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Abstract 

In the current industrial practice, test program generation and simulation is 

the main approach to system-level functional verification of microprocessors. 

Tremendous growth in complexity of modern microprocessor designs and tight 

time-to-market requirements make it an increasingly difficult task. Despite that fact 

that modern software market offers a range of powerful test program generation 

tools, development of functional tests still remains a laborious and time-demanding 

job, which makes functional verification the bottleneck of the microprocessor 

design cycle. A common problem of most such tools is that they were developed 

for particular microprocessor architecture and are hard to adapt to new designs. In 

fact, a tool typically has to be rewritten from scratch. A solution to this problem is 

to use architecture models that hold all knowledge about a specific microprocessor 

to configure a test generation tool. This work presents a test program generation 

tool called MicroTESK that uses formal specifications to describe the architecture 

of a design under verification. The specification is automatically translated to an 

architecture model that serves a basis for creating tests for the given 

microprocessor design. Such an approach helps keep to a minimum the effort 

required to configure a test generation tool for a particular microprocessor 

architecture, which significantly reduces the time required to develop functional 

tests. 

Keywords—microprocessor design, test program generation, model-based 

testing, architecture description languages, test templates, random tests, 

constrained tests, combinatorial tests, directed tests. 
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1. Introduction 

As modern microprocessors are becoming more and more complex, the role 

of systematic activities for ensuring their correctness and reliability becomes 

critically important. These activities are called verification and testing. Verification 

is applied at the development stage and focuses on detecting logical faults in 

microprocessor designs that are represented by software models described in 

hardware description languages such as VHDL and Verilog. In other words, when 

we are talking about functional verification of microprocessors, we actually mean 

checking their models for correctness. As regards testing, which is also referred to 

as post-silicon validation, it is performed at the manufacturing stage to diagnose 

physical faults in integrated circuits. A common approach for both tasks is creation 

and execution of test programs that represent instruction sequence raising some 

events in the design under verification and optionally checking validity of the 

resulting microprocessor state. 

Approaches to creating test programs and to performing functional testing 

have been a subject of research nearly since the invention of microprocessors. 

However, new approaches continue to emerge since increasing complexity 

constantly demands for new more efficient methods. Quality of testing is 

determined by the level of test coverage. Due to enormous ranges of states in 

modern microprocessors, creation of high-quality tests is a challenging task that 

requires a significant amount of time and effort. In fact, it is common that up to 

half of resources spent on microprocessor design is devoted to verification. In 

response to this issue, new methods aim to facilitate verification by using various 

techniques to automate this process. Approaches to automated test program 

generation can be divided into the following categories: random, combinatorial, 

template-based and model-based. The important point is that no single approach 

can be used as a “silver bullet” for all kinds of verification and testing tasks. 
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Consequently, in real-life practice different approaches are combined to 

complement each other. 

Tools that create test programs for a given microprocessor architecture in an 

automated way are referred to as test program generation tools. A common 

drawback of such tools is that test generation logic is often tightly coupled with 

architecture-specific knowledge. This significantly complicates maintenance. In 

fact, when it is required to support new microprocessor architecture, a common 

solution is to rewrite the existing tool from scratch. No surprise, it increases the 

cost of microprocessor development and causes delays in the delivery schedule. 

Another important issue is that most of test generation tools available in the market 

are oriented on a limited set of test generation methods. As a result, when it is 

required to combine different techniques, verification engineers are forced to use a 

number of tools with different input and output formats. This causes certain 

inconvenience, since it might be problematic to integrate the tools and keep their 

configurations consistent. Such an approach works when different generation 

methods are used for connected, but independent tasks. For example, general 

functionality is tested by randomly generated programs, while tests for critical 

logic are generated with the help of advanced model-based techniques. However, 

when it comes to settling tightly dependent problems by means of two or more 

tools, it becomes a serious challenge as it might require deep knowledge of their 

internal architecture. The root of the problem is that each tool uses its own 

representation of the target design which is often hidden from others. As a 

consequence, knowledge about same design aspects is duplicated several times 

increasing the required maintenance effort proportionally to the number of 

integrated tools. 

To overcome the described drawbacks, an efficient test generation tool 

should possess the following properties: reconfigurability and extendability. The 
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former means an ability to easily switch to a new microprocessor design without 

having to modify the core functionality of the tool. The latter means flexibility of 

the tool architecture, which allows adding new functionality with minimal effort. 

In our case, it should be possible to integrate different generation techniques by 

installing corresponding extension components into the tool. 

The thesis proposes an approach to the architecture of a test program 

generation tool that facilitates reconfiguring to new microprocessor architecture 

and integrating a wide range of test generation techniques. This approach is 

implemented in a tool called MicroTESK. The required flexibility is achieved by 

isolating logic responsible to specific tasks into independent components. To 

facilitate reconfiguring, knowledge about specific microprocessor architecture is 

encapsulated in an architecture model that is used by the architecture-independent 

core of the tool to generate test programs for the specified design. The architecture 

model includes an instruction set model and a coverage model (knowledge about 

situations to be covered by tests). Tools that follow this approach are usually called 

model-based test program generators. Typically, test cases for a microprocessor 

design are described manually in the form of test templates that represent an 

abstract description of a testing goal to be covered specified in terms of the 

instruction set model and the coverage model. Model-based test program 

generation is a time-proven approach implemented in industrial tools such as 

Genesys-Pro and RAVEN. However, creating a microprocessor’s architecture 

model is rather difficult and requires special skills verification engineers usually 

lack for. To overcome this problem, MicroTESK makes use of architecture 

description languages (ADL), which are commonly used in the area of functional 

simulation, to specify the target architecture. The current version of the tool uses 

the Sim-nML language. This is a high-level formalism that has a format similar to 

pseudocode used in microprocessors’ reference manuals to describe instruction 



8 
 

semantics. Such a format is easy to maintain for verification engineers that lack 

programming skills. Usage of high-level specifications and automated translation 

of these specifications into architecture models make it easy to adapt the tool for 

new architectures or to reconfigure it for several revisions of the same design. To 

provide additional flexibility, the architecture of MicroTESK facilitates adding 

support for new generation techniques and integrating models of new design 

aspects (e.g. memory management and pipelining). 

The tool is decomposed into two layers: core and extensions. The core 

includes functionality to model the instruction set and implementations of 

generation techniques based on knowledge about the instruction set. Such an 

approach is explained by the fact that every test program generator requires 

information about microprocessor instructions. Consequently, the instruction set 

model was chosen as an interface for integration of various generation methods. 

Extensions are responsible for solving custom generation and modeling tasks. For 

example, they may add facilities for modeling cache hierarchy and generating tests 

that would cover cache-related situations. 

The architecture of MicroTESK and the ideas that lay behind the 

implemented approach are discussed in more detail further in this thesis. Chapter 2 

contains an overview of existing test generation methods and tools. Chapters 3 and 

4 introduce ADLs and provide a description of Sim-nML. Chapter 5 formulates 

technical tasks to be solved in the present work. In Chapter 6, a general description 

of MicroTESK’s architecture is provided. Chapters 7 and 8 discuss the main parts 

of MicroTESK: modeling framework and testing framework respectively. Chapter 

9 gives information about the results of trials of the tool with a Sim-nML 

specification of an ARM microprocessor. Chapter 10 lists publications dedicated to 

MicroTESK and conferences where it was presented or discussed. Finally, Chapter 

11 concludes the thesis.  
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2. Existing methods and tools 

The approach implemented in MicroTESK is based on a combination of 

well-known techniques coined from different sources. Over the last decades, a lot 

of industrial and academic research has been done into hardware verification 

methods. This chapter gives an overview of the most significant approaches and 

industrial tools and discusses their advantages and disadvantages. 

The best known industrial test program generation tool is Genesys-Pro by 

IBM Research [5]. This is a model-based tool that operates with two kinds of 

knowledge: architectural model (includes an instruction set model and a coverage 

model) and test templates. Architecture models are created using high-level 

building blocks provided by the modeling framework included in the tool. Test 

templates represent an abstract description of verification scenarios specified in 

terms of the knowledge contained in the architectural model. Test templates allow 

defining preconditions for individual scenario instructions (e.g., boundary 

conditions, exceptions, cache hits/misses, etc.). For each precondition, the tool 

formulates a constraint satisfaction problem (CSP) and generates test data by 

solving this CSP. Unfortunately, there is no detailed information available on how 

to create architecture models for Genesys-Pro. It is known that modeling 

instructions that affect memory devices can be problematic. Therefore, there are 

reasons to think that Genesys-Pro is hardly reconfigurable if significant 

modification of memory devices’ configuration is required. 

