
The Government of the Russian Federation
Autonomous federal state institution

of higher professional education

National research university

"Higher school of economics"

School of Software Engineering

Software Management Department

MASTER’S DEGREE THESIS

Topic:______«Architecture Model Based Microprocessor___________________
______________________Test Generation Tool»__________________________

Student of class №_271mURPO_

____Andrei Tatarnikov____

Scientific advisor

professor, doctor of phys.-math. sciences

__Alexander K. Petrenko__

Consultant

Moscow, 2013

2

Abstract

In the current industrial practice, test program generation and simulation is

the main approach to system-level functional verification of microprocessors.

Tremendous growth in complexity of modern microprocessor designs and tight

time-to-market requirements make it an increasingly difficult task. Despite that fact

that modern software market offers a range of powerful test program generation

tools, development of functional tests still remains a laborious and time-demanding

job, which makes functional verification the bottleneck of the microprocessor

design cycle. A common problem of most such tools is that they were developed

for particular microprocessor architecture and are hard to adapt to new designs. In

fact, a tool typically has to be rewritten from scratch. A solution to this problem is

to use architecture models that hold all knowledge about a specific microprocessor

to configure a test generation tool. This work presents a test program generation

tool called MicroTESK that uses formal specifications to describe the architecture

of a design under verification. The specification is automatically translated to an

architecture model that serves a basis for creating tests for the given

microprocessor design. Such an approach helps keep to a minimum the effort

required to configure a test generation tool for a particular microprocessor

architecture, which significantly reduces the time required to develop functional

tests.

Keywords—microprocessor design, test program generation, model-based

testing, architecture description languages, test templates, random tests,

constrained tests, combinatorial tests, directed tests.

3

Acknowledgements

I would like to express my gratitude to Prof. Alexander K. Petrenko, my

scientific advisor and my manager at ISP RAS, and to Prof. Sergey M. Avdoshin,

the head of the software Engineering school at NRU HSE, for a chance to work on

this research project. This was the most interesting and challenging topic I could

imagine. This work enriched my competence in the area of verification and

significantly contributed to my further professional development. Also, special

thanks to Alexander S. Kamkin, my team leader at ISP RAS, for his invaluable

ideas and support. I really appreciate the chance to do interesting things together

with good people! Finally, I would like to thank Prof. Rajat Moona from Indian

Institute of Technology Kanpur who kindly shared with us materials on the Sim-

nML architecture description language.

4

Contents

Abstract .. 2

Acknowledgements .. 3

1. Introduction .. 5

2. Existing methods and tools .. 9

3. Architecture description languages ...11

4. Basics of Sim-nML ..14

5. Research and development task description ..19

6. Architecture of MicroTESK ..21

7. Modeling framework ...23

7.1 Microprocessor model ...23

7.2 Translator ...27

7.3 Modeling library ..31

8. Testing framework ...35

8.1 Test templates ..36

8.2 Test template processor ...41

8.3 Test sequence generators ...43

8.4 Test data generators ...45

8.5 Constraint solver engine ..47

9. Trials: the ARM7TDMI architecture model ..53

10. Approbation and publications...57

11. Conclusion ..58

References ..59

5

1. Introduction

As modern microprocessors are becoming more and more complex, the role

of systematic activities for ensuring their correctness and reliability becomes

critically important. These activities are called verification and testing. Verification

is applied at the development stage and focuses on detecting logical faults in

microprocessor designs that are represented by software models described in

hardware description languages such as VHDL and Verilog. In other words, when

we are talking about functional verification of microprocessors, we actually mean

checking their models for correctness. As regards testing, which is also referred to

as post-silicon validation, it is performed at the manufacturing stage to diagnose

physical faults in integrated circuits. A common approach for both tasks is creation

and execution of test programs that represent instruction sequence raising some

events in the design under verification and optionally checking validity of the

resulting microprocessor state.

Approaches to creating test programs and to performing functional testing

have been a subject of research nearly since the invention of microprocessors.

However, new approaches continue to emerge since increasing complexity

constantly demands for new more efficient methods. Quality of testing is

determined by the level of test coverage. Due to enormous ranges of states in

modern microprocessors, creation of high-quality tests is a challenging task that

requires a significant amount of time and effort. In fact, it is common that up to

half of resources spent on microprocessor design is devoted to verification. In

response to this issue, new methods aim to facilitate verification by using various

techniques to automate this process. Approaches to automated test program

generation can be divided into the following categories: random, combinatorial,

template-based and model-based. The important point is that no single approach

can be used as a “silver bullet” for all kinds of verification and testing tasks.

6

Consequently, in real-life practice different approaches are combined to

complement each other.

Tools that create test programs for a given microprocessor architecture in an

automated way are referred to as test program generation tools. A common

drawback of such tools is that test generation logic is often tightly coupled with

architecture-specific knowledge. This significantly complicates maintenance. In

fact, when it is required to support new microprocessor architecture, a common

solution is to rewrite the existing tool from scratch. No surprise, it increases the

cost of microprocessor development and causes delays in the delivery schedule.

Another important issue is that most of test generation tools available in the market

are oriented on a limited set of test generation methods. As a result, when it is

required to combine different techniques, verification engineers are forced to use a

number of tools with different input and output formats. This causes certain

inconvenience, since it might be problematic to integrate the tools and keep their

configurations consistent. Such an approach works when different generation

methods are used for connected, but independent tasks. For example, general

functionality is tested by randomly generated programs, while tests for critical

logic are generated with the help of advanced model-based techniques. However,

when it comes to settling tightly dependent problems by means of two or more

tools, it becomes a serious challenge as it might require deep knowledge of their

internal architecture. The root of the problem is that each tool uses its own

representation of the target design which is often hidden from others. As a

consequence, knowledge about same design aspects is duplicated several times

increasing the required maintenance effort proportionally to the number of

integrated tools.

To overcome the described drawbacks, an efficient test generation tool

should possess the following properties: reconfigurability and extendability. The

7

former means an ability to easily switch to a new microprocessor design without

having to modify the core functionality of the tool. The latter means flexibility of

the tool architecture, which allows adding new functionality with minimal effort.

In our case, it should be possible to integrate different generation techniques by

installing corresponding extension components into the tool.

The thesis proposes an approach to the architecture of a test program

generation tool that facilitates reconfiguring to new microprocessor architecture

and integrating a wide range of test generation techniques. This approach is

implemented in a tool called MicroTESK. The required flexibility is achieved by

isolating logic responsible to specific tasks into independent components. To

facilitate reconfiguring, knowledge about specific microprocessor architecture is

encapsulated in an architecture model that is used by the architecture-independent

core of the tool to generate test programs for the specified design. The architecture

model includes an instruction set model and a coverage model (knowledge about

situations to be covered by tests). Tools that follow this approach are usually called

model-based test program generators. Typically, test cases for a microprocessor

design are described manually in the form of test templates that represent an

abstract description of a testing goal to be covered specified in terms of the

instruction set model and the coverage model. Model-based test program

generation is a time-proven approach implemented in industrial tools such as

Genesys-Pro and RAVEN. However, creating a microprocessor’s architecture

model is rather difficult and requires special skills verification engineers usually

lack for. To overcome this problem, MicroTESK makes use of architecture

description languages (ADL), which are commonly used in the area of functional

simulation, to specify the target architecture. The current version of the tool uses

the Sim-nML language. This is a high-level formalism that has a format similar to

pseudocode used in microprocessors’ reference manuals to describe instruction

8

semantics. Such a format is easy to maintain for verification engineers that lack

programming skills. Usage of high-level specifications and automated translation

of these specifications into architecture models make it easy to adapt the tool for

new architectures or to reconfigure it for several revisions of the same design. To

provide additional flexibility, the architecture of MicroTESK facilitates adding

support for new generation techniques and integrating models of new design

aspects (e.g. memory management and pipelining).

The tool is decomposed into two layers: core and extensions. The core

includes functionality to model the instruction set and implementations of

generation techniques based on knowledge about the instruction set. Such an

approach is explained by the fact that every test program generator requires

information about microprocessor instructions. Consequently, the instruction set

model was chosen as an interface for integration of various generation methods.

Extensions are responsible for solving custom generation and modeling tasks. For

example, they may add facilities for modeling cache hierarchy and generating tests

that would cover cache-related situations.

The architecture of MicroTESK and the ideas that lay behind the

implemented approach are discussed in more detail further in this thesis. Chapter 2

contains an overview of existing test generation methods and tools. Chapters 3 and

4 introduce ADLs and provide a description of Sim-nML. Chapter 5 formulates

technical tasks to be solved in the present work. In Chapter 6, a general description

of MicroTESK’s architecture is provided. Chapters 7 and 8 discuss the main parts

of MicroTESK: modeling framework and testing framework respectively. Chapter

9 gives information about the results of trials of the tool with a Sim-nML

specification of an ARM microprocessor. Chapter 10 lists publications dedicated to

MicroTESK and conferences where it was presented or discussed. Finally, Chapter

11 concludes the thesis.

9

2. Existing methods and tools

The approach implemented in MicroTESK is based on a combination of

well-known techniques coined from different sources. Over the last decades, a lot

of industrial and academic research has been done into hardware verification

methods. This chapter gives an overview of the most significant approaches and

industrial tools and discusses their advantages and disadvantages.

