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Abstract. The problem of determining the size of a finite concept lattice is shown to be #P-complete.
Since any finite lattice can be represented as a concept lattice, the problem of determining the size
of a lattice given by the ordered sets of its irreducibles is also #P-complete. Some results about
NP-completeness or polynomial tractability of decision problems related to concepts with bounded
extent, intent, and the sum of both are given. These problems can be reformulated as decision
problems about lattice elements generated by a certain amount of irreducibles.
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1. Introduction

Concept (Galois) lattices are known to be extensively used in various methods of
data analysis, data mining, and machine learning. Some well-known batch poly-
nomial-delay and incremental algorithms for computing the set of all concepts can
be found in [2, 3, 5, 11, 12], and in a recent review [10]. The set of all concepts
can be exponential in the size of the input, e.g., in the case where the resulting
lattice is a Boolean one. Therefore, the knowledge of the number of concepts to
be obtained could be helpful for efficient resourse allocation. In this paper we
consider the problem of counting all formal concepts of a formal context and some
decision problems related to concepts with size constraints that play the role of
quality estimates in applications.

Since any complete lattice can be represented as a concept lattice [5] (see also [1]
for the final case), the results of this paper apply to arbitrary finite lattices given by
ordered sets of their irreducibles.

The following definition recalls some well-known notions from Formal Concept
Analysis (FCA) [5, 15].

DEFINITION 1. Let G and M be two sets called the set of objects and the set of
attributes, respectively, and I be a relation defined on G × M: for g ∈ G, m ∈ M,
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gIm holds iff the object g has the attribute m, the triple K = (G,M, I) is called
a context. If A ⊆ G, B ⊆ M are arbitrary subsets, then the Galois connection is
given as follows:

A′ := {m ∈ M | gIm for all g ∈ A},
B ′ := {g ∈ G | gIm for all m ∈ B}.

The pair (A,B), where A ⊆ G, B ⊆ M, A′ = B, and B ′ = A, is called a concept
(of the context K) with extent A and intent B (in this case we have also A′′ = A

and B ′′ = B).
All concepts of a formal context K induce a lattice, called the concept lattice,

which is usually denoted by B(K). By |B(K)| we denote the size of the concept
lattice, i.e., the number of all concepts.

2. The Number of All Concepts

The problem of computing the number of all concepts is a long standing one. The
best upper bound for this number proposed in [13] is |B| ≤ 3

2 · 2
√|I |+1 − 1 for

|I | > 2.
The following theorem explains why it is hard to compute this number or even

get a good estimate of it.

THEOREM 1. The following problem “Number of all concepts” is #P-complete.
INPUT Context K = (G,M, I).

OUTPUT The number of all concepts of the context K, i.e., |B(K)|.
Proof. We shall reduce the following #P-complete problem to ours: “The num-

ber of binary vectors that satisfy monotone 2-CNF of the form C = ∧s
i=1(xi1 ∨

xi2)” [14]:
INPUT Monotone (without negation) CNF with two variables in each conjunc-
tion C = ∧s

i=1(xi1 ∨ xi2), xi1 , xi2 ∈ X = {x1, . . . , xn} for all i = 1, s.
OUTPUT Number of binary n-vectors (corresponding to the values of variables)
that satisfy CNF C.

First, we construct 2-DNF D, the negation of C:D = ∨s
i=1(x̄i1 ∧ x̄i2). We

denote Di = (x̄i1 ∨ x̄i2), i = 1, s. The set of binary vectors that satisfy D is a union
of the sets of binary vectors that satisfy some conjunction Di . Each disjunction is
satisfied by every binary (n − 2)-vector with zero i1th and i2th components.

We reduce this problem to that of the number of concepts by constructing the
following context K = (G,M, I). The set of attributes is M = {m1, . . . , mn},
where each element of M biuniquely corresponds to a variable from X. For every
conjunction Di , i = 1, s we construct a context Ki = (Gi,M, Ii), where the
set of attributes is Mi = M\{mi1,mi2} := {mi1 , . . . , min−2}, the set of objects is
Gi = {g0

i , g
1
i , . . . , g

n−2
i }, and the relation Ii ⊆ Mi ×Gi is defined by object intents

as follows: {g0
i }′ = Mi , {gj

i }′ = Mi\{mij } for j ∈ 1, n − 2. Now the context K is
defined as K = (

⋃s
i=1 Gi,M,

⋃s
i=1 Ii).
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Now we show that every intent of K corresponds to an n-vector that satisfies D.
Every intent of K is an intent of Ki for some i (this i can be not unique). Note

that for all i = 1, s the closure system of intents of the context Ki form the power
set of Mi (we denote it by P (Mi)). An arbitrary element of this set of attributes
corresponds biuniquely to a binary n-vector, where each component corresponds
biuniquely to an element of M with the same number. This vector satisfies Di ,
since it has zeroes at i1th and i2th places. Therefore, this vector satisfies D.