Another popular industrial solution is RAVEN (Random Architecture 

Verification Engine) by Obsidian Software Inc (acquired by ARM) [6]. This tool 

generates fully random, semi-random or user-directed test programs for 

microprocessors. Like Genesys-Pro, it uses architecture models to configure the 

tool and test templates to specify user-directed scenarios. Architectural models are 

created by the tool vendor in cooperation with microprocessor manufacturers. 
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Configuration for custom designs can be done with the help of the generator 

construction set (GCS), a C++ API to the RAVEN core. Due to lack of information 

on this technology, it is hard to access how much effort it demands. However, 

creating an architecture model for RAVEN is unlikely to be an easy task for a 

verification engineer. Supposedly, it involves close interaction with the tool's 

developers, which is inconvenient and will inevitably lead to delays. 

An interesting approach to modeling based on specifications in architecture 

description languages is discussed in the work of Prabhat Mishra and Nikil Dutt 

[7]. The idea is to use graph-based coverage models to generate functional tests. 

The model is automatically built from a specification in the EXPRESSION 

architecture description language [8]. Tests are generated in the following way: the 

tool processes the created model to extract test situations to be covered in a test 

program. This procedure is based on model checking. A test case is constructed as 

a counterexample for the negation of the target test situation. 

Finally, Institute for System Programming of the Russian Academy of 

Sciences (ISPRAS) has already done some research dedicated to development of 

test program generation tools [1], [2], [17], [18], [19], [20], [28]. The present work 

summarizes the accumulated ideas and provides implementation for methods 

formulated in the earlier research works. 
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3. Architecture description languages 

MicroTESK uses the Sim-nML [4] architecture description language to 

describe the architecture of the design under verification. This language is an 

extension of the nML [3] language, which facilitates creating simulation tools. 

nML was designed in the beginning of 1990s by Markus Freericks from 

Technische Universität Berlin. Now it is supported by Indian Institute of 

Technology Kanpur that proposed an extension to the original language called 

Sim-nML. 

Before discussing facilities offered by Sim-nML in more detail, let us take a 

wide view of architecture description languages (ADL). First of all, it is important 

to understand what an architecture description language is. ADLs are high-level 

languages specifically designed to model microprocessor architectures. In contrast 

to hardware description languages such as Verilog and VHDL that describe the 

structure of electronic circuits in full details, they provide high-level specification 

of a microprocessor architecture (or so-called “programmer’s model”). ADLs 

facilitate extraction of information on instruction syntax and exploring behavioral 

properties of instructions. There are two criteria for classifying ADLs: content and 

objective. The content-oriented classification groups ADLs according to the nature 

of the information an ADL is aimed to describe. For instance, they can provide 

information on behavioral properties, on structural properties or mixed 

information. Structural ADLs are close to hardware description languages, they 

describe microprocessor units and mechanisms of their interaction. Structural 

ADLs can be used to synthesize hardware. Typically, there is no explicit 

specification of the instruction set, but it is usually possible to extract this 

information. The main disadvantage is that specifications in such ADLs contain a 

great number of details and creating specifications is a laborious task. An example 

of such language is MIMOLA [8]. Behavioral ADLs are designed to describe the 
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instruction set of the target microprocessor. They specify the syntax and semantics 

of instructions, supported addressing modes and the structure of memory and 

registers. Such details as memory management and pipelining are usually skipped. 

Behavioral ADLs are convenient to create light-weight easy-to-maintain 

specifications. As a price for their simplicity, they cannot be used for hardware 

synthesis or for creating clock-accurate simulators. Languages belonging to this 

category include nML[3], Sim-nML [4] and ISDL [8]. Mixed ADLs combine traits 

of both structural and behavioral ADLs. They allow not only describing the 

instruction set, but also some details of the microprocessor’s microarchitecture. 

The most common mixed ADLs are EXPRESSION [8] and LISA[8]. 

The objective-oriented classification is driven by the purpose of an ADL. 

Based on the objective, ADLs can be divided into the following categories: 

simulation-oriented, synthesis-oriented, compilation-oriented, and validation-

oriented. There is no strict on-to-one correspondence between the two 

classifications. 

To be successfully used to provide configuration for a test program 

generation tool, an ADL should satisfy some requirements. Notice that there is no 

ADL that was specially developed for this task. For this reason, a choice of 

formalism will involve some compromise. However, it is obvious that behavioral 

ADLs are more suitable. The list below contains requirements an ADL should 

satisfy. A suitable ADL should: 

 be simple (minimum of low-level details); 

 provide information on instruction syntax; 

 describe instruction semantics; 

 have public documentation and description of grammar; 

 be extendable. 
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Several behavioral and mixed ADLs were considered as candidates to be 

used in MicroTESK. Eventually, Sim-nML was chosen as the most suitable. There 

are several ADLs that satisfy the formulated requirements. However, the main 

issue with most of them is that there is a little or no documentation available on 

these languages. For Sim-nML, Indian Institute of Technology Kanpur and 

Toulouse Research Institute in Information Technology (IRIT) provided manuals, 

grammar description and examples of specifications. For this reason Sim-nML was 

chosen to be used in MicroTESK. 
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4. Basics of Sim-nML 

Sim-nML is a mixed ADL that is used for creating various simulators and 

disassemblers [4]. It is a high-level formalism targeted for describing arbitrary 

microprocessor architectures. Sim-nML works at the instruction set level hiding 

implementation details of the microprocessor design. Sim-nML is based on 

attribute grammar and represents a programmer’s model that includes the 

following elements: register and memory definitions, supported addressing modes, 

syntax and semantics of instructions. 

Sim-nML uses a hierarchical tree-like structure to describe an instruction set. 

Such a structure facilitates grouping related instructions and sharing their common 

parts. An instruction is described as a path in the tree from the root node to a leaf 

node. The set of all possible paths represents an instruction set. A node describes a 

primitive operation responsible for some task within an instruction. Nodes have 

attributes that can be shared with their parents. Actions performed by instructions 

are described as operations with registers and memory that represent bit vectors of 

arbitrary size. 

A specification in Sim-nML starts with definitions of types and constants. 

For example, a type definition for a 32-bit word looks as follows: 

let WORD_SIZE = 32 

type word = card(WORD_SIZE) 

Type definitions and constants can be used to describe registers and 

memory. In addition to registers and memory, it is also possible to define 

temporary variables, internal abstractions provided by Sim-nML to store 

intermediate results of operations. They do not correspond to any data storage in 

real hardware and do not save their data across instruction calls. Also, there is 

often a need to specify some properties of the described model. For this purpose, 

special constants are used. For example, the code below defines general-purpose 
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registers, memory and a temporary variable. Also, there are two special constants 

that specify endianness and establish a correspondence between the general 

purpose register number 15 and program counter. Here is the code: 

reg GPR[32, word] 

mem M[2 ** 20, byte] 

var carry[1,bit] 

let byte_order = "little" 

let PC = "GPR[15]" 

As it has already been said, an instruction set is described as a tree of 

primitive operations. There two kinds of primitives: operations and addressing 

modes. Operations describe parts of instructions responsible for specific tasks and 

can be used as leaf and root nodes. Addressing modes are aimed to customize 

operations (for example, they encapsulate rules for accessing microprocessor 

resources). They can only be used as leaf nodes. For example, here are simplified 

examples of operation and addressing mode specifications: 

mode REG(i: nibble)=R[i] 

syntax = format("R%d", i) 

image = format("01%4b", i) 

op Add() 

syntax = "add" 

image = "00" 

action = { DEST = SRC1 + SRC2; } 

Operations and addressing modes have three standard attributes: syntax, 

image and action. The first two specify textual and binary syntax. The third 

describes semantics of the primitive. In addition, addressing modes have a return 
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expression that enables them to be used as variables in various expressions. 

Attributes can be shared with parent primitives that refer to a given primitive. 

Primitives are arranged into a tree using production rules. There are two 

kinds of production rules: AND rules and OR rules. AND rules specify parent-

child relationships where a child primitive is described as a parameter of its parent. 

Here is an example of an AND rule: 

op arith_inst(act: Add, op1: OPRND, op2: OPRND) 

This is the header of the “arith_inst” operation that states that the 

“arith_inst” operation node has three child nodes: the “act” operation and the 

“op1” and “op2” addressing modes. The syntax of an operation header is similar to 

a function where parameter types specify the primitives the rule refers to. 