The best known industrial test program generation tool is Genesys-Pro by

IBM Research [5]. This is a model-based tool that operates with two kinds of

knowledge: architectural model (includes an instruction set model and a coverage

model) and test templates. Architecture models are created using high-level

building blocks provided by the modeling framework included in the tool. Test

templates represent an abstract description of verification scenarios specified in

terms of the knowledge contained in the architectural model. Test templates allow

defining preconditions for individual scenario instructions (e.g., boundary

conditions, exceptions, cache hits/misses, etc.). For each precondition, the tool

formulates a constraint satisfaction problem (CSP) and generates test data by

solving this CSP. Unfortunately, there is no detailed information available on how

to create architecture models for Genesys-Pro. It is known that modeling

instructions that affect memory devices can be problematic. Therefore, there are

reasons to think that Genesys-Pro is hardly reconfigurable if significant

modification of memory devices’ configuration is required.

Another popular industrial solution is RAVEN (Random Architecture

Verification Engine) by Obsidian Software Inc (acquired by ARM) [6]. This tool

generates fully random, semi-random or user-directed test programs for

microprocessors. Like Genesys-Pro, it uses architecture models to configure the

tool and test templates to specify user-directed scenarios. Architectural models are

created by the tool vendor in cooperation with microprocessor manufacturers.

10

Configuration for custom designs can be done with the help of the generator

construction set (GCS), a C++ API to the RAVEN core. Due to lack of information

on this technology, it is hard to access how much effort it demands. However,

creating an architecture model for RAVEN is unlikely to be an easy task for a

verification engineer. Supposedly, it involves close interaction with the tool's

developers, which is inconvenient and will inevitably lead to delays.

An interesting approach to modeling based on specifications in architecture

description languages is discussed in the work of Prabhat Mishra and Nikil Dutt

[7]. The idea is to use graph-based coverage models to generate functional tests.

The model is automatically built from a specification in the EXPRESSION

architecture description language [8]. Tests are generated in the following way: the

tool processes the created model to extract test situations to be covered in a test

program. This procedure is based on model checking. A test case is constructed as

a counterexample for the negation of the target test situation.

Finally, Institute for System Programming of the Russian Academy of

Sciences (ISPRAS) has already done some research dedicated to development of

test program generation tools [1], [2], [17], [18], [19], [20], [28]. The present work

summarizes the accumulated ideas and provides implementation for methods

formulated in the earlier research works.

11

3. Architecture description languages

MicroTESK uses the Sim-nML [4] architecture description language to

describe the architecture of the design under verification. This language is an

extension of the nML [3] language, which facilitates creating simulation tools.

nML was designed in the beginning of 1990s by Markus Freericks from

Technische Universität Berlin. Now it is supported by Indian Institute of

Technology Kanpur that proposed an extension to the original language called

Sim-nML.

Before discussing facilities offered by Sim-nML in more detail, let us take a

wide view of architecture description languages (ADL). First of all, it is important

to understand what an architecture description language is. ADLs are high-level

languages specifically designed to model microprocessor architectures. In contrast

to hardware description languages such as Verilog and VHDL that describe the

structure of electronic circuits in full details, they provide high-level specification

of a microprocessor architecture (or so-called “programmer’s model”). ADLs

facilitate extraction of information on instruction syntax and exploring behavioral

properties of instructions. There are two criteria for classifying ADLs: content and

objective. The content-oriented classification groups ADLs according to the nature

of the information an ADL is aimed to describe. For instance, they can provide

information on behavioral properties, on structural properties or mixed

information. Structural ADLs are close to hardware description languages, they

describe microprocessor units and mechanisms of their interaction. Structural

ADLs can be used to synthesize hardware. Typically, there is no explicit

specification of the instruction set, but it is usually possible to extract this

information. The main disadvantage is that specifications in such ADLs contain a

great number of details and creating specifications is a laborious task. An example

of such language is MIMOLA [8]. Behavioral ADLs are designed to describe the

12

instruction set of the target microprocessor. They specify the syntax and semantics

of instructions, supported addressing modes and the structure of memory and

registers. Such details as memory management and pipelining are usually skipped.

Behavioral ADLs are convenient to create light-weight easy-to-maintain

specifications. As a price for their simplicity, they cannot be used for hardware

synthesis or for creating clock-accurate simulators. Languages belonging to this

category include nML[3], Sim-nML [4] and ISDL [8]. Mixed ADLs combine traits

of both structural and behavioral ADLs. They allow not only describing the

instruction set, but also some details of the microprocessor’s microarchitecture.

The most common mixed ADLs are EXPRESSION [8] and LISA[8].

The objective-oriented classification is driven by the purpose of an ADL.

Based on the objective, ADLs can be divided into the following categories:

simulation-oriented, synthesis-oriented, compilation-oriented, and validation-

oriented. There is no strict on-to-one correspondence between the two

classifications.

To be successfully used to provide configuration for a test program

generation tool, an ADL should satisfy some requirements. Notice that there is no

ADL that was specially developed for this task. For this reason, a choice of

formalism will involve some compromise. However, it is obvious that behavioral

ADLs are more suitable. The list below contains requirements an ADL should

satisfy. A suitable ADL should:

 be simple (minimum of low-level details);

 provide information on instruction syntax;

 describe instruction semantics;

 have public documentation and description of grammar;

 be extendable.

13

Several behavioral and mixed ADLs were considered as candidates to be

used in MicroTESK. Eventually, Sim-nML was chosen as the most suitable. There

are several ADLs that satisfy the formulated requirements. However, the main

issue with most of them is that there is a little or no documentation available on

these languages. For Sim-nML, Indian Institute of Technology Kanpur and

Toulouse Research Institute in Information Technology (IRIT) provided manuals,

grammar description and examples of specifications. For this reason Sim-nML was

chosen to be used in MicroTESK.

14

4. Basics of Sim-nML

Sim-nML is a mixed ADL that is used for creating various simulators and

disassemblers [4]. It is a high-level formalism targeted for describing arbitrary

microprocessor architectures. Sim-nML works at the instruction set level hiding

implementation details of the microprocessor design. Sim-nML is based on

attribute grammar and represents a programmer’s model that includes the

following elements: register and memory definitions, supported addressing modes,

syntax and semantics of instructions.

Sim-nML uses a hierarchical tree-like structure to describe an instruction set.

Such a structure facilitates grouping related instructions and sharing their common

parts. An instruction is described as a path in the tree from the root node to a leaf

node. The set of all possible paths represents an instruction set. A node describes a

primitive operation responsible for some task within an instruction. Nodes have

attributes that can be shared with their parents. Actions performed by instructions

are described as operations with registers and memory that represent bit vectors of

arbitrary size.

A specification in Sim-nML starts with definitions of types and constants.

For example, a type definition for a 32-bit word looks as follows:

let WORD_SIZE = 32

type word = card(WORD_SIZE)

Type definitions and constants can be used to describe registers and

memory. In addition to registers and memory, it is also possible to define

temporary variables, internal abstractions provided by Sim-nML to store

intermediate results of operations. They do not correspond to any data storage in

real hardware and do not save their data across instruction calls. Also, there is

often a need to specify some properties of the described model. For this purpose,

special constants are used. For example, the code below defines general-purpose

15

registers, memory and a temporary variable. Also, there are two special constants

that specify endianness and establish a correspondence between the general

purpose register number 15 and program counter. Here is the code:

reg GPR[32, word]

mem M[2 ** 20, byte]

var carry[1,bit]

let byte_order = "little"

let PC = "GPR[15]"

As it has already been said, an instruction set is described as a tree of

primitive operations. There two kinds of primitives: operations and addressing

modes. Operations describe parts of instructions responsible for specific tasks and

can be used as leaf and root nodes. Addressing modes are aimed to customize

operations (for example, they encapsulate rules for accessing microprocessor

resources). They can only be used as leaf nodes. For example, here are simplified

examples of operation and addressing mode specifications:

mode REG(i: nibble)=R[i]

syntax = format("R%d", i)

image = format("01%4b", i)

op Add()

syntax = "add"

image = "00"

action = { DEST = SRC1 + SRC2; }

Operations and addressing modes have three standard attributes: syntax,

image and action. The first two specify textual and binary syntax. The third

describes semantics of the primitive. In addition, addressing modes have a return

16

expression that enables them to be used as variables in various expressions.

Attributes can be shared with parent primitives that refer to a given primitive.

Primitives are arranged into a tree using production rules. There are two

kinds of production rules: AND rules and OR rules. AND rules specify parent-

child relationships where a child primitive is described as a parameter of its parent.

Here is an example of an AND rule:

op arith_inst(act: Add, op1: OPRND, op2: OPRND)

This is the header of the “arith_inst” operation that states that the

“arith_inst” operation node has three child nodes: the “act” operation and the

“op1” and “op2” addressing modes. The syntax of an operation header is similar to

a function where parameter types specify the primitives the rule refers to.

Parameter can be, in turn, parameterized with other primitives (they will be

encapsulated behind attributes). For this reason child nodes represent independent

instances that are accessed from their parent node via parameters. OR rules specify

alternatives. This means that a group of primitives is united under some alias so

that each of them can used when this alias is specified in an AND rule. An OR rule

looks as follows:

op Add_sub_mov = Add | Sub | Mov

Figure 1 displays a tree path describing the “mov” instruction from an

imaginary instruction set. This instruction copies data from one register to another.

