0241.3d—J. Expt. Theor. Artif. Intell. (ETA) Paper 100241 Keyword



algorithms were applied for machine learning and data analysis, e.g. in Mephu

Nguifo and Njiwoua (1998) a Bordat-type algorithm was used. The incremental

algorithm proposed by Van Der Merwe and Kourie (2001) uses special ‘intent

operations’ (approximate and exact intent representatives) to determine the only

canonical generator of a concept before generating it. The algorithm in Yevtushenko

(2002) using so-called binary decision diagrams is reported to work fast for very

dense contexts.
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The choice of an algorithm for construction of the concept lattice should be based
on the properties of input data. Recommendations based on our experiments are as
follows: the Godin algorithm should be used for small and sparse contexts; for dense
contexts, the algorithms based on the canonicity test, linear in the number of input
objects, such as Norris, Close by One, and NextClosure should be used. Bordat
performs well on contexts of average density, especially, when the diagram graph is
to be constructed. Experiments with real data suggest that, when only concepts are
needed, the simple and intuitive algorithm of Norris is the best choice. When the
diagram graph should be constructed, it is better to use our modification of Bordat.
Of course, these recommendations should not be considered as the final judgement;
more experiments with various types of real data are to be done. By this work, we
would like rather to provoke further interest in well-substantiated comparison of
algorithms that generate concept lattices.
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