It remains to show that each binary n-vector that satisfies D corresponds biu-
niquely to an intent of K. In fact, each binary n-vector v that satisfies D, satisifies
Di for some i (this i should not be unique). Then this vector has zero i1th and
i2th positions. Therefore, the corresponding set of attributes A belongs to P (Mi),
where Mi = M\{mi1 ,mi2}. Since P (Mi) is the closure system of intents of Ki

for each i, there is a set of objects {gi
1, . . . , g

i
r} ⊆ Gi , r ≤ n − 1 such that

{gi
1, . . . , g

i
r}′ = A.

The one-to-one correspondence between the intents of K and binary n-vectors
satisfying D is established. The intents are in one-to-one correspondence with
concepts. Thus, if we figured out the number of all concepts of K, we obtain the
number of all vectors satisfying D and, hence, that of the vectors satisfying C. The
reduction is realized. The proof of its polynomiality in the input size is obvious,
since the context K has |M| = n attributes and |K| = s(n − 1) objects. ✷
COROLLARY. The problem of determining the size of a finite lattice given by the
ordered sets of its join- and meet-irreducibles is #P-complete.

This follows directly from the Basic Theorem of the Formal Concept Analysis: any
complete lattice L is isomorphic to the concept lattice of the context K = (J (L),

M(L),≤), where J (L), M(L) are the sets of join- and meet-irreducibles of L, and
≤ is the order relation of L, respectively [5].

3. Decision Problems with Constraints on Concept Size

The following decision problems were motivated by applications of FCA and re-
lated methods in data analysis [4, 5], since the size of extent of a concept can be
considered as “support” of a concept and the size of intent says how “detailed” is
“description” of the concept.

The following classical NP-complete problem, called 3-Matching (or just 3-M)
[6], is used throughout this section in the proofs of NP-completeness of decision
problems concerning certain types of concepts.

INSTANCE Set M ⊆ X × Y × Z, where X,Y,Z are pairwise disjoint sets,
|X| = |Y | = |Z| = p, |M| = N .
QUESTION Does there exist a set M ′ ⊆ M such that |M ′| = p and no two
element of M ′ have equal components.
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We represent the 3-M problem by the following binary (p × N)-matrix B. It
consists of three submatrices X, Y , and Z, each submatrix has p columns and N

rows.
The rows of the matrix B are in one-to-one correspondence with the elements

of M: for each element (xi, yj , zk) ∈ M there is exactly one row in B such that
ith entry of the row in submatrix X, j th entry in submatrix Y , and kth entry in
submatrix Z are zero and the other entries in the row are ones. Thus, each row of
matrix B has exactly three zeros and each submatrix has exactly one zero in a row:

X Y Z

1 . . . 101 . . . 1 1 . . . 101 . . . 1 1 . . . 101 . . . 1
. . . . . . . . .

. . . . . . . . .

A 3-matching corresponds to a set of p rows with exactly one 0 in each column
in X, Y , and Z.

We define another matrix that will often be used in the proofs of completeness
results. Matrix Un is an n×n-matrix with zeros in the diagonal and ones in all other
entries. This is a matrix corresponding to the context K = (A,A �=) for some set
A: |A| = n.

THEOREM 2. The following “intent of exact size” problem is NP-complete.
INSTANCE Context K = (G,M, I), parameter k.

QUESTION Does there exist a concept (e, i) from B(K) such that |i| = k.
Proof. First, the problem obviously belongs to the class NP, since the test

whether a concept (e, i) ∈ B(K) is a solution to the problem takes O(|M|) op-
erations.

To show the NP-completeness of our problem we reduce the 3-M problem to it.
For each 3-M problem given by matrix B we construct the “intent of exact size”

problem for the context K = (G,M, I), where k = (N − p)(3p + 1), |G| = N ,
|M| = N(3p + 1) + 3p, and I is represented by the following matrix E with N

rows and N(3p + 1) + 3p columns. Its right submatrix E2 is isomorphic to B and
its left submatrix E1 consists of N submatrices Ei

1. Each submatrix Ei
1 has 3p + 1

columns. The ith row of matrix Ei
1 is filled with zeros, other rows of matrix Ei

1 are
filled with ones:

E1 E2
3p+1︷ ︸︸ ︷

0 . . . 0 . . .

3p+1︷ ︸︸ ︷
1 . . . 1

p︷ ︸︸ ︷
1 . . . 101 . . . 1

p︷ ︸︸ ︷
1 . . . 101 . . . 1

p︷ ︸︸ ︷
1 . . . 101 . . . 1

1 . . . 1 . . . . . . . . . . . . . . .

. . . . . . . . . 1 . . . 1 . . . . . .

. . . . . . . . . 0 . . . 0 . . . . . .