The root operation of the instruction is called “instruction”. According to Sim-

nML conventions, there can be only one root operation. Usually the root operation

is responsible for such common actions as increment of the program counter. The

root operation is linked to the “Arithm” operation with the help of an AND rule.

This operation describes a group of arithmetic operations. It is parameterized with

the “Add_Mov_Sub” and “OPRND” primitives. Both of them are specified as OR

rules. The first one describes arithmetic operations that can be performed by the

17

“Arithm” primitive while the second one specifies supported addressing modes.

Dashed lines that connect OR-rules with their child primitives specify possible

alternative paths. Instructions are identified by the terminal operation node of the

path (in this example, it is the “Mov” node). An important note is that, to avoid

ambiguity, nodes can have only one child operation.

Instruction

Arithm

inst

Add_Mov_Sub

Add

act

SubMov

OPRDOPRD

IREG MEMREG

OPRD

IREG MEMREG

op1

op2

Figure 1. Operation tree for the Mov instruction

The syntax of Sim-nML resembles the syntax of the pseudocode used in

microprocessor architecture manuals to describe instruction semantics. For

example, here is the description of instruction ADD from MIPS64 manual [9]:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then

 UNPREDICTABLE

endif

temp ← GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)

if temp32 ≠ temp31 then

 SignalException(IntegerOverflow)

else

 GPR[rd] ← sign_extend(temp31..0)

endif

Such a description can be translated to Sim-nML with minimal effort.

Providing that all needed data types, resources and operations describing common

18

functionality of instructions have already been specified, the specification of the

ADD instruction (or, to be more precise, the terminal operation that distinguishes it

from other similar instructions) will look as follows:

op ADD(rd: GPR, rs: GPR, rt: GPR)

action = {

 if (NotWordValue(rs) || NotWordValue(rt)) then

 UNPREDICTABLE();

 endif;

 tmp_word = rs<31..31>::rs<31..0> + rs<31..31>::rt<31..0>;

 if(tmp_word<32..32> != tmp_word<31..31>) then

 SignalException("IntegerOverflow");

 else

 rd = sign_extend(tmp_word<31..0>);

 endif;

}

As we can see, describing an instruction based on an instruction set manual

is a relatively easy task that can be performed by a verification engineer who does

not have significant programming skills.

Describing all features of Sim-nML in full detail is out of scope of this work.

Detailed descriptions of nML and Sim-nML can be found in works [3] and [4]

respectively.

19

5. Research and development task description

The goal of the present work is to propose an approach to the architecture of

a test program generation tool that facilitates reconfiguring the tool to new

microprocessor designs and simplifies adding support for new test generation

techniques. The proposed approach will be implemented in test program generation

tool MicroTESK. Here is the list of tasks that should be implemented:

1. Design the architecture of MicroTESK. This includes decomposing the

tool into subsystems and designing interfaces that will describe

mechanisms of their interaction.

2. Implement the model API (a library of interfaces and classes that will be

used as building blocks for the model).

3. Implement the Sim-nML translator. The translator processes a

specification in Sim-nML and generates an architecture model in Java on

a basis of the model API.

4. Implement the test generation engine and API for creating various

generators. The generation engine processes test templates and generates

tests for the specified architecture. It includes a set of generator

components responsible for specific tasks implemented basing on the API.

5. Implement test sequence generators. During the first stage of test

generation, concrete sequences are produced on a basis of an abstract

description provided in test templates. Sequence generators implement

different techniques of producing instruction sequences.

6. Implement test data generators. Arguments of some instructions may not

be specified explicitly in test templates. Instead of being specified as

concrete constant values, they can be generated at random or calculated

20

by solving a CSP. Calculation of such parameters is performed at the final

state of test generation by test data generators that implement specific

techniques of producing test data.

7. Implement constraint solver API. MicroTESK uses external constraint

solver engines to generate test data. To interact with them, special API

should be implemented.

8. Create a specification of a real microprocessor. To demonstrate the

implemented solution and to assess its effectiveness, a Sim-nML

specification of a real (or close to real) microprocessor architecture should

be provided.

9. Create examples of test templates for the specified microprocessor

architecture.

MicroTESK is an open-source tool developed at ISPRAS. The main

development instruments are Java, Eclipse, ANTLR and JRuby.

21

6. Architecture of MicroTESK

MicroTESK performs two primary tasks: (1) synthesis of architecture

models on a basis of design specifications and (2) generation of test programs for

the given architecture model from test templates. Consequently, the tool is

decomposed into two loosely coupled features: (1) modeling framework and (2)

testing framework. Generally speaking, an architecture model serves as output data

for the former and as input data for the latter. A high-level scheme of

MicroTESK’s architecture is displayed in Figure 1.

Modeling Framework

Testing Framework

Design Model Coverage Model

Translator

Coverage Extractor

Design Library

Test Template
Processor

Testing Library

Coverage Library

Model

Constraint
Solver Engine

Formal
Specifications

Test Templates

Test ProgramsExternal Solvers

Test Sequence Generators

Test Data Generators

Model Generator

Modeling Library

Figure 2. General structure of MicroTESK

The modeling framework is responsible for building an architecture model

on a basis of provided formal specifications. It includes two main components: the

translator and the modeling library (that contains design and coverage libraries).

The former processes specifications and generates a model in Java and the latter

provides building blocks for the model. The testing framework generates tests on a

basis of test templates and the model provided by the modeling framework. Its

components are as follows: a test template processor (processes test templates to

generate test programs), a testing library (contains test sequence generators and test

22

data generators used by the test template processor) and a constraint solver engine

(organizes interaction between test data generators and external SMT solvers).

Test program generation with MicroTESK is performed in several stages

that use different components. Here are the generation stages:

 A verification engineer provides an ADL specification of the target

microprocessor architecture based on design documentation.

 The translator of the modeling framework parses the specification and

builds an architecture model in Java using building blocks provided by the

modeling library.

 The verification engineer creates test templates for test cases to be

generated. Test templates are described in terms of the architecture model.

 The test template processor of the testing framework builds an internal

representation of the provided test template and processes with generators

from the testing library.

 The test sequence generators of the testing library produce a series of

abstract test programs that specify instruction sequences to be placed in

generated test cases, but do not specify concrete test data for instruction

calls where they has not been explicitly specified as constant values.

 The test data generators of the testing library generate all required testing

data with the help of constraint solver engine and produce a series of

concrete test program (expressed as some internal representation).

 The test template processor simulates the execution of concrete test

programs with the architecture model to update the model’s internal state

and generates source code of test programs.

Components that are involved in test generation are described in subsequent

sections.

23

7. Modeling framework

The role of the modeling framework is to prepare the environment for test

generation. It provides functionality creating a microprocessor model basing on

formal specifications. As it has already been said, there two principal components:

the translator and the modeling library. Before discussing then in detail, let us have

a closer look at the generated microprocessor model.

7.1 Microprocessor model

The microprocessor model consists of the design model and the coverage

model. Information provided by both models serves as a basis for describing test

cases. Unified interfaces of the model allow applying various generation

techniques implemented in MicroTESK to different microprocessor design without

having to modify the tool’s core. The conceptual scheme of a microprocessor

model is displayed in Figure 3. Interaction with the model is performed using three

abstractions: (1) meta information provider, (2) model state observer and (3)

instruction call configurator. They encapsulate details of the design model and the

coverage model and make them appear as a whole. In fact, both models are tightly

coupled, but describe different properties of a microprocessor. The coverage model

is built on top of the design model and summarizes its behavioral properties.

Microprocessor Model

Meta Information

Provider

Model State

Observer

Instruction Call

Configurator

Design Model

Coverage Model

Instructions

Resources

Test Situations

Grouping Rules

Figure 3. Conceptual scheme of a microprocessor model

24

The main responsibility of the design model is tracking the state of the

microprocessor during test generation. Information on the current state is needed to

create self-checking tests and to generate test data on a basis of constraints

formulated in terms of the current state. The design model allows simulating

execution of microprocessor instructions and monitoring microprocessor resources

(registers, memory). Also, the design model is responsible for producing textual

and binary code of simulated instruction calls that will be inserted in test programs.

The instruction set model serves as a core of the design model (information on

instruction syntax is essential for all kinds of test generation techniques). In the

current version of MicroTESK, the design model contains only an instruction set

model based on Sim-nML specifications. However, the design model has extension

points that can be used to integrate models of microarchitecture elements such as

memory management unit.

Interaction with the design model is performed via the model state observer

and instruction call configurator. Both interfaces are independent of the model

configuration (instruction set, registers, memory configuration and other

properties). To identify elements of the model, each design element provides meta

information which is available through the meta information provider. This

information serves as a basis for specifying instruction calls and requests for

information on the model state. This allows working with different models in a

uniform way and adding support for modeling new elements without having to

modify the interfaces.

The coverage model contains information about behavioral properties of the

target design. It describes test situations and rules for grouping similar instructions.

This information serves as a basis for creating test cases. Test situations are

typically described as constraints expressed in terms of instruction parameters and

the model state.