Parameter can be, in turn, parameterized with other primitives (they will be 

encapsulated behind attributes). For this reason child nodes represent independent 

instances that are accessed from their parent node via parameters. OR rules specify 

alternatives. This means that a group of primitives is united under some alias so 

that each of them can used when this alias is specified in an AND rule. An OR rule 

looks as follows: 

op Add_sub_mov = Add | Sub | Mov 

Figure 1 displays a tree path describing the “mov” instruction from an 

imaginary instruction set. This instruction copies data from one register to another. 

The root operation of the instruction is called “instruction”. According to Sim-

nML conventions, there can be only one root operation. Usually the root operation 

is responsible for such common actions as increment of the program counter. The 

root operation is linked to the “Arithm” operation with the help of an AND rule. 

This operation describes a group of arithmetic operations. It is parameterized with 

the “Add_Mov_Sub” and “OPRND” primitives. Both of them are specified as OR 

rules. The first one describes arithmetic operations that can be performed by the 
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“Arithm” primitive while the second one specifies supported addressing modes. 

Dashed lines that connect OR-rules with their child primitives specify possible 

alternative paths. Instructions are identified by the terminal operation node of the 

path (in this example, it is the “Mov” node). An important note is that, to avoid 

ambiguity, nodes can have only one child operation. 

Instruction

Arithm

inst

Add_Mov_Sub

Add

act

SubMov

OPRDOPRD

IREG MEMREG

OPRD

IREG MEMREG

op1

op2

 

Figure 1. Operation tree for the Mov instruction 

The syntax of Sim-nML resembles the syntax of the pseudocode used in 

microprocessor architecture manuals to describe instruction semantics. For 

example, here is the description of instruction ADD from MIPS64 manual [9]:  

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then 

    UNPREDICTABLE 

endif 

temp ← GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0) 

if temp32 ≠ temp31 then 

    SignalException(IntegerOverflow) 

else 

    GPR[rd] ← sign_extend(temp31..0) 

endif 

 

Such a description can be translated to Sim-nML with minimal effort. 

Providing that all needed data types, resources and operations describing common 
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functionality of instructions have already been specified, the specification of the 

ADD instruction (or, to be more precise, the terminal operation that distinguishes it 

from other similar instructions) will look as follows:   

op ADD(rd: GPR, rs: GPR, rt: GPR) 

action = { 

    if (NotWordValue(rs) || NotWordValue(rt)) then 

        UNPREDICTABLE(); 

    endif; 

    tmp_word = rs<31..31>::rs<31..0> + rs<31..31>::rt<31..0>; 

    if(tmp_word<32..32> != tmp_word<31..31>) then 

        SignalException("IntegerOverflow"); 

    else 

        rd = sign_extend(tmp_word<31..0>); 

    endif; 

} 

As we can see, describing an instruction based on an instruction set manual 

is a relatively easy task that can be performed by a verification engineer who does 

not have significant programming skills. 

Describing all features of Sim-nML in full detail is out of scope of this work. 

Detailed descriptions of nML and Sim-nML can be found in works [3] and [4] 

respectively. 
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5. Research and development task description 

The goal of the present work is to propose an approach to the architecture of 

a test program generation tool that facilitates reconfiguring the tool to new 

microprocessor designs and simplifies adding support for new test generation 

techniques. The proposed approach will be implemented in test program generation 

tool MicroTESK. Here is the list of tasks that should be implemented: 

1. Design the architecture of MicroTESK. This includes decomposing the 

tool into subsystems and designing interfaces that will describe 

mechanisms of their interaction. 

2. Implement the model API (a library of interfaces and classes that will be 

used as building blocks for the model). 

3. Implement the Sim-nML translator. The translator processes a 

specification in Sim-nML and generates an architecture model in Java on 

a basis of the model API. 

4. Implement the test generation engine and API for creating various 

generators. The generation engine processes test templates and generates 

tests for the specified architecture. It includes a set of generator 

components responsible for specific tasks implemented basing on the API. 

5. Implement test sequence generators. During the first stage of test 

generation, concrete sequences are produced on a basis of an abstract 

description provided in test templates. Sequence generators implement 

different techniques of producing instruction sequences. 

6. Implement test data generators. Arguments of some instructions may not 

be specified explicitly in test templates. Instead of being specified as 

concrete constant values, they can be generated at random or calculated 
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by solving a CSP. Calculation of such parameters is performed at the final 

state of test generation by test data generators that implement specific 

techniques of producing test data. 

7. Implement constraint solver API. MicroTESK uses external constraint 

solver engines to generate test data. To interact with them, special API 

should be implemented. 

8. Create a specification of a real microprocessor. To demonstrate the 

implemented solution and to assess its effectiveness, a Sim-nML 

specification of a real (or close to real) microprocessor architecture should 

be provided. 

9. Create examples of test templates for the specified microprocessor 

architecture. 

MicroTESK is an open-source tool developed at ISPRAS. The main 

development instruments are Java, Eclipse, ANTLR and JRuby. 
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6. Architecture of MicroTESK 

MicroTESK performs two primary tasks: (1) synthesis of architecture 

models on a basis of design specifications and (2) generation of test programs for 

the given architecture model from test templates. Consequently, the tool is 

decomposed into two loosely coupled features: (1) modeling framework and (2) 

testing framework. Generally speaking, an architecture model serves as output data 

for the former and as input data for the latter. A high-level scheme of 

MicroTESK’s architecture is displayed in Figure 1.  

Modeling Framework

Testing Framework

Design Model Coverage Model

Translator

Coverage Extractor

Design Library

Test Template 
Processor

Testing Library

Coverage Library

Model

Constraint 
Solver Engine

Formal 
Specifications

Test Templates

Test ProgramsExternal Solvers

Test Sequence Generators

Test Data Generators

Model Generator

Modeling Library

 

Figure 2. General structure of MicroTESK 

The modeling framework is responsible for building an architecture model 

on a basis of provided formal specifications. It includes two main components: the 

translator and the modeling library (that contains design and coverage libraries). 

The former processes specifications and generates a model in Java and the latter 

provides building blocks for the model. The testing framework generates tests on a 

basis of test templates and the model provided by the modeling framework. Its 

components are as follows: a test template processor (processes test templates to 

generate test programs), a testing library (contains test sequence generators and test 
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data generators used by the test template processor) and a constraint solver engine 

(organizes interaction between test data generators and external SMT solvers). 

Test program generation with MicroTESK is performed in several stages 

that use different components. Here are the generation stages: 

 A verification engineer provides an ADL specification of the target 

microprocessor architecture based on design documentation. 

 The translator of the modeling framework parses the specification and 

builds an architecture model in Java using building blocks provided by the 

modeling library. 

 The verification engineer creates test templates for test cases to be 

generated. Test templates are described in terms of the architecture model. 

 The test template processor of the testing framework builds an internal 

representation of the provided test template and processes with generators 

from the testing library. 

 The test sequence generators of the testing library produce a series of 

abstract test programs that specify instruction sequences to be placed in 

generated test cases, but do not specify concrete test data for instruction 

calls where they has not been explicitly specified as constant values. 

 The test data generators of the testing library generate all required testing 

data with the help of constraint solver engine and produce a series of 

concrete test program (expressed as some internal representation). 

 The test template processor simulates the execution of concrete test 

programs with the architecture model to update the model’s internal state 

and generates source code of test programs. 

Components that are involved in test generation are described in subsequent 

sections.  
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7. Modeling framework 

The role of the modeling framework is to prepare the environment for test 

generation. It provides functionality creating a microprocessor model basing on 

formal specifications. As it has already been said, there two principal components: 

the translator and the modeling library. Before discussing then in detail, let us have 

a closer look at the generated microprocessor model. 

7.1 Microprocessor model 

The microprocessor model consists of the design model and the coverage 

model. Information provided by both models serves as a basis for describing test 

cases. Unified interfaces of the model allow applying various generation 

techniques implemented in MicroTESK to different microprocessor design without 

having to modify the tool’s core. The conceptual scheme of a microprocessor 

model is displayed in Figure 3. Interaction with the model is performed using three 

abstractions: (1) meta information provider, (2) model state observer and (3) 

instruction call configurator. They encapsulate details of the design model and the 

coverage model and make them appear as a whole. In fact, both models are tightly 

coupled, but describe different properties of a microprocessor. The coverage model 

is built on top of the design model and summarizes its behavioral properties. 