Thus, matrix E1 is formed from UN by copying each column exactly 3p + 1
times. Now we show that the 3-M problem with the above specified parameters has
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a solution iff the “intent of exact size” problem for k = (N − p)(3p + 1) and the
context represented by the matrix above has a solution.

Let the 3-M problem have a solution, then the product of the right parts (cor-
responding to the submatrix E2) of some p rows of the matrix E is a 3p-row
filled with zeros. The product of the left parts of these rows (corresponding to the
submatrix E1) is the row with (3p + 1)p zeros and (N − p)(3p + 1) units. This
means that there is an intent of the context K with the same size and the “intent of
exact size” problem has a solution. On the other hand, let the “intent of exact size”
problem for the context K = (G,M, I) given above and k = (N − p)(3p + 1)
have a solution. Then, there are r rows in the matrix E such that their product has
(N − p)(3p + 1) ones. Then, the number of zeros is p(3p + 1) + 3p of which
p(3p + 1) zeros belong to the left side (submatrix E1) and 3p zeros belong to the
right side (submatrix E2), since the right side is of width 3p. The number r of rows
cannot be less than p, since otherwise the number of ones in the left side of the
product would not have exceeded (p−1)(3p+1). The number of ones in the right
side of the product does not exceed 3p by all means, so the total number of ones
does not exceed (p − 1)(3p + 1) + 3p < p(3p + 1) + 3p.

At the same time, r cannot be greater than p, since otherwise the left side of the
product would have had no less than (p + 1)(3p + 1) > p(3p + 1) + 3p zeros,
which contradicts our assumption. Therefore, r = p and the problem 3-M has a
solution.

The reduction is accomplished. Its polynomiality follows directly from the fact
that the matrix E is polynomial with respect to p and N . ✷
COROLLARY. The following “extent of exact size” problem is NP-complete:
INSTANCE Context K = (G,M, I), parameter k.

QUESTION Does there exist a concept (e, i) from B(K) such that |e| = k.

The proof follows directly from the duality of objects and attributes.
Note that the following “minimal (maximal) intent” problems are obviously

solved in polynomial time:
INSTANCE Context K = (G,M, I), parameter k.

QUESTION Does there exist a concept (e, i) from B(K)

such that |i| ≤ k (|i| ≥ k).
Indeed, to get the minimal intents we look through all attribute concepts, i.e.,

concepts of the form (m′,m′′) for all m ∈ M.
If there are no intents with the desired property |i| ≤ k, then other intents do

not satisfy it a fortiori. The test takes O(|M|2|G|) operations. To get the maximal
intents, we look through all object concepts, i.e., concepts of the form (g′′, g′) ∈ M.
The test takes O(|M||G|2) operations.

Due to the duality between objects and attributes minimal intents correspond
to maximal extents and maximal intents correspond to minimal extents. Thus, the
following “minimal (maximal) extent” problem is also trivially polynomial:
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INSTANCE Context K = (G,M, I), parameter k

QUESTION Does there exist a concept (e, i) from B(K)

such that |e| ≤ k (|e| ≥ k).
The situation is quite different when we consider problems related to the total

size of concept, i.e., to |e|+ |i|. If a context is represented by the binary matrix and
(e, i) is a concept of this context, then the value 2(|e| + |i|) is the perimeter of the,
maximal by inclusion, rectangular filled with ones that corresponds to the concept
(e, i). We show that the size of a maximal concept is determined in polynomial
time, whereas the problem of finding a minimal concept is intractable.

THEOREM 3. The following “maximal concept” problem is solved in polynomial
time.
INSTANCE Context K = (G,M, I), parameter k.

QUESTION Does there exist a concept (e, i) from B(K) such that |e| + |i| ≥ k.
Proof. Consider the bipartite graph B that corresponds to the context K =

(G,M, I). Each concept (e, i) from B(K) corresponds to a maximal by inclusion
complete bipartite subgraph of B and |e| + |i| is the number of vertices of this
subgraph. Now consider the context K = (G,M, Ī ) with relation Ī = G × M\I ,
the complement of I , and the corresponding bipartite graph �B. A concept (e, i)

from K corresponds to a maximal by inclusion independent set of vertices of �B,
i.e., a set where where no pair of vertices is connected by an edge. A concept (e, i)
of B(K) with the largest |e| + |i| corresponds to the largest (in the number of
vertices) independent set of �B . According to the König theorem (see, e.g., [8]),
the number of vertices in the largest independent set is �B − |M|, where |�B| is the
number of vertices in �B and M is the number of edges in the maximal matching of
�B. The size of a maximal matching can be found by polynomial-time algorithm,
for example, by the algorithm from [9]. ✷
THEOREM 4. The following “minimal concept” problem is NP-complete.
INSTANCE Context K = (G,M, I), parameter k.