25

From a programmer’s point of view, generated microprocessor models are

represented by a hierarchy of objects hidden behind public interfaces. The public

part of the model includes objects that implement the three main services of the

model (namely, (1) meta-information provider, (2) model state observer and (3)

instruction call configurator). These abstractions interact with the internal part to

perform their tasks. The internal part of the model contains the following entities:

 A model of memory resources (register banks, memory lines, temporary

variable stores, internal flags). Information it stores can be read and

written using the state observer. To identify specific resources, the entity

metadata describing its contents. The metadata is aggregated by the

microprocessor model's metadata provider. Inside the model, operations

with resources can be performed by the addressing modes and operation

primitives that have full access to them.

 Addressing mode models. Provide implementations for the rules for

accessing memory resources. Allow reading/writing data in a uniform

way from/to various sources. Used as input parameters of instructions. To

be able to be dynamically instantiated and initialized with different input

parameters, addressing modes provide special builders that allow users of

the model to create required objects. Like other entities, provide metadata

that describe the format of their input parameters. Addressing modes

described by OR-rules (a set of alternatives) aggregate metadata and

builders of other addressing modes allowing choosing at runtime which

object should be created.

 Operation models. Represent components that perform smaller parts of

instruction tasks (contain parts of instruction logic and syntax

description). Operations aggregate other operations and addressing modes

to build fully functional instructions.

26

 Instruction descriptions. Implement the rules of grouping operations and

addressing modes into instructions. The name of the terminal operation

and the list of aggregated addressing modes form the instruction

signature. Instructions provide metadata that describes their signatures

and builders that help set up instruction calls.

 An instruction set description. A container that holds the list of supported

instructions. It aggregates metadata of stored instructions and provides

facilities for accessing specific instructions.

 Test situation descriptions. Specify conditions that cause certain events to

occur. Test situations are associated with instructions raising the described

events. The test situation entities provide metadata for describing their

signatures and builders for creating and initializing them.

These entities are hidden behind public interfaces that make a model appear

as a whole. All metadata provided by separate entities is united in a hierarchical

structure by the meta-information provider. It provides descriptions of memory

resources and instructions (including their parameters and test situations associated

with them). Instructions can be grouped according to some characteristics. The

model state observer provides access to memory resources using a unified interface

that uses metadata to identify recourses. The instruction call configuration provides

access to call builders of supported instructions. This allows the client code to

create an instruction call, specify needed parameters (using argument builders and

addressing mode builders) and specify conditions (test situations) that should

satisfied by instruction arguments (if they were not set up explicitly). Figure 4

shows the internal structure of a microprocessor model and links between the

entities it contains. The entities are implemented and organized into a model with

the help of library classes from the modeling library discussed later in this work.

27

Microprocessor Model

Instruction Set

Metadata

Provider

State

Observer

Call

Configurator

Memory Resources

Metadata

Internal Part

Public Part

Metadata Instructions

Instruction

Metadata

Test Situation

Builder

Metadata

Call Builder

Argument Builder

Metadata

Mode

Builder

Operation

Figure 4. Internal structure of a microprocessor model

7.2 Translator

The translator processes a microprocessor specification in Sim-nML to

produce a model. The translator consists of two parts: model generator and

coverage extractor. The former is responsible for building a design model and the

latter extracts coverage information and builds the coverage model. The structure

of the translator is shown in Figure 5.

28

Sim-nML

Parser

Abstract Syntax

Tree (AST)

Model Generator Coverage Extractor

Sim-nML

Specification

Design Model Coverage Model

Figure 5. Structure of the translator

The translator is implemented using the ANTLR parser generator [10], [11].

The translator consists of a front end and two back ends. The front end is

represented by a lexer and a parser created with the help of ANTLR on a basis of

Sim-nML grammar. Their job is to build an internal representation (AST) for the

processed Sim-nML specification. The back ends are the model generator and the

coverage extractor. They analyze the AST and build the design model and the

coverage model. The back ends consist of the following parts: (1) an AST walker,

(2) builders of intermediate representation and (3) code generators. The AST

walker generated by ANTLR traverses the tree to collect needed information. It

uses special builder objects to create intermediate representation of the model

which is represented as a table of primitives. The table is then processed with code

generators responsible for generation of specific model classes. Here is the table of

primitives extracted from Sim-nML specifications by the model builder:

Primitive Description

Constants (let expressions) Described by let constructs. Represent statically

calculated constants that can be used in all parts of

29

the specification.

Labels (or let labels) Described by let constructs. Their role is to specify

properties of the model (e.g. program counter

register, endianness, etc.). They are not referred by

other primitives in the specification.

Type definitions Described by type constructs. Specify data types

that are represented by bit vectors of the specified

size. In addition to size, data types use type

identifiers that set up how to treat these data types

(as signed/unsigned integers, booleans, floating-

point numbers, etc.).

Memory resources

(registers, memory lines,

temporary variables)

Described by reg, mem and var constructs. Specify

memory resources as arrays of locations that have

specified type and length.

Addressing modes Described by mode constructs. Specify logic of

accessing microprocessor memory resources. Have

the following attributes: return expression (logic of

resource access), syntax (textual format of the

primitive), image (binary format of the primitive)

and action (additional logic that can be executed

from operations that use the given addressing

mode).

Operations Described by op constructs. Specify operations that

build up instructions. Have the same attributes as

30

modes, but do not provide a return expression.

Operations semantics is described by the action

attribute.

Instructions Produced by analyzing tables of other primitives.

Represent a composite object that contains a tree of

operations and addressing modes (references to

entries in other tables).

Table 1. Information extracted from Sim-nML specifications

Code generation is performed using string templates that facilitate creating

complex Java classes [12]. A generator for each primitive kind consists of a

generation class and a string template. String templates specify component classes

and interfaces provided by the modeling library that will be used in generated

classes.

In other words, to perform translation of each primitive kind, the following

features are provided (each is responsible for accomplishing different steps in the

translation chain):

1. Token rules (lexer rules) for splitting the input file into a sequence of

tokens. Described in the ATNLR DSL for lexer grammars.

2. Parser rules for building an AST from tokens provided by the previous

stage. Described in the ATNLR DSL for parser grammars.

3. Tree walker rules traversing the AST. They describe the recursive-descent

tree traversal algorithm that collects information on primitives and uses it

to build their intermediate representation.

4. Classes for building and storing the intermediate representation of the

model primitives. Builder classes are used by the AST walker to create

31

the intermediate representation that will be used by generators to create

the model code.

5. Templates for classes to be generated and code for initializing these

templates with parameters extracted from the Sim-nML specification.

Described using the DSL and Java API classes provided by the String

Template library.

The coverage library uses the same approach to create classes for test

situations and grouping rules.

7.3 Modeling library

The modeling library provides base classes for creating microprocessor

models. From a programmer’s point of view, the design library and the coverage

library represent a single library. The division is rather conceptual and is aimed to

highlight that classes from these libraries are used by different code generators to

create model classes serving different purposes. The model library consists of

smaller libraries that provide building blocks for describing features of the model

at different levels of detail. Higher-level libraries are created on a basis of lower-

level libraries. The table below lists the main libraries from the lowest level of

detail to the highest.

Library Description

Raw data library This is a general-purpose library that provides classes

for storing bit vectors. Includes code for concatenating

bit vectors and creating masks that allow treating a

single bit vector as a set of smaller bit vectors. Also,

provides functionality for converting bit vectors

to/from other data formats (integers, strings, byte

arrays, etc).

Data type library Provides classes for describing data types used in Sim-

32

nML. Data is stored in bit vector classes provided by

the raw data library. The data type library contains

implementations for all operations supported by the

described types.

Memory library Contains classes for describing memory resources

such as register files, memory lines and temporary

variable stores. A single register or a variable is

described an abstract entity called a location. The

library also provides a connection point for integration

with the memory management unit model (describing

caches and address translation mechanism).

Exception library

A model can raise an exception. There two kinds of

situations when it can occur: (1) an attempt to

configure an instruction call or to request the model

state using invalid parameters (configuration

exception) and (2) incorrect semantics of an

instruction that brings the model to an invalid state

during simulation of its execution (simulation

exception). The library provides classes for all

possible exceptions of both kinds.

Instruction library Contains interfaces and abstract base classes to be

inherited by classes implementing instructions. These

interfaces and classes are independent of specific

ADLs and can be used to build an instruction set

model described using different formalisms. The

library describes the following abstractions: an

instruction set, an instruction, an instruction call, an

addressing mode, and instruction call builder, an

instruction argument builder and an addressing mode

builder.

Meta information library Provides interfaces and classes for describing metadata

for entities contained in a model (such as instructions,

33

addressing modes, memory resources and test

situations).

State observer library Contains classes and interfaces that provide access to

the internal state of the model. The allow requesting

values stored in registers and memory and also status

flags that indicate some “interesting” states of the

model.

Sim-nML instruction

library

Provides base classes for instructions built on a basis

of Sim-nML specifications. Includes classes for such

Sim-nML primitives as operations and addressing

modes and their builders.

Model library Provides bases classes for microprocessor model.

They aggregate all lower-level components and

organize access to them using such abstractions as

meta data provider, model state observer and

instruction call configurator.

Test situation library Provides base classes for test situations extracted from

the specification by the coverage analyzer. Includes

classes that help describe preconditions as constrains

that can be solved by the constraint solver engine.