Microprocessor Model

Meta Information 

Provider

Model State 

Observer

Instruction Call 

Configurator

Design Model

Coverage Model

Instructions

Resources

Test Situations

Grouping Rules

 

Figure 3. Conceptual scheme of a microprocessor model 
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The main responsibility of the design model is tracking the state of the 

microprocessor during test generation. Information on the current state is needed to 

create self-checking tests and to generate test data on a basis of constraints 

formulated in terms of the current state. The design model allows simulating 

execution of microprocessor instructions and monitoring microprocessor resources 

(registers, memory). Also, the design model is responsible for producing textual 

and binary code of simulated instruction calls that will be inserted in test programs. 

The instruction set model serves as a core of the design model (information on 

instruction syntax is essential for all kinds of test generation techniques). In the 

current version of MicroTESK, the design model contains only an instruction set 

model based on Sim-nML specifications. However, the design model has extension 

points that can be used to integrate models of microarchitecture elements such as 

memory management unit. 

Interaction with the design model is performed via the model state observer 

and instruction call configurator. Both interfaces are independent of the model 

configuration (instruction set, registers, memory configuration and other 

properties). To identify elements of the model, each design element provides meta 

information which is available through the meta information provider. This 

information serves as a basis for specifying instruction calls and requests for 

information on the model state. This allows working with different models in a 

uniform way and adding support for modeling new elements without having to 

modify the interfaces. 

The coverage model contains information about behavioral properties of the 

target design. It describes test situations and rules for grouping similar instructions. 

This information serves as a basis for creating test cases. Test situations are 

typically described as constraints expressed in terms of instruction parameters and 

the model state. 
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From a programmer’s point of view, generated microprocessor models are 

represented by a hierarchy of objects hidden behind public interfaces. The public 

part of the model includes objects that implement the three main services of the 

model (namely, (1) meta-information provider, (2) model state observer and (3) 

instruction call configurator). These abstractions interact with the internal part to 

perform their tasks. The internal part of the model contains the following entities: 

 A model of memory resources (register banks, memory lines, temporary 

variable stores, internal flags). Information it stores can be read and 

written using the state observer. To identify specific resources, the entity 

metadata describing its contents. The metadata is aggregated by the 

microprocessor model's metadata provider. Inside the model, operations 

with resources can be performed by the addressing modes and operation 

primitives that have full access to them. 

 Addressing mode models. Provide implementations for the rules for 

accessing memory resources. Allow reading/writing data in a uniform 

way from/to various sources. Used as input parameters of instructions. To 

be able to be dynamically instantiated and initialized with different input 

parameters, addressing modes provide special builders that allow users of 

the model to create required objects. Like other entities, provide metadata 

that describe the format of their input parameters. Addressing modes 

described by OR-rules (a set of alternatives) aggregate metadata and 

builders of other addressing modes allowing choosing at runtime which 

object should be created. 

  Operation models. Represent components that perform smaller parts of 

instruction tasks (contain parts of instruction logic and syntax 

description). Operations aggregate other operations and addressing modes 

to build fully functional instructions. 
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 Instruction descriptions. Implement the rules of grouping operations and 

addressing modes into instructions. The name of the terminal operation 

and the list of aggregated addressing modes form the instruction 

signature. Instructions provide metadata that describes their signatures 

and builders that help set up instruction calls. 

  An instruction set description. A container that holds the list of supported 

instructions. It aggregates metadata of stored instructions and provides 

facilities for accessing specific instructions. 

 Test situation descriptions. Specify conditions that cause certain events to 

occur. Test situations are associated with instructions raising the described 

events. The test situation entities provide metadata for describing their 

signatures and builders for creating and initializing them. 

These entities are hidden behind public interfaces that make a model appear 

as a whole. All metadata provided by separate entities is united in a hierarchical 

structure by the meta-information provider. It provides descriptions of memory 

resources and instructions (including their parameters and test situations associated 

with them). Instructions can be grouped according to some characteristics. The 

model state observer provides access to memory resources using a unified interface 

that uses metadata to identify recourses. The instruction call configuration provides 

access to call builders of supported instructions. This allows the client code to 

create an instruction call, specify needed parameters (using argument builders and 

addressing mode builders) and specify conditions (test situations) that should 

satisfied by instruction arguments (if they were not set up explicitly). Figure 4 

shows the internal structure of a microprocessor model and links between the 

entities it contains. The entities are implemented and organized into a model with 

the help of library classes from the modeling library discussed later in this work. 
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Figure 4. Internal structure of a microprocessor model 

7.2 Translator 

The translator processes a microprocessor specification in Sim-nML to 

produce a model. The translator consists of two parts: model generator and 

coverage extractor. The former is responsible for building a design model and the 

latter extracts coverage information and builds the coverage model. The structure 

of the translator is shown in Figure 5. 
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Figure 5. Structure of the translator 

The translator is implemented using the ANTLR parser generator [10], [11]. 

The translator consists of a front end and two back ends. The front end is 

represented by a lexer and a parser created with the help of ANTLR on a basis of 

Sim-nML grammar. Their job is to build an internal representation (AST) for the 

processed Sim-nML specification. The back ends are the model generator and the 

coverage extractor. They analyze the AST and build the design model and the 

coverage model. The back ends consist of the following parts: (1) an AST walker, 

(2) builders of intermediate representation and (3) code generators. The AST 

walker generated by ANTLR traverses the tree to collect needed information. It 

uses special builder objects to create intermediate representation of the model 

which is represented as a table of primitives. The table is then processed with code 

generators responsible for generation of specific model classes. Here is the table of 

primitives extracted from Sim-nML specifications by the model builder: 

Primitive Description 

Constants (let expressions) Described by let constructs. Represent statically 

calculated constants that can be used in all parts of 
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the specification. 

Labels (or let labels) Described by let constructs. Their role is to specify 

properties of the model (e.g. program counter 

register, endianness, etc.). They are not referred by 

other primitives in the specification. 

Type definitions Described by type constructs. Specify data types 

that are represented by bit vectors of the specified 

size. In addition to size, data types use type 

identifiers that set up how to treat these data types 

(as signed/unsigned integers, booleans, floating-

point numbers, etc.). 

Memory resources 

(registers, memory lines, 

temporary variables) 

Described by reg, mem and var constructs. Specify 

memory resources as arrays of locations that have 

specified type and length. 

Addressing modes Described by mode constructs. Specify logic of 

accessing microprocessor memory resources. Have 

the following attributes: return expression (logic of 

resource access), syntax (textual format of the 

primitive), image (binary format of the primitive) 

and action (additional logic that can be executed 

from operations that use the given addressing 

mode).  

Operations Described by op constructs. Specify operations that 

build up instructions. Have the same attributes as 
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modes, but do not provide a return expression. 

Operations semantics is described by the action 

attribute. 

Instructions Produced by analyzing tables of other primitives. 

Represent a composite object that contains a tree of 

operations and addressing modes (references to 

entries in other tables).  

Table 1. Information extracted from Sim-nML specifications 

Code generation is performed using string templates that facilitate creating 

complex Java classes [12]. A generator for each primitive kind consists of a 

generation class and a string template. String templates specify component classes 

and interfaces provided by the modeling library that will be used in generated 

classes. 

In other words, to perform translation of each primitive kind, the following 

features are provided (each is responsible for accomplishing different steps in the 

translation chain): 

1. Token rules (lexer rules) for splitting the input file into a sequence of 

tokens. Described in the ATNLR DSL for lexer grammars. 

2. Parser rules for building an AST from tokens provided by the previous 

stage. Described in the ATNLR DSL for parser grammars. 

3. Tree walker rules traversing the AST. They describe the recursive-descent 

tree traversal algorithm that collects information on primitives and uses it 

to build their intermediate representation. 

4. Classes for building and storing the intermediate representation of the 

model primitives. Builder classes are used by the AST walker to create 
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the intermediate representation that will be used by generators to create 

the model code. 

5. Templates for classes to be generated and code for initializing these 

templates with parameters extracted from the Sim-nML specification. 

Described using the DSL and Java API classes provided by the String 

Template library. 

The coverage library uses the same approach to create classes for test 

situations and grouping rules. 

7.3 Modeling library 

The modeling library provides base classes for creating microprocessor 

models. From a programmer’s point of view, the design library and the coverage 

library represent a single library. The division is rather conceptual and is aimed to 

highlight that classes from these libraries are used by different code generators to 

create model classes serving different purposes. The model library consists of 

smaller libraries that provide building blocks for describing features of the model 

at different levels of detail. Higher-level libraries are created on a basis of lower-

level libraries. The table below lists the main libraries from the lowest level of 

detail to the highest. 