QUESTION Does there exist a concept (e, i) from B(K) such that |e| + |i| ≤ k.
Proof. We prove the theorem by reducing the 3M problem to ours, however this

time we need an intermediary problem, which is much similar to 3M. Let each
column of the matrix B, which represents an individual 3M problem, be copied
2p3 + p times and each row of the obtained matrix is copied twice. Thus, we
obtained a binary matrix with 2N rows and 3p(2p3 + p) columns. We call this
matrix B1.

It is obvious that a 3M problem has a solution iff there is a set of exactly p pairs
of rows in the corresponding matrix B1 such that rows in pairs are identical and
for every column of B1 there are exactly two rows from this set with zeros in this
column. The binary product of all these 2p rows is a zero 3p(2p3 + p)-vector.

Consider the matrix B2 formed from matrix UN by copying twice each row.
Thus, B2 has 2N rows and N columns and for every j = 1, N the rows 2j − 1 and



SIZE OF A LATTICE AND RELATED DECISION PROBLEMS 319

2j have j th zero component (other entries are ones). Now we adjoin matrix B2 to
matrix B1 from the left. We denote the resulting matrix by B3. Consider the context
K = (G,M, I) with 2N objects, N + 3p(2p3 +p) attributes, and relation I given
by matrix B3. Let k = N + p. We show that the initial 3M problem has a solution
iff there is a concept (e, i) from B(K) such that |e| + |i| ≤ k.

Suppose that there is a matching in the 3M problem given by matrix B, then
there are p pairs of rows in B3 such that for their binary product its part in B1 is
zero vector and its part in B2 is a vector with p zeros (since the vectors in pairs
are identical) and, hence, N − p ones. These 2p pairs of rows make an intent
of a concept corresponding to the matrix B3, since any other row in matrix B3

multiplied with those from the indicated p pairs will give another result. Thus, we
have a concept (e, i) from B(K) such that |e| = 2p, |i| = N − p, and |e| + |i| =
2p + N − p = N + p.

Conversely, suppose that there is a concept (e, i) from B(K) such that |e| +
|i| ≤ k = N + p. Consider the rows of matrix B3 that correspond to the extent
of this concept. The part of these rows that correspond to matrix B1 should be a
zero vector, since otherwise (note that any nonzero product of rows from matrix
B1 contains at least 2p3 + p ones and N ≤ p3) |e| ≥ 1, |i| ≥ 2p3 + p, and
|e|+ |i| ≥ 2p3 +p+1 > N +p, which violates the assumption. Now let us figure
out the number of rows corresponding to the concept. Consider the part of the rows
that correspond to matrix B2. The number of rows cannot be less than 2p, since
otherwise there would be a matching for matrix B of size less than p. Suppose that
this number is r > 2p, then |e| + |i| = 2r + (N − r) = N + r > N + p, which
contradicts the assumption. Therefore, the number of rows is 2p and this gives us
a matching for the 3M problem with matrix B.

The reduction is realized. Its polynomiality follows from the polynomiality of
the number of rows (2N) and columns (N + 3p(2p3 + p)) of matrix B3. ✷
COROLLARY. The following “exact size concept” is NP-complete.
INSTANCE Context K = (G,M, I), parameter k.

QUESTION Does there exist a concept (e, i) from B(K) such that |e| + |i| = k.
Proof. Having an individual “minimal size” problem for k = k1, we try to solve

the “exact size concept” problem for k = 1, k1. If for any k from this interval a
solution exists, then the “minimal size” problem is solved, otherwise no solution
exists. The reduction is realized and its polynomiality is obvious. ✷

4. Conclusion

We proved that the problem of determining the size of a finite lattice given by
its irreducibles is #P-complete. It remains unknown whether this result holds for
interesting classes, such as distributive or modular lattices. Note that the reduction
that we used in Section 1 brings about a concept lattice, which is not necessarily
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distributive. Distributivity can be recognized in polynomial time if a lattice is given
as an ordered set of irreducibles (e.g., by means of “arrow relations,” see [5]). The
tree structure of distributive lattices helps to efficiently solve certain combinatorial
problems [7]. So, we can hope that determining the size of a finite distributive
lattice is polynomially tractable.

The results for the decision problems with constraints on the concept sizes can
be briefly represented by the following table:

≤ = ≥
|i| P NP P
|e| P NP P

|e| + |i| NP NP P

Here P denotes that there exists a polynomial algorithm, and NP denotes NP-
completeness of the problem. For instance, the upper left element of the table
means that the problem “does there exist a concept such that |i| ≤ k?” can be
solved by a polynomial algorithm. It is obvious that all the mentioned counting
and decision problems are solved in polynomial time when the number of ones in
a column or/and in a row of the binary matrix representing the context is bound
by a constant. As in the case of the counting problem it remains unknown whether
these decision problems are tractable if the concept lattice is distributive.
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