Table 2. Libraries of the modeling framework

Microprocessor models created by the translator include the following class

types (all of them extensively reuse library classes so that the generated code

contains minimal functionality which is unique for the given model):

 Model. The main class of the model. It is inherited from the

SimnMLProcessorModel library class. It aggregates the instruction set

and memory resources and provides access to them via the IModel

interface.

34

 Shared. Aggregates all constant, type, memory resource definitions. In

addition, it holds internal statuses of the model and labels that associate

specific memory recourses with their aliases. The Type, MemoryBase,

Status and Label classes for type definitions, memory resources, internal

statuses and labels respectively.

 ISA. This class it inherited from the InstructionSet class. Its purpose is to

aggregate a collection of instructions.

 Instruction. Such a class holds all information about a specific instruction.

It is inherited from the InstructionBase class. The main responsibility is to

create an instruction call as a hierarchy of operations and addressing

modes initialized with customer parameters.

 Operation. Implements the "op" abstraction of Sim-nML. Inherited from

the Operation library class. Contains information on syntax and semantics

of an operation that represents a part of an instruction.

 Mode. Implements the "mode" abstraction of Sim-nML that describes the

logic of addressing modes. Inherited from the AddressingMode library

class.

 Situation. Describes a particular test situation. Inherited from the Situation

library class.

The modeling library was designed to simplify as possible creation of

microprocessor models. The library classes help of create mode code in Java that

looks as similar as possible to Sim-nML specifications, encapsulating all low-level

details. This facilitates debugging of the model and finding bugs in the

specification.

35

8. Testing framework

The job of the testing framework is to generate test programs on a basis of

test templates provided by a verification engineer. Test templates represent an

abstract description of a test case specified in a special template description

language derived from Ruby[15]. Test templates are processed with the test

template processor that utilizes engines from the testing library to produce test

programs. There are two kinds of generation engines: (1) test data generators and

(2) test sequence generators. Test program generation is performed in the

following steps:

1. The test template processor applies test sequence generators to produce

an abstract test program (i.e., a sequence of objects describing test calls

that use test situations to specify preconditions for input parameters

instead of concrete values).

2. The test template processor uses test data generators to create input data

for instruction calls which will satisfy the preconditions formulated in

test situations.

3. The test template processor creates an initialization section of the test

program, which initializes registers and memory with data produced by

the previous stage. Thus, the resulting output is represented by a

sequence of instructions calls that have all required parameters

unambiguously specified.

4. The framework generates source code of the test program (including the

initialization section) and updates the model state by simulating

execution of the generation instruction call sequence.

Components involved in test program generation are described in more

detail in the subsequent subsections.

36

8.1 Test templates

Before discussing test generation engines, it is necessary to have a clear

understanding of such a notion as test templates. Generally speaking, a test

template is a high-level description of a test program to be generated. It uses a

special notation that allows describing an instruction sequence in an abstract way

without having to specify concrete instruction arguments or even concrete

instructions in test cases. For instance, it is possible to define input data in terms of

preconditions and to use groups of interchangeable instructions (optionally, with

probability distributions of their occurrences) instead of specific instructions.

Concrete data and instructions to be used in test programs will be chosen by the

engine during test generation depending on input parameters and the state of the

microprocessor model. Another important feature of test templates is the ability to

describe instruction sequences that will be built using random, combinatorial or

other user-defined algorithms. Also, it is possible to merge instruction sequences

produced using different generation methods.

The test template description language represents a high-level scripting

language (the current version uses Ruby[15]) extended with libraries that facilitate

describing test cases. Such an approach helps keep to minimum the required

learning effort.

Features provided by the language and the libraries serve the following main

purposes:

 Select generation methods (i.e. chose sequencing algorithms, data

generation engines, etc.).

 Configure instruction calls (with input values or using preconditions).

 Specify dependencies between instruction calls.

 Organize loops and conditional generation.

37

 Insert validity checks.

 Provide the infrastructure for creating complex tests.

The specified duties are common for all kinds of tests based on different

types of testing knowledge and exploiting various test generation techniques. Since

MicroTESK can be extended with new test generation methods, the test template

description language is designed to be flexible to avoid modifying existing logic

when a new feature is added.

Test templates are created using special test template API in Ruby that

provides base classes for test templates and functionality for organizing test

templates into groups. A test template is represented by a class that has public

methods for initialization, finalization and test case execution. A creator of a test

case only needs to provide implementations of those methods (all logic responsible

for test generation is encapsulated in the base API class). The code below

illustrates this approach:

class MyTestCase < Template

 def initialize
 super
 @is_executable = yes
 end

 def pre
 // Place your initialization code here
 end

 def post
 // Place your finalization code here
 end

 def run
 // Place your test case here
 end

end

38

The methods contain code that describes instruction sequences to be

generated. Template code represents a hierarchical structure of test sequence

blocks. They hold a set of instructions or nested blocks and specify what test

sequence generator will be used to produce a test sequence. Instruction sequences

for nested blocks are produced by recursively applying corresponding generation

engines and merging blocks of the same level with the engine specified by the root

block. The specification of a sequence block consists of a header and a body. The

role of the header is to specify the sequence generation engine to be applied and

parameters used to configure it. Parameter sets can vary for different engines. In

order to keep the format of block headers uniform, parameters are specified as key-

value pairs. Here is an example of a test template that has two nested sequence

blocks using different generation engines with different sets of parameters:

Test Sequence Block
block (: combine => ”product”,
 : compose => ”random”)
{
 # Nested Block A
 block (: engine => ”random”,
 : length => 3,
 : count => 2)
 {
 add r(2), r(0), r(1)
 sub r(3), r(1), r(2)
 mul r(4), r(2), r(3)
 div r(5), r(3), r(2)
 }

 # Nested Block B
 block (: engine => ”permutate”)
 {
 ld r(0), r(4)
 st r(1), r(5)
 }
}

39

From a conceptual point of view, a test sequence block represents a

specification of a single testing task. This task can have its own preconditions,

postconditions and invariants that should be applied to the whole specified

instruction sequence. Consequently, some generation engines may use block-level

test situations and constraints. For such generation techniques, it is possible to

assign test situations to whole blocks via parameters in the block header.

The body of a block describes instruction calls to be inserted into the

generated sequence. Please note that the final order of instruction calls is

determined by applied sequence generators and may not be the same as specified in

the block. A template description of an individual instruction call includes the

following properties:

 Instruction identifier. It can be the name of a specific single instruction,

the name of an instruction group or a set of instruction names. The

probabilities of occurrence of instructions in a set are assumed equal

unless corresponding probability distributions are explicitly specified.

 Addressing modes. Sources of input data and destinations for output data

of instructions are specified using addressing modes that provide access to

microprocessor's memory resources. Each instruction argument can have

one or several addressing modes associated with it. Test templates allow

using a concrete addressing mode or randomly choosing an addressing

mode from the specified set. Thus, it is possible to cover scenarios that

involve access to different resources using the same test template.

 Instruction arguments. Input and output data are accessed by instructions

via addressing modes parameterized with some constant values. These

values can represent immediate values (for instance, an address or

constant) or identify particular registers. Test templates allow specifying

them in three ways: as concrete constant values (1), as random values (2)

40

and as constraints based on some preconditions (3). Such an approach

facilitates covering a wide range of testing goals.

 Test situations. Specify a certain coverage goal (i.e. a logic branch

executed under certain conditions). A test situation or a set of test

situations can be linked to an instruction call. In this case, the generation

engine produces input data that satisfy conditions necessary for the

situation to occur and inserts corresponding initialization code in

beginning of the generated instruction sequence.

 Dependencies. Instructions can share input and output data as well as

other properties assigned when the template is being processed by the

generation engine. The test template language allows establishing such

links by using variables.

Test cases may require insertion of different instruction sequences into a test

program depending on some conditions or repetition of some instruction

sequences. The test template language provides constructs to support conditional

branching and loops (in fact, they are inherited from Ruby). Conditions can be

based on generated test data or on the state of the microprocessor model (the test

template description language provides special facilities for querying information

on the model state).

Below, there is an example of a template specification of a simple test case

for the ALU of an ARM microprocessor.

(1..10).each do { |i|
 eor blank, setsOff, r(0), r(0), register0
 add blank, setsoff, reg(2), reg(1), register0 do normal end
 mov_immediate blank, setsoff, reg(1), immediate(i)
 add blank, setsoff, reg(1), reg(4), register4 do random end
 sub blank, setsoff, reg(3), reg(2), register1 do overflow end
 }
end

41

The example demonstrates the use of test situations ("normal", "overflow",

"random") that specify preconditions for input parameters. Also, it demonstrates

how the for loop from the Ruby language can be used in test templates.

One more important feature of test templates that is worth noticing is

support for creating self-checking tests. Test templates can include checks for

correctness of the microprocessor state. Such a check represents code that performs

comparison of values stored in the specified register or memory address with

expected values and terminates the program if they do not match. Termination is

often performed as a control transfer to some address that stores code responsible

for program termination and dumping the results. Test templates help automate the

task of generating assembler code for validity checks, thus, reducing the effort

needed to create self-checking tests.