Library Description 

Raw data library This is a general-purpose library that provides classes 

for storing bit vectors. Includes code for concatenating 

bit vectors and creating masks that allow treating a 

single bit vector as a set of smaller bit vectors. Also, 

provides functionality for converting bit vectors 

to/from other data formats (integers, strings, byte 

arrays, etc). 

Data type library Provides classes for describing data types used in Sim-
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nML. Data is stored in bit vector classes provided by 

the raw data library. The data type library contains 

implementations for all operations supported by the 

described types. 

Memory library Contains classes for describing memory resources 

such as register files, memory lines and temporary 

variable stores. A single register or a variable is 

described an abstract entity called a location. The 

library also provides a connection point for integration 

with the memory management unit model (describing 

caches and address translation mechanism). 

Exception library 

 

A model can raise an exception. There two kinds of 

situations when it can occur: (1) an attempt to 

configure an instruction call or to request the model 

state using invalid parameters (configuration 

exception) and (2) incorrect semantics of an 

instruction that brings the model to an invalid state 

during simulation of its execution (simulation 

exception). The library provides classes for all 

possible exceptions of both kinds. 

Instruction library Contains interfaces and abstract base classes to be 

inherited by classes implementing instructions. These 

interfaces and classes are independent of specific 

ADLs and can be used to build an instruction set 

model described using different formalisms. The 

library describes the following abstractions: an 

instruction set, an instruction, an instruction call, an 

addressing mode, and instruction call builder, an 

instruction argument builder and an addressing mode 

builder. 

Meta information library Provides interfaces and classes for describing metadata 

for entities contained in a model (such as instructions, 
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addressing modes, memory resources and test 

situations). 

State observer library  Contains classes and interfaces that provide access to 

the internal state of the model. The allow requesting 

values stored in registers and memory and also status 

flags that indicate some “interesting” states of the 

model. 

Sim-nML instruction 

library 

Provides base classes for instructions built on a basis 

of Sim-nML specifications. Includes classes for such 

Sim-nML primitives as operations and addressing 

modes and their builders. 

Model library Provides bases classes for microprocessor model. 

They aggregate all lower-level components and 

organize access to them using such abstractions as 

meta data provider, model state observer and 

instruction call configurator. 

Test situation library Provides base classes for test situations extracted from 

the specification by the coverage analyzer. Includes 

classes that help describe preconditions as constrains 

that can be solved by the constraint solver engine. 

Table 2. Libraries of the modeling framework 

Microprocessor models created by the translator include the following class 

types (all of them extensively reuse library classes so that the generated code 

contains minimal functionality which is unique for the given model): 

 Model. The main class of the model. It is inherited from the 

SimnMLProcessorModel library class. It aggregates the instruction set 

and memory resources and provides access to them via the IModel 

interface. 
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 Shared. Aggregates all constant, type, memory resource definitions. In 

addition, it holds internal statuses of the model and labels that associate 

specific memory recourses with their aliases. The Type, MemoryBase, 

Status and Label classes for type definitions, memory resources, internal 

statuses and labels respectively. 

 ISA. This class it inherited from the InstructionSet  class. Its purpose is to 

aggregate a collection of instructions. 

 Instruction. Such a class holds all information about a specific instruction. 

It is inherited from the InstructionBase class. The main responsibility is to 

create an instruction call as a hierarchy of operations and addressing 

modes initialized with customer parameters. 

 Operation. Implements the "op" abstraction of Sim-nML. Inherited from 

the Operation library class. Contains information on syntax and semantics 

of an operation that represents a part of an instruction. 

 Mode. Implements the "mode" abstraction of Sim-nML that describes the 

logic of addressing modes. Inherited from the AddressingMode library 

class. 

 Situation. Describes a particular test situation. Inherited from the Situation 

library class. 

The modeling library was designed to simplify as possible creation of 

microprocessor models. The library classes help of create mode code in Java that 

looks as similar as possible to Sim-nML specifications, encapsulating all low-level 

details. This facilitates debugging of the model and finding bugs in the 

specification. 
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8. Testing framework 

The job of the testing framework is to generate test programs on a basis of 

test templates provided by a verification engineer. Test templates represent an 

abstract description of a test case specified in a special template description 

language derived from Ruby[15]. Test templates are processed with the test 

template processor that utilizes engines from the testing library to produce test 

programs. There are two kinds of generation engines: (1) test data generators and 

(2) test sequence generators. Test program generation is performed in the 

following steps: 

1. The test template processor applies test sequence generators to produce 

an abstract test program (i.e., a sequence of objects describing test calls 

that use test situations to specify preconditions for input parameters 

instead of concrete values). 

2. The test template processor uses test data generators to create input data 

for instruction calls which will satisfy the preconditions formulated in 

test situations. 

3. The test template processor creates an initialization section of the test 

program, which initializes registers and memory with data produced by 

the previous stage. Thus, the resulting output is represented by a 

sequence of instructions calls that have all required parameters 

unambiguously specified. 

4. The framework generates source code of the test program (including the 

initialization section) and updates the model state by simulating 

execution of the generation instruction call sequence. 

Components involved in test program generation are described in more 

detail in the subsequent subsections. 
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8.1 Test templates 

Before discussing test generation engines, it is necessary to have a clear 

understanding of such a notion as test templates. Generally speaking, a test 

template is a high-level description of a test program to be generated. It uses a 

special notation that allows describing an instruction sequence in an abstract way 

without having to specify concrete instruction arguments or even concrete 

instructions in test cases. For instance, it is possible to define input data in terms of 

preconditions and to use groups of interchangeable instructions (optionally, with 

probability distributions of their occurrences) instead of specific instructions. 

Concrete data and instructions to be used in test programs will be chosen by the 

engine during test generation depending on input parameters and the state of the 

microprocessor model. Another important feature of test templates is the ability to 

describe instruction sequences that will be built using random, combinatorial or 

other user-defined algorithms. Also, it is possible to merge instruction sequences 

produced using different generation methods. 

The test template description language represents a high-level scripting 

language (the current version uses Ruby[15]) extended with libraries that facilitate 

describing test cases. Such an approach helps keep to minimum the required 

learning effort. 

Features provided by the language and the libraries serve the following main 

purposes: 

 Select generation methods (i.e. chose sequencing algorithms, data 

generation engines, etc.). 

 Configure instruction calls (with input values or using preconditions). 

 Specify dependencies between instruction calls. 

 Organize loops and conditional generation. 
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 Insert validity checks. 

 Provide the infrastructure for creating complex tests. 

The specified duties are common for all kinds of tests based on different 

types of testing knowledge and exploiting various test generation techniques. Since 

MicroTESK can be extended with new test generation methods, the test template 

description language is designed to be flexible to avoid modifying existing logic 

when a new feature is added. 

Test templates are created using special test template API in Ruby that 

provides base classes for test templates and functionality for organizing test 

templates into groups. A test template is represented by a class that has public 

methods for initialization, finalization and test case execution. A creator of a test 

case only needs to provide implementations of those methods (all logic responsible 

for test generation is encapsulated in the base API class). The code below 

illustrates this approach:  

class MyTestCase < Template 
 
  def initialize 
    super 
    @is_executable = yes 
  end 
 
  def pre 
    // Place your initialization code here 
  end 
 
  def post 
    // Place your finalization code here 
  end 
 
  def run 
    // Place your test case here 
  end  
 
end 
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The methods contain code that describes instruction sequences to be 

generated. Template code represents a hierarchical structure of test sequence 

blocks. They hold a set of instructions or nested blocks and specify what test 

sequence generator will be used to produce a test sequence. Instruction sequences 

for nested blocks are produced by recursively applying corresponding generation 

engines and merging blocks of the same level with the engine specified by the root 

block. The specification of a sequence block consists of a header and a body. The 

role of the header is to specify the sequence generation engine to be applied and 

parameters used to configure it. Parameter sets can vary for different engines. In 

order to keep the format of block headers uniform, parameters are specified as key-

value pairs. Here is an example of a test template that has two nested sequence 

blocks using different generation engines with different sets of parameters: 

# Test Sequence Block 
block (: combine => ”product”, 
            : compose => ”random”) 
{ 
    # Nested Block A 
    block (: engine => ”random”, 
                : length => 3, 
                : count  => 2) 
    { 
        add r(2), r(0), r(1) 
        sub r(3), r(1), r(2) 
        mul r(4), r(2), r(3) 
        div  r(5),  r(3), r(2) 
    } 
 
    # Nested Block B 
    block (: engine => ”permutate” ) 
    { 
        ld r(0), r(4) 
        st r(1), r(5) 
    } 
} 
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From a conceptual point of view, a test sequence block represents a 

specification of a single testing task. This task can have its own preconditions, 

postconditions and invariants that should be applied to the whole specified 

instruction sequence. Consequently, some generation engines may use block-level 

test situations and constraints. For such generation techniques, it is possible to 

assign test situations to whole blocks via parameters in the block header. 