8.2 Test template processor

The role of the test templates processor is to control the process of test

generation. From a technical point of view, it is a runtime environment where

scripts of test templates can be executed producing a test program. Generally

speaking, it is set of Ruby libraries that serve as a basis for creating test templates

and that provide a means of interaction with the microprocessor model and with

the testing library. Basically, it performs its duties in the following main steps:

 Creates wrappers for the elements of the microprocessor model basing on

provided meta-information (this includes instructions, their addressing

modes, test situations, memory resources, etc). In other words, it creates

implementations for such functions as “add”, “sub”, “reg” and other

similar primitives used in test templates to describe instruction calls.

Technically, to make these features available to test templates, it

dynamically defines corresponding methods of the Template class.

42

Method bodies are defined as lambda functions parameterized with data

taken from model’s meta-information.

 Runs the script of a test template to build the internal representation of the

test sequence block hierarchy it describes. The script uses factories

provided by the testing library to create required objects. To enable using

Java libraries in Ruby scripts, MicroTESK uses the JRuby engine [16] to

execute scripts.

 Processes the test sequence block hierarchy with test sequence generators

from the testing library to create an abstract test program (a set of

sequences of abstract instruction calls). The output is called an abstract

test program because, at this step, the order of instruction calls is fixed

while the values of their arguments may not be known yet (such

instruction call descriptions are referred to as abstract test calls).

 Processes the abstract test program with test data generators to generate

instruction call arguments that satisfy conditions formulated in test

situations associated with specified instruction calls. An instruction call

with fixed argument values is called a concrete call and a sequence of

such calls is referred to as a concrete test program. Instructions that use

arguments stored in registers or the main memory require initialization

code to be executed to assign the resources values produced by data

generators. For such instructions, corresponding initializing instructions

calls are inserted in the beginning of the instruction call sequence (this

part of the sequence is called an initialization section). An important note

is that test data generation is performed sequence by sequence (if a

concrete program consists of several instruction sequences) in order to be

able to update the model state and to generate data of a basis of the

updated state. A processed sequence is passed to the next step and only

43

when the next step is done the processor starts processing the next

sequence.

 Simulates the execution of concrete call sequence to update the model

state and writes textual representation of instruction calls to a text file.

Then the control is transferred to the previous step. When all concrete call

sequences have been processed, the resulting text file represents a

generated test program that can be executed to check the validity of the

microprocessor design.

The scheme of test template processing is displayed in Figure 6.

Microprocessor

Model

Test Templates

MicroTESK Testing Framework

T
es

t
T

em
p
la

te
 P

ro
ce

ss
o
r

Model Wrappers

Test Sequence

Block Hierarchy

Abstract Test

Program

Concrete Test

Program

Testing Library

Test Sequence

Generators

Test Data

Generators

Test Program

Figure 6. Scheme of test template processing

8.3 Test sequence generators

Test sequence generators process test sequence blocks to produce sequences

of abstract instruction calls. The testing library contains a table of test sequence

generators implementing a uniform interface. According to the identifier specified

in the header of a test sequence block in a test template, a proper generator is

selected to generate a sequence. Such architecture makes it easy to extend the

testing library with new sequence generation techniques. To do this, a

corresponding component implementing the sequence generator interface should

be added to the table.

44

In the current implementation, test sequence generators are hidden behind

the interface of test sequence blocks. In fact, when the test template processor is

building a hierarchy of test sequence blocks the sequence generators are applied to

the blocks being built to produce corresponding sequences. In turn, each test

sequence block has a public method that returns an iterator for the collection of

sequences generated for this block by a corresponding sequence generator. In the

simplest case, the generator produces a single test sequence for a single test

sequence block. For nested blocks, generated sequences are united in a recursive

manner. To accomplish this task, each non-terminal block should specify the

following strategies: (1) the combination strategy and (2) the composition strategy.

The first describes how to combine sequences returned by iterators of nested

blocks. The second describes how several sequences can be merged together. Thus,

the testing library includes two types of test sequence generators used together to

handle nested blocks: combinators and compositors. Combinators produce

combinations of the nested test sequences, while compositors merge those

sequences into a single one.

The testing library includes several standard combinators and compositors

(if needed, the library can also be extended with custom ones). The current

implementation provides the following standard combinators:

1. Random combinator. Produces a number of random combinations of the

results returned by sequence generators of nested blocks.

2. Product combinator. Creates all possible combinations of the test

sequences produced by nested blocks.

3. Diagonal combinator. Synchronously requests sequence iterators of nested

blocks and joins the returned results.

Here are standard compositors provided by the testing library:

45

1. Random compositor. Randomly mixes test sequences retuned by nested

blocks.

2. Catenation compositor. Catenates nested test sequences.

3. Nesting compositor. Embeds nested test sequences one into another.

In addition to standard components, it is possible to create custom test

sequence generators, combinators and compositors, add them to the testing library

and invoke them from test templates.

8.4 Test data generators

Test data generators are used by the template processor to translate abstract

instruction calls into concrete instruction calls that can be simulated by the

microprocessor model. As it has already been said, instruction calls described in

test templates are not required to have explicitly specified arguments. Instead, it is

possible to use random values, constraint expressions or test situations. For

example, the following code snippet specifies the ADD instruction from the ARM

ISA invoked for two random registers and a random immediate value:

add_immediate blank, setsoff, _, _, _

The ‘_’ identifiers are used to specify random arguments. The scope of

random values can be limited with constrains. To create directed tests, instruction

calls can be attributed with test situations describing conditions that should be

satisfied by arguments to cause a certain event. For example, the following line of

code states that the addition of two values stored in general purpose registers

should cause an integer overflow:

add equalcond, setsoff, reg(1), reg(2), register0 do overflow end

Test data generators are responsible for generating appropriate arguments

values and creating code that will initialize corresponding memory resources with

these values (if needed). For different kinds of test situations, different data

generators can be used. Most commonly, test situations are described as constraints

46

on the internal state of the model and instruction argument values. For constraint-

based test situations, MicroTESK used a test data generator that interacts with

external SMT solvers to produce test data. The component responsible for this

interaction is called constraint solver engine (it will be discussed in the next

subsection). Figure 7 illustrates the scheme of interaction between components

involved in creation of a concrete instruction call and corresponding initialization

code.

Abstract

Instruction Call

Test Data

Generator

Design Model

Constraint

Solver Engine

Concrete

Instruction Call

Initializing

Code

Memory

Resources

Initializing Code

Generators

Figure 7. Scheme of test data generation

The general algorithm of generating data and initializing code on a basis of a

provided test situation is the following:

 An appropriate test data generator is selected for the given test situation

from the collection of test data generators.

 Input values involved in the computation are requested from the

microprocessor model.

 The constraint formulated by the test situation is solved by the constraint

solver engine on a basis of input values.

47

 Output values produced by the solver engine are assigned to instruction

arguments (if they represent immediate values) or passed to the generator

of initializing code (if they are stored in registers or memory).

 Initializing code is created by applying corresponding generators of

initialization calls to the specified memory resources and input values.

The step that needs to be discussed in more detail is generation of

initialization code. Different memory resources require different initialization

code. Depending of the ISA, they may require a single call or a sequence of calls.

The logic of initialization code generation is encapsulated in generators of

initializing codes, which are identified by addressing modes that specify the

destination for input values. Consequently, for each supported addressing mode a

corresponding generator should be provided. When MicroTESK is creating

initialization code for some instruction argument, it searches for an initialization

call generator that uses the same addressing mode. Generators of initializing codes

require configuration information. This information will be derived from Sim-nML

specification enriched with specialized constructs. In the current prototype,

generators of initializing calls have to be written by hand using API classes from

the modeling library.

8.5 Constraint solver engine

To generate test data basing on constraints, the framework provides a

constraint solver engine. It is based on Java Constraint Solver API [20], which was

initially developed as part of MicroTESK, but now it is a separate project which is

used in several other projects dedicated for hardware verification. To put it in a

nutshell, the engine represents a collection of solvers oriented on specific tasks

encapsulated behind a generic interface. This allows working with differed kinds

of solvers in a uniform way. Solvers are divided into two major families: (1)

standard general purpose solvers and (2) custom solvers aimed at specific tasks.

48

Standard solvers use some SMT solver implementation provided by a third-

party vendor (for example, Z3 by Microsoft Research [13]). SMT solvers allow

describing constraints as a set of assertions that should be hold for the specified

variables. Assertions can be formulated for boolean expressions, arithmetic

expression and expressions based on fixed-size bit-vectors. STM constraints can be

used to limit the scope of random generation or to formulate preconditions for test

situations. The framework provides wrappers implementing generic interfaces for

all SMT solver features used in test data generation. This allows migrating to other

SMT solver implementations without having to modify other parts of the testing

framework. In the current implementation, interaction with solvers is performed

via source files in the SMT LIB language [14]. The solver engine generates source

files and passes them to an external SMT solver. The output data returned by the

solver is parsed and packed into library classes. Here is an example of a constraint

that describes an integer overflow situation using the SMT LIB language:

(define-sort Int_t () (_ BitVec 64))

(define-fun INT_ZERO () Int_t (_ bv0 64))
(define-fun INT_BASE_SIZE () Int_t (_ bv32 64))
(define-fun INT_SIGN_MASK () Int_t (bvshl (bvnot INT_ZERO) INT_BASE_SIZE))

(define-fun IsValidPos ((x!1 Int_t)) Bool
 (ite (= (bvand x!1 INT_SIGN_MASK) INT_ZERO) true false))
(define-fun IsValidNeg ((x!1 Int_t)) Bool
 (ite (= (bvand x!1 INT_SIGN_MASK) INT_SIGN_MASK) true false))
(define-fun IsValidSignedInt ((x!1 Int_t)) Bool
 (ite (or (IsValidPos x!1) (IsValidNeg x!1)) true false))

(declare-const rs Int_t) ; output variable
(declare-const rt Int_t) ; output variable

; rt and rs must contain valid sign-extended 32-bit values (bits 63..31 equal)
(assert (IsValidSignedInt rs))
(assert (IsValidSignedInt rt))

; the condition for an overflow: the sum is not a valid sign-extended 32-bit value

49

(assert (not (IsValidSignedInt (bvadd rs rt))))

; just in case: rs and rt are not equal (to make the results more interesting)
(assert (not (= rs rt)))

(check-sat) ; checks whether the constraint is satisfiable (solves the constraint)
(get-value (rs rt)) ; gets values that lead to an overflow

Some testing tasks (e.g. covering cache or pipeline test situations) involve

formulating constraints in terms of internal states of specific microprocessor model

components. Functionality provided by SMT solvers is not suitable to solve such

constraints. For these tasks special custom solvers can be provided. They are

connected to the microprocessor model and use information on its internal state to

produce test data that satisfy formulated conditions. They also can use SMT

solvers to narrow the range of possible result values. When a coverage model is

extended with new types of test situations, it often means a need to provide a

corresponding custom solver. To facilitate extension of the engine with new

solvers, both standard and custom solvers are implemented using a set of uniform

interfaces generalizing services provided by these solvers.

To facilitate extension, the constraint solver engine hides solvers behind its

public interfaces. In fact, the abstraction users of the engine operate with is

constraints. Consequently, there are two categories of constraints: (1) standard and

(2) custom. Both of them implement the same interfaces. However, their internal

representations may be different as they require different solvers. The current

version of the constraint solver engine supports only standard constraints and

standard solvers. Constraints have the following attributes:

1. Name (a unique identifier).

2. Description (information that can be displayed to a user).

3. Solver identifier (specifies which solver should be used).

50

4. Variables. It can be input variables (in this case, they should be explicitly

initialized) or output variables (in this case, they should be left

uninitialized).

Standard constrains contain a hierarchy of objects that specify an SMT

model represented by a set of assertions (or formulas) that must be satisfied. When

a constraint is solved, a corresponding SMT solver checks the satisfiability of the

model and suggests a solution (output variable values) that would satisfy that

model. In an ideal case, to provide a better test coverage, each run of an SMT

solver should return random values from the set of possible solutions.

Unfortunately, the current implementation is limited to a single solution that is

constant for all runs.

SMT models are described using context-independent syntax trees. Such a

format is flexible as it is independent of a particular SMT solver implementation.

To solve a constraint with a specific solver, the tree is traversed to produce input

data in a format compatible with the given solver. The current implementation uses

a limited set of SMT features. This makes the API compatible with a wide range of

SMT solvers (most of free SMT solvers do not implement all SMT features). The

syntax tree consists of nodes (Java objects) of the following types:

 Syntax. This is the root node of the tree. It holds the list of assertions

(formulas) what specify conditions for the unknown variables associated

with the constraint.

 Formula. Represents a single assertion expression. Can be combined with

other formulas to build a more complex expression (by applying logic

“or”, “and” or “not” to it). The underlying expression must be a logic

expression that can be solved to true or false.

51

 Operation. Represents an unary or binary operation with some unknown

variable, some value or some expression as parameters.

 Variable. Represents an input variable. It can have an assigned value and,

in such a case, will be treated as a value. Otherwise, it is an unknown

variable. A variable includes a type as an attribute.

 Value. Specifies some known value of the specified type which can be

accessed as an attribute.

The Operation, Variables and Value classes implement a common interface

(the abstraction is called syntax element) and can be treated polymorphically. This

allows combining them to build complex expressions. Figure 7 shows the UML

diagram of classes that are used as modes of the syntax tree.

-name

-description

-solverId

-variables

-syntax

Constraint

-formulas

Syntax

-name

-data

Variable

-expression

Formula

1 *

1
1

1

1

+getElementId()

+getDataType()

«interface»

ISyntaxElement

0..1

1

0..1

1

11

-variable

Variable

-right

-left

-operation

Operation

-data

Value

«uses»

Figure 8. UML diagram of classes used in the SMT syntax tree

Constraint objects can be serialized to a hard disk. They are stored in the

XML format. The format is flexible and extendable. The implementation supports

adding new attributes to the stored objects and allows restoring objects from files

that use different format versions. Below, there is an example of an XML file that

52

describes a constraint. It demostrates the structure of the storage format. As it can

be noticed, the hierarchy of XML tags closely resembles to the constraint syntax

tree node hierarchy implemented in Java.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<Constraint version="1.0">

 <Name>PowerOfTwo</Name>

 <Description>PowerOfTwo constraint</Description>

 <Solver id="Z3_TEXT"/>

 <Signature>

 <Variable length="32" name="x" type="BIT_VECTOR" value=""/>

 </Signature>

 <Syntax>

 <Formula>

 <Expression>

 <Operation id="BVUGT"/>

 <VariableRef name="x"/>

 <Value length="32" type="BIT_VECTOR" value="00000064"/>

 </Expression>

 </Formula>

 <Formula>

 <Expression>

 <Operation id="BVULT"/>

 <VariableRef name="x"/>

 <Value length="32" type="BIT_VECTOR" value="000000c8"/>

 </Expression>

 </Formula>

 <Formula>

 <Expression>

 <Operation id="EQ"/>

 <Expression>

 <Operation id="BVAND"/>

 <VariableRef name="x"/>

 <Expression>

 <Operation id="BVSUB"/>

 <VariableRef name="x"/>

 <Value length="32" type="BIT_VECTOR" value="00000001"/>

 </Expression>

 </Expression>

 <Value length="32" type="BIT_VECTOR" value="00000000"/>

 </Expression>

 </Formula>

 </Syntax>

</Constraint>

53

9. Trials: the ARM7TDMI architecture model

To conduct a trial of the implemented test program generation tool, a

specification of a real (or, at least, close-to-real) microprocessor architecture is

required. For this purpose, the ARM7TDMI [21], [22] microprocessor was chosen.

ARM7TDMI (ARM7+Thumb+Debug+Multiplier+ICE) is a 32-bit RISC (Reduced

Instruction Set Computer) microprocessor designed by ARM [24], [25] that

implements the ARMv4T architecture [23]. ARM7TDMI was one of most widely

used ARM cores in 2009 and its architecture is relatively simple. For this reason, it

was selected to be used as an example of a design under test. An initial version of

the Sim-nML specification of the ARM7TDMI microprocessor ISA was kindly

provided by Indian Institute of Technology Kanpur [26]. The specification was

subsequently modified to adapt it to the current implementation of MicroTESK

(including error corrections, changes in structure, removing redundancies). It

represents a full ARM7TDMI ISA specification excluding floating-point

instructions that are not currently supported by MicroTESK and some other

instructions that were considered redundant at the present stage. The table below

contains the list of modeled ARM instructions:

Number Name Category Description

1-2 B, BL Branch instructions Branch, and Branch with Link

3 BX Branch instructions Branch and Exchange Instruction

4 BLX Branch instructions Branch with Link and Exchange

5 MUL Multiply instructions Multiply

6 MLA Multiply instructions Multiply Accumulate

7 SMULL Multiply instructions Signed Multiply Long

8 UMULL Multiply instructions Multiply unsigned long

9 SMLAL Multiply instructions Signed Multiply Accumulate Long

10 UMLAL Multiply instructions Unsigned Multiply Accumulate Long

54

11 SMLA Multiply instructions Signed halfword Multiply Accumulate

12 SMLAL Multiply instructions Signed Multiply Accumulate Long

13 SMLAW Multiply instructions
Signed halfword by word Multiply

Accumulate

14 SMUL Multiply instructions Signed halfword Multiply

15 SMULW Multiply instructions Signed halfword by word Multiply

16-17 SWP, SWPB Semaphore instructions Swap and Swap Byte

18 MRS
Register access

instructions
Move PSR to General-purpose Register

19 ADC
Data-processing

instructions
Add with Carry (register and immediate)

20 ADD
Data-processing

instructions
Add (register and immediate)

21 AND
Data-processing

instructions
Logical AND (register and immediate)

22 BIC
Data-processing

instructions
Bit Clear (register and immediate)

23 CMN
Data-processing

instructions

Compare Negative (register and

immediate)

24 CMP
Data-processing

instructions
Compare (register and immediate)

25 EOR
Data-processing

instructions
Exclusive OR (register and immediate)

26 MOV
Data-processing

instructions
Move (register and immediate)

27 MVN
Data-processing

instructions
Move NOT (register and immediate)

28 ORR
Data-processing

instructions
Logical OR (register and immediate)

29 RSB
Data-processing

instructions

Reverse Subtract (register and

immediate)

30 RSC
Data-processing

instructions

Reverse Subtract with Carry (register and

immediate)

31 SUB
Data-processing

instructions
Subtract (register and immediate)

32 SBC
Data-processing

instructions

Subtract with Carry (register and

immediate)