The body of a block describes instruction calls to be inserted into the 

generated sequence. Please note that the final order of instruction calls is 

determined by applied sequence generators and may not be the same as specified in 

the block. A template description of an individual instruction call includes the 

following properties: 

 Instruction identifier. It can be the name of a specific single instruction, 

the name of an instruction group or a set of instruction names. The 

probabilities of occurrence of instructions in a set are assumed equal 

unless corresponding probability distributions are explicitly specified. 

 Addressing modes. Sources of input data and destinations for output data 

of instructions are specified using addressing modes that provide access to 

microprocessor's memory resources. Each instruction argument can have 

one or several addressing modes associated with it. Test templates allow 

using a concrete addressing mode or randomly choosing an addressing 

mode from the specified set. Thus, it is possible to cover scenarios that 

involve access to different resources using the same test template. 

 Instruction arguments. Input and output data are accessed by instructions 

via addressing modes parameterized with some constant values. These 

values can represent immediate values (for instance, an address or 

constant) or identify particular registers. Test templates allow specifying 

them in three ways: as concrete constant values (1), as random values (2) 
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and as constraints based on some preconditions (3). Such an approach 

facilitates covering a wide range of testing goals. 

 Test situations. Specify a certain coverage goal (i.e. a logic branch 

executed under certain conditions). A test situation or a set of test 

situations can be linked to an instruction call. In this case, the generation 

engine produces input data that satisfy conditions necessary for the 

situation to occur and inserts corresponding initialization code in 

beginning of the generated instruction sequence. 

 Dependencies. Instructions can share input and output data as well as 

other properties assigned when the template is being processed by the 

generation engine. The test template language allows establishing such 

links by using variables. 

Test cases may require insertion of different instruction sequences into a test 

program depending on some conditions or repetition of some instruction 

sequences. The test template language provides constructs to support conditional 

branching and loops (in fact, they are inherited from Ruby). Conditions can be 

based on generated test data or on the state of the microprocessor model (the test 

template description language provides special facilities for querying information 

on the model state). 

Below, there is an example of a template specification of a simple test case 

for the ALU of an ARM microprocessor. 

(1..10).each do { |i| 
    eor blank, setsOff, r(0), r(0), register0 
    add blank, setsoff, reg(2), reg(1), register0   do normal end 
    mov_immediate blank, setsoff, reg(1), immediate(i) 
    add blank, setsoff, reg(1), reg(4), register4   do random end 
    sub blank, setsoff, reg(3), reg(2), register1    do overflow end 
    } 
end 

 



41 
 

The example demonstrates the use of test situations ("normal", "overflow", 

"random") that specify preconditions for input parameters. Also, it demonstrates 

how the for loop from the Ruby language can be used in test templates. 

One more important feature of test templates that is worth noticing is 

support for creating self-checking tests. Test templates can include checks for 

correctness of the microprocessor state. Such a check represents code that performs 

comparison of values stored in the specified register or memory address with 

expected values and terminates the program if they do not match. Termination is 

often performed as a control transfer to some address that stores code responsible 

for program termination and dumping the results. Test templates help automate the 

task of generating assembler code for validity checks, thus, reducing the effort 

needed to create self-checking tests. 

8.2 Test template processor 

The role of the test templates processor is to control the process of test 

generation. From a technical point of view, it is a runtime environment where 

scripts of test templates can be executed producing a test program. Generally 

speaking, it is set of Ruby libraries that serve as a basis for creating test templates 

and that provide a means of interaction with the microprocessor model and with 

the testing library. Basically, it performs its duties in the following main steps: 

 Creates wrappers for the elements of the microprocessor model basing on 

provided meta-information (this includes instructions, their addressing 

modes, test situations, memory resources, etc). In other words, it creates 

implementations for such functions as “add”, “sub”, “reg” and other 

similar primitives used in test templates to describe instruction calls. 

Technically, to make these features available to test templates, it 

dynamically defines corresponding methods of the Template class. 



42 
 

Method bodies are defined as lambda functions parameterized with data 

taken from model’s meta-information. 

 Runs the script of a test template to build the internal representation of the 

test sequence block hierarchy it describes. The script uses factories 

provided by the testing library to create required objects. To enable using 

Java libraries in Ruby scripts, MicroTESK uses the JRuby engine [16] to 

execute scripts. 

 Processes the test sequence block hierarchy with test sequence generators 

from the testing library to create an abstract test program (a set of 

sequences of abstract instruction calls). The output is called an abstract 

test program because, at this step, the order of instruction calls is fixed 

while the values of their arguments may not be known yet (such 

instruction call descriptions are referred to as abstract test calls). 

 Processes the abstract test program with test data generators to generate 

instruction call arguments that satisfy conditions formulated in test 

situations associated with specified instruction calls. An instruction call 

with fixed argument values is called a concrete call and a sequence of 

such calls is referred to as a concrete test program. Instructions that use 

arguments stored in registers or the main memory require initialization 

code to be executed to assign the resources values produced by data 

generators. For such instructions, corresponding initializing instructions 

calls are inserted in the beginning of the instruction call sequence (this 

part of the sequence is called an initialization section). An important note 

is that test data generation is performed sequence by sequence (if a 

concrete program consists of several instruction sequences) in order to be 

able to update the model state and to generate data of a basis of the 

updated state. A processed sequence is passed to the next step and only 
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when the next step is done the processor starts processing the next 

sequence. 

 Simulates the execution of concrete call sequence to update the model 

state and writes textual representation of instruction calls to a text file. 

Then the control is transferred to the previous step. When all concrete call 

sequences have been processed, the resulting text file represents a 

generated test program that can be executed to check the validity of the 

microprocessor design. 

The scheme of test template processing is displayed in Figure 6. 
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Figure 6. Scheme of test template processing 

8.3 Test sequence generators 

Test sequence generators process test sequence blocks to produce sequences 

of abstract instruction calls. The testing library contains a table of test sequence 

generators implementing a uniform interface. According to the identifier specified 

in the header of a test sequence block in a test template, a proper generator is 

selected to generate a sequence. Such architecture makes it easy to extend the 

testing library with new sequence generation techniques. To do this, a 

corresponding component implementing the sequence generator interface should 

be added to the table. 
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In the current implementation, test sequence generators are hidden behind 

the interface of test sequence blocks. In fact, when the test template processor is 

building a hierarchy of test sequence blocks the sequence generators are applied to 

the blocks being built to produce corresponding sequences. In turn, each test 

sequence block has a public method that returns an iterator for the collection of 

sequences generated for this block by a corresponding sequence generator. In the 

simplest case, the generator produces a single test sequence for a single test 

sequence block. For nested blocks, generated sequences are united in a recursive 

manner. To accomplish this task, each non-terminal block should specify the 

following strategies: (1) the combination strategy and (2) the composition strategy. 

The first describes how to combine sequences returned by iterators of nested 

blocks. The second describes how several sequences can be merged together. Thus, 

the testing library includes two types of test sequence generators used together to 

handle nested blocks: combinators and compositors. Combinators produce 

combinations of the nested test sequences, while compositors merge those 

sequences into a single one. 

The testing library includes several standard combinators and compositors 

(if needed, the library can also be extended with custom ones). The current 

implementation provides the following standard combinators: 

1. Random combinator. Produces a number of random combinations of the 

results returned by sequence generators of nested blocks. 

2. Product combinator. Creates all possible combinations of the test 

sequences produced by nested blocks. 

3. Diagonal combinator. Synchronously requests sequence iterators of nested 

blocks and joins the returned results. 

Here are standard compositors provided by the testing library: 
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1. Random compositor. Randomly mixes test sequences retuned by nested 

blocks. 

2. Catenation compositor. Catenates nested test sequences. 

3. Nesting compositor. Embeds nested test sequences one into another. 

In addition to standard components, it is possible to create custom test 

sequence generators, combinators and compositors, add them to the testing library 

and invoke them from test templates. 