33 TST
Data-processing

instructions
Test (register and immediate)

34 TEQ
Data-processing

instructions

Test Equivalence (register and

immediate)

35 LDR
Load and store

instructions
Load Word

55

36 LDRB
Load and store

instructions
Load Byte

37 LDRBT
Load and store

instructions
Load Byte with User Mode Privilege

38 LDRT
Load and store

instructions
Load Word with User Mode Privilege

39 STR
Load and store

instructions
Store Word

40 STRB
Load and store

instructions
Store Byte

41 CDP Coprocessor instructions Coprocessor Data Operations

42 CLZ
Miscellaneous

arithmetic instructions
Count Leading Zeros

43 QADD
Parallel arithmetic

instructions
 Saturating Add

44 QDADD
Parallel arithmetic

instructions
 Saturating Double and Add

45 QSUB
Parallel arithmetic

instructions
 Saturating Subtract

46 QDSUB
Parallel arithmetic

instructions
 Saturating Double and Subtract

47 PLD Preload data instruction Preload Data

Table 3. Modeled ARM instructions

The total number of instructions described by the Sim-nML specification is

47 and the total size of the specification is about 3200 lines of code (LOC). This

means that the average size of code required to describe a single instruction is

about 68 LOC. Taking into account that the specification is raw and still contains

redundancies (duplicating code that can be reused), it should be possible to

decrease the average size of a single instruction specification to 55 LOC. The total

size of Java source files of the generated model is about 16000 LOC.

Consequently, the average size of a single instruction model is 340 LOC, which is

approximately 5 times higher than the one of a Sim-nML specification.

Language Total size (LOC) Average size per an instruction (LOC)

Sim-nML 3200 68

Java 16000 340

Table 4. Sizes of the Sim-nML specification and Java model

56

Table 4 summarizes the discussed metrics. Based on the provided metrics, it

can be concluded that automated generation of a microprocessor model from a

formal specification requires 5 times less effort than manual development of a

model in a high-level programming language (Java, in the given case). In fact, the

metrics are incomplete since they cover only the design model and do not consider

the coverage model, which has to be written by hand in both cases in the current

version of the tool prototype. The size of the coverage model can be varied

depending complexity of the architecture (number of possible states to be covered)

and on applied knowledge extraction algorithms (the range of situations they are

able to extract). However, the size of the coverage model code is expected to be at

least 40% of the design model. This is means that the difference in the required

effort between manual model development and automated model creation on a

basis of formal specifications is expected to increase by at least 40% and is

expected to amount at least 7 times.

The conducted trials demonstrated that the approach applied in MicroTESK

helps significantly reduce the effort required to configure a test program generation

tool for particular microprocessor architecture (to create a microprocessor model).

This helps simplify development of functional tests and, consequently, help

minimize time spent on functional verification of the microprocessor design.

57

10. Approbation and publications

The approaches to microprocessor verification described in the present work

were also discussed in two publications [1] and [2]. The main ideas of the proposed

solution and a prototype of the developed tool MicroTESK were presented at the

following conferences and seminars:

1. 6th Spring/Summer Young Researchers' Colloquium on Software

Engineering (SYRCoSE 2012), Perm, May 30-31, 2012.

2. 7th Spring/Summer Young Researchers' Colloquium on Software

Engineering (SYRCoSE 2013), Kazan, May 30-31, 2013.

3. Design, Automation and Test in Europe (DATE 2013), University Booth

exhibition, France, Grenoble, March 19-21, 2013

4. 50th Design Automation Conference (DAC 2013), the University Booth

exhibition, USA, Texas, Austin, June 2-6, 2013

5. Seminar of the Software Engineering Department at Institute for System

Programming of the Russian Academy of Sciences (ISPRAS), Moscow,

April 16, 2013

58

11. Conclusion

In conclusion, it should be said that the overall goal of the project has been

achieved. A microprocessor test program generation tool that uses formal

specifications in Sim-mML as a source of information about microprocessor

configuration and coverage goals has been designed and developed. The proposed

approach helps minimize the effort and time required to configure the tool for a

specific microprocessor architecture. This simplifies the process of functional

verification and saves time of verification engineers. Also, flexible architecture of

MicroTESK facilitates integration of new components into the tool (support for

new DSL, test sequence generators, test data generators, constraint solvers, etc).

This allows using the tools to solve a wide range of verification tasks that involve

combining different techniques. Trials of the tool in which the ARM7TDMI

microprocessor was used as an example of a design under test demonstrated

advantages of the MicroTESK approach over manual development of a

microprocessor model.

Due to time constraints, some features were implemented as prototypes that

provide only a limited functionality. However, research and development will be

continued in the future. The goal is to develop a fully-functional tool that can be

used for solving real-life verification tasks in commercial projects. One the most

important directions of future research is automation of extraction of coverage

information from Sim-nML models.

59

References

1. A. Kamkin and A. Tatarnikov, MicroTESK: An ADL-Based Reconfigurable

Test Program Generator for Microprocessors, proceedings of the 6th

Spring/Summer Young Researchers’ Colloquium on Software Engineering

(SYRCoSE 2012), pp. 64-69, Perm, Russia, May 30-31, 2012

2. A. Kamkin, T. Sergeeva, A. Tatarnikov and A. Utekhin, MicroTESK: An

Extendable Framework for Test Program Generation, proceedings of the 7th

Spring/Summer Young Researchers’ Colloquium on Software Engineering

(SYRCoSE 2013), Kazan, Russia, May 30-31, 2013

3. M. Freericks, The nML Machine Description Formalism. Techical Report,TU

Berlin, FB20, Bericht 1991/15.

4. Surendra Kumar Vishnoi, Functional Simulation Using Sim-nML, master

thesis, Indian Institute of Technology, Kanpur, 2006

5. A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov and A. Ziv,

Genesys-Pro: Innovations in Test Program Generation for Functional

Processor Verification, IEEE Design & Test of Computers, pp. 84-93, 2004

6. Information about RAVEN at ARM’s web site,

http://www.arm.com/community/partners/display_product/rw/ProductId/5171/

7. P. Mishra, A. Shrivastava and N. Dutt, Architecture Description Language

(ADL)-Driven Software Toolkit Generation for Architectural Exploration of

Programmable SOCs, ACM Transactions on Design Automation of Electronic

Systems, Vol. 11, No. 3, pp. 626–658, July 2006

8. P. Mishra and N. Dutt, Processor Description Languages: Applications and

Methodologies, The Morgan Kaufmann Series in Systems on Silicon, 2008

9. MIPS64TM Architecture For Programmers. Revision 2.0. MIPS Tecnologies

Inc., June 9, 2003

10. Terence Parr, "The Definitive ANTLR Reference: Building Domain-Specific

Languages", The Pragmatic Bookshelf, 384 pages, 2007

11. Terence Parr, "Language Implementation Patterns: Create Your Own Domain-

Specific and General Programming Languages", The Pragmatic Bookshelf,

350 pages, 2009

12. Terence Parr, String Templates, http://www.stringtemplate.org/

13. L. Moura and N. Bjørner. Z3: An Efficient SMT Solver. Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS), pp.

337–340, 2008

14. D.R. Cok. The SMT-LIBv2 Language and Tools: A Tutorial. GrammaTech,

Inc., Version 1.1, 2011

15. Ruby programming language, http://www.ruby-lang.org

16. JRuby, http://jruby.org/

http://www.arm.com/community/partners/display_product/rw/ProductId/5171/
http://www.stringtemplate.org/
http://www.ruby-lang.org/
http://jruby.org/

60

17. A. Kamkin, E. Kornykhin and D. Vorobyev. s Reconfigurable Model-Based

Test Program Generator for Microprocessors. Software Testing, Verification

and Validation Workshops (ICSTW), 2011, pp. 47–54.

18. A. Kamkin. Test Program Generation for Microprocessors. Institute for

System Programming of RAS, Volume 14, Part 2, 2008, pp. 23–63 (in

Russian).

19. MicroTESK, http://forge.ispras.ru/projects/microtesk

20. Java Constraint Solver API, http://forge.ispras.ru/projects/solver-api

21. ARM7TDMI Technical Reference Manual, Revision: r4p1, ARM DDI

0210C, November26, 2004

22. http://en.wikipedia.org/wiki/ARM7TDMI

23. ARM Architecture Reference Manual, ARM DDI 0100I, ARM Limited, July

2005

24. http://en.wikipedia.org/wiki/ARM_architecture

25. http://arm.com/

26. Indian Institute of Technology Kanpur, Prof. Rajat Moona,

http://www.cse.iitk.ac.in/users/moona/

27. M.S. Abadir, S. Dasgupta, Guest Editors’ Introduction: Microprocessor Test

and Verification. IEEE Design & Test of Computers, Volume 17, Issue 4,

2000, pp. 4–5.

28. A. Kamkin. Some Issues of Automation of Test Program Generation for

Branch Units of Microprocessors. Institute for System Programming of RAS,

Volume 18, 2010, pp. 129–150 (in Russian).

http://forge.ispras.ru/projects/microtesk
http://forge.ispras.ru/projects/solver-api
http://en.wikipedia.org/wiki/ARM7TDMI
http://en.wikipedia.org/wiki/ARM_architecture
http://arm.com/
http://www.cse.iitk.ac.in/users/moona/