8.4 Test data generators 

Test data generators are used by the template processor to translate abstract 

instruction calls into concrete instruction calls that can be simulated by the 

microprocessor model. As it has already been said, instruction calls described in 

test templates are not required to have explicitly specified arguments. Instead, it is 

possible to use random values, constraint expressions or test situations. For 

example, the following code snippet specifies the ADD instruction from the ARM 

ISA invoked for two random registers and a random immediate value: 

add_immediate blank, setsoff, _, _, _ 

The ‘_’ identifiers are used to specify random arguments. The scope of 

random values can be limited with constrains. To create directed tests, instruction 

calls can be attributed with test situations describing conditions that should be 

satisfied by arguments to cause a certain event. For example, the following line of 

code states that the addition of two values stored in general purpose registers 

should cause an integer overflow: 

add equalcond, setsoff, reg(1), reg(2), register0 do overflow end 

Test data generators are responsible for generating appropriate arguments 

values and creating code that will initialize corresponding memory resources with 

these values (if needed). For different kinds of test situations, different data 

generators can be used. Most commonly, test situations are described as constraints 
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on the internal state of the model and instruction argument values. For constraint-

based test situations, MicroTESK used a test data generator that interacts with 

external SMT solvers to produce test data. The component responsible for this 

interaction is called constraint solver engine (it will be discussed in the next 

subsection). Figure 7 illustrates the scheme of interaction between components 

involved in creation of a concrete instruction call and corresponding initialization 

code. 
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Figure 7. Scheme of test data generation 

The general algorithm of generating data and initializing code on a basis of a 

provided test situation is the following: 

 An appropriate test data generator is selected for the given test situation 

from the collection of test data generators. 

 Input values involved in the computation are requested from the 

microprocessor model. 

 The constraint formulated by the test situation is solved by the constraint 

solver engine on a basis of input values. 
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 Output values produced by the solver engine are assigned to instruction 

arguments (if they represent immediate values) or passed to the generator 

of initializing code (if they are stored in registers or memory). 

 Initializing code is created by applying corresponding generators of 

initialization calls to the specified memory resources and input values. 

The step that needs to be discussed in more detail is generation of 

initialization code. Different memory resources require different initialization 

code. Depending of the ISA, they may require a single call or a sequence of calls. 

The logic of initialization code generation is encapsulated in generators of 

initializing codes, which are identified by addressing modes that specify the 

destination for input values. Consequently, for each supported addressing mode a 

corresponding generator should be provided. When MicroTESK is creating 

initialization code for some instruction argument, it searches for an initialization 

call generator that uses the same addressing mode. Generators of initializing codes 

require configuration information. This information will be derived from Sim-nML 

specification enriched with specialized constructs. In the current prototype, 

generators of initializing calls have to be written by hand using API classes from 

the modeling library. 

8.5 Constraint solver engine 

To generate test data basing on constraints, the framework provides a 

constraint solver engine. It is based on Java Constraint Solver API [20], which was 

initially developed as part of MicroTESK, but now it is a separate project which is 

used in several other projects dedicated for hardware verification. To put it in a 

nutshell, the engine represents a collection of solvers oriented on specific tasks 

encapsulated behind a generic interface. This allows working with differed kinds 

of solvers in a uniform way. Solvers are divided into two major families: (1) 

standard general purpose solvers and (2) custom solvers aimed at specific tasks. 
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Standard solvers use some SMT solver implementation provided by a third-

party vendor (for example, Z3 by Microsoft Research [13]). SMT solvers allow 

describing constraints as a set of assertions that should be hold for the specified 

variables. Assertions can be formulated for boolean expressions, arithmetic 

expression and expressions based on fixed-size bit-vectors. STM constraints can be 

used to limit the scope of random generation or to formulate preconditions for test 

situations. The framework provides wrappers implementing generic interfaces for 

all SMT solver features used in test data generation. This allows migrating to other 

SMT solver implementations without having to modify other parts of the testing 

framework. In the current implementation, interaction with solvers is performed 

via source files in the SMT LIB language [14]. The solver engine generates source 

files and passes them to an external SMT solver. The output data returned by the 

solver is parsed and packed into library classes. Here is an example of a constraint 

that describes an integer overflow situation using the SMT LIB language: 

(define-sort Int_t () (_ BitVec 64)) 
 
(define-fun INT_ZERO () Int_t (_ bv0 64)) 
(define-fun INT_BASE_SIZE () Int_t (_ bv32 64)) 
(define-fun INT_SIGN_MASK () Int_t (bvshl (bvnot INT_ZERO) INT_BASE_SIZE)) 
 
(define-fun IsValidPos ((x!1 Int_t)) Bool 
         (ite (= (bvand x!1 INT_SIGN_MASK) INT_ZERO) true false)) 
(define-fun IsValidNeg ((x!1 Int_t)) Bool 
        (ite (= (bvand x!1 INT_SIGN_MASK) INT_SIGN_MASK) true false)) 
(define-fun IsValidSignedInt ((x!1 Int_t)) Bool 
        (ite (or (IsValidPos x!1) (IsValidNeg x!1)) true false)) 
 
(declare-const rs Int_t) ; output variable 
(declare-const rt Int_t) ; output variable 
 
; rt and rs must contain valid sign-extended 32-bit values (bits 63..31 equal) 
(assert (IsValidSignedInt rs)) 
(assert (IsValidSignedInt rt)) 
 
; the condition for an overflow: the sum is not a valid sign-extended 32-bit value 
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(assert (not (IsValidSignedInt (bvadd rs rt)))) 
  
; just in case: rs and rt are not equal (to make the results more interesting) 
(assert (not (= rs rt))) 
 
(check-sat) ; checks whether the constraint is satisfiable  (solves the constraint) 
(get-value (rs rt)) ; gets values that lead to an overflow 

Some testing tasks (e.g. covering cache or pipeline test situations) involve 

formulating constraints in terms of internal states of specific microprocessor model 

components. Functionality provided by SMT solvers is not suitable to solve such 

constraints. For these tasks special custom solvers can be provided. They are 

connected to the microprocessor model and use information on its internal state to 

produce test data that satisfy formulated conditions. They also can use SMT 

solvers to narrow the range of possible result values. When a coverage model is 

extended with new types of test situations, it often means a need to provide a 

corresponding custom solver. To facilitate extension of the engine with new 

solvers, both standard and custom solvers are implemented using a set of uniform 

interfaces generalizing services provided by these solvers. 

To facilitate extension, the constraint solver engine hides solvers behind its 

public interfaces. In fact, the abstraction users of the engine operate with is 

constraints. Consequently, there are two categories of constraints: (1) standard and 

(2) custom. Both of them implement the same interfaces. However, their internal 

representations may be different as they require different solvers. The current 

version of the constraint solver engine supports only standard constraints and 

standard solvers. Constraints have the following attributes:  

1. Name (a unique identifier). 

2. Description (information that can be displayed to a user). 

3. Solver identifier (specifies which solver should be used). 
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4. Variables. It can be input variables (in this case, they should be explicitly 

initialized) or output variables (in this case, they should be left 

uninitialized). 

Standard constrains contain a hierarchy of objects that specify an SMT 

model represented by a set of assertions (or formulas) that must be satisfied. When 

a constraint is solved, a corresponding SMT solver checks the satisfiability of the 

model and suggests a solution (output variable values) that would satisfy that 

model. In an ideal case, to provide a better test coverage, each run of an SMT 

solver should return random values from the set of possible solutions. 

Unfortunately, the current implementation is limited to a single solution that is 

constant for all runs. 

SMT models are described using context-independent syntax trees. Such a 

format is flexible as it is independent of a particular SMT solver implementation. 

To solve a constraint with a specific solver, the tree is traversed to produce input 

data in a format compatible with the given solver. The current implementation uses 

a limited set of SMT features. This makes the API compatible with a wide range of 

SMT solvers (most of free SMT solvers do not implement all SMT features). The 

syntax tree consists of nodes (Java objects) of the following types: 

 Syntax. This is the root node of the tree. It holds the list of assertions 

(formulas) what specify conditions for the unknown variables associated 

with the constraint. 

 Formula. Represents a single assertion expression. Can be combined with 

other formulas to build a more complex expression (by applying logic 

“or”, “and” or “not” to it). The underlying expression must be a logic 

expression that can be solved to true or false. 
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 Operation. Represents an unary or binary operation with some unknown 

variable, some value or some expression as parameters. 

 Variable. Represents an input variable. It can have an assigned value and, 

in such a case, will be treated as a value. Otherwise, it is an unknown 

variable. A variable includes a type as an attribute. 

 Value. Specifies some known value of the specified type which can be 

accessed as an attribute. 

The Operation, Variables and Value classes implement a common interface 

(the abstraction is called syntax element) and can be treated polymorphically. This 

allows combining them to build complex expressions. Figure 7 shows the UML 

diagram of classes that are used as modes of the syntax tree. 
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Figure 8. UML diagram of classes used in the SMT syntax tree 

Constraint objects can be serialized to a hard disk. They are stored in the 

XML format. The format is flexible and extendable. The implementation supports 

adding new attributes to the stored objects and allows restoring objects from files 

that use different format versions. Below, there is an example of an XML file that 
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describes a constraint. It demostrates the structure of the storage format. As it can 

be noticed, the hierarchy of XML tags closely resembles to the constraint syntax 

tree node hierarchy implemented in Java. 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 

<Constraint version="1.0"> 

  <Name>PowerOfTwo</Name> 

  <Description>PowerOfTwo constraint</Description> 

  <Solver id="Z3_TEXT"/> 

  <Signature> 

    <Variable length="32" name="x" type="BIT_VECTOR" value=""/> 

  </Signature> 

  <Syntax> 

    <Formula> 

      <Expression> 

        <Operation id="BVUGT"/> 

        <VariableRef name="x"/> 

        <Value length="32" type="BIT_VECTOR" value="00000064"/> 

      </Expression> 

    </Formula> 

    <Formula> 

      <Expression> 

        <Operation id="BVULT"/> 

        <VariableRef name="x"/> 

        <Value length="32" type="BIT_VECTOR" value="000000c8"/> 

      </Expression> 

    </Formula> 

    <Formula> 

      <Expression> 

        <Operation id="EQ"/> 

        <Expression> 

          <Operation id="BVAND"/> 

          <VariableRef name="x"/> 

          <Expression> 

            <Operation id="BVSUB"/> 

            <VariableRef name="x"/> 

            <Value length="32" type="BIT_VECTOR" value="00000001"/> 

          </Expression> 

        </Expression> 

        <Value length="32" type="BIT_VECTOR" value="00000000"/> 

      </Expression> 

    </Formula> 

  </Syntax> 

</Constraint> 
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9. Trials: the ARM7TDMI architecture model 

To conduct a trial of the implemented test program generation tool, a 

specification of a real (or, at least, close-to-real) microprocessor architecture is 

required. For this purpose, the ARM7TDMI [21], [22] microprocessor was chosen. 

ARM7TDMI (ARM7+Thumb+Debug+Multiplier+ICE) is a 32-bit RISC (Reduced 

Instruction Set Computer) microprocessor designed by ARM [24], [25] that 

implements the ARMv4T architecture [23]. ARM7TDMI was one of most widely 

used ARM cores in 2009 and its architecture is relatively simple. For this reason, it 

was selected to be used as an example of a design under test. An initial version of 

the Sim-nML specification of the ARM7TDMI microprocessor ISA was kindly 

provided by Indian Institute of Technology Kanpur [26]. The specification was 

subsequently modified to adapt it to the current implementation of MicroTESK 

(including error corrections, changes in structure, removing redundancies). It 

represents a full ARM7TDMI ISA specification excluding floating-point 

instructions that are not currently supported by MicroTESK and some other 

instructions that were considered redundant at the present stage. The table below 

contains the list of modeled ARM instructions: 

Number Name Category Description 

1-2 B, BL Branch instructions Branch, and Branch with Link 

3 BX Branch instructions Branch and Exchange Instruction 

4 BLX Branch instructions Branch with Link and Exchange 

5 MUL Multiply instructions Multiply 

6 MLA Multiply instructions Multiply Accumulate 

7 SMULL Multiply instructions Signed Multiply Long 

8 UMULL Multiply instructions Multiply unsigned long 

9 SMLAL Multiply instructions Signed Multiply Accumulate Long 

10 UMLAL Multiply instructions Unsigned Multiply Accumulate Long 
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11 SMLA Multiply instructions Signed halfword Multiply Accumulate 

12 SMLAL Multiply instructions Signed Multiply Accumulate Long 

13 SMLAW Multiply instructions 
Signed halfword by word Multiply 

Accumulate 

14 SMUL Multiply instructions Signed halfword Multiply 

15 SMULW Multiply instructions Signed halfword by word Multiply 

16-17 SWP, SWPB Semaphore instructions Swap and Swap Byte 

18 MRS 
Register access 

instructions 
Move PSR to General-purpose Register 

19 ADC 
Data-processing 

instructions 
Add with Carry (register and immediate) 

20 ADD 
Data-processing 

instructions 
Add (register and immediate) 

21 AND 
Data-processing 

instructions 
Logical AND (register and immediate) 

22 BIC 
Data-processing 

instructions 
Bit Clear (register and immediate) 

23 CMN 
Data-processing 

instructions 

Compare Negative (register and 

immediate) 

24 CMP 
Data-processing 

instructions 
Compare (register and immediate) 

25 EOR 
Data-processing 

instructions 
Exclusive OR (register and immediate) 

26 MOV 
Data-processing 

instructions 
Move (register and immediate) 

27 MVN 
Data-processing 

instructions 
Move NOT (register and immediate) 

28 ORR 
Data-processing 

instructions 
Logical OR (register and immediate) 

29 RSB 
Data-processing 

instructions 

Reverse Subtract (register and 

immediate) 

30 RSC 
Data-processing 

instructions 

Reverse Subtract with Carry (register and 

immediate) 

31 SUB 
Data-processing 

instructions 
Subtract (register and immediate) 

32 SBC 
Data-processing 

instructions 

Subtract with Carry (register and 

immediate) 

33 TST 
Data-processing 

instructions 
Test (register and immediate) 

34 TEQ 
Data-processing 

instructions 

Test Equivalence (register and 

immediate) 

35 LDR 
Load and store 

instructions 
Load Word 
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36 LDRB 
Load and store 

instructions 
Load Byte 

37 LDRBT 
Load and store 

instructions 
Load Byte with User Mode Privilege 

38 LDRT 
Load and store 

instructions 
Load Word with User Mode Privilege 

39 STR 
Load and store 

instructions 
Store Word 

40 STRB 
Load and store 

instructions 
Store Byte 

41 CDP Coprocessor instructions Coprocessor Data Operations 

42 CLZ 
Miscellaneous 

arithmetic instructions 
Count Leading Zeros 

43 QADD 
Parallel arithmetic 

instructions 
 Saturating Add 

44 QDADD 
Parallel arithmetic 

instructions 
 Saturating Double and Add 

45 QSUB 
Parallel arithmetic 

instructions 
 Saturating Subtract 

46 QDSUB 
Parallel arithmetic 

instructions 
 Saturating Double and Subtract 

47 PLD Preload data instruction  Preload Data 

Table 3. Modeled ARM instructions 

The total number of instructions described by the Sim-nML specification is 

47 and the total size of the specification is about 3200 lines of code (LOC). This 

means that the average size of code required to describe a single instruction is 

about 68 LOC. Taking into account that the specification is raw and still contains 

redundancies (duplicating code that can be reused), it should be possible to 

decrease the average size of a single instruction specification to 55 LOC. The total 

size of Java source files of the generated model is about 16000 LOC. 

Consequently, the average size of a single instruction model is 340 LOC, which is 

approximately 5 times higher than the one of a Sim-nML specification.  

Language Total size (LOC) Average size per an instruction (LOC) 

Sim-nML 3200 68 

Java 16000 340 

Table 4. Sizes of the Sim-nML specification and Java model 
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Table 4 summarizes the discussed metrics. Based on the provided metrics, it 

can be concluded that automated generation of a microprocessor model from a 

formal specification requires 5 times less effort than manual development of a 

model in a high-level programming language (Java, in the given case). In fact, the 

metrics are incomplete since they cover only the design model and do not consider 

the coverage model, which has to be written by hand in both cases in the current 

version of the tool prototype. The size of the coverage model can be varied 

depending complexity of the architecture (number of possible states to be covered) 

and on applied knowledge extraction algorithms (the range of situations they are 

able to extract). However, the size of the coverage model code is expected to be at 

least 40% of the design model. This is means that the difference in the required 

effort between manual model development and automated model creation on a 

basis of formal specifications is expected to increase by at least 40% and is 

expected to amount at least 7 times. 

The conducted trials demonstrated that the approach applied in MicroTESK 

helps significantly reduce the effort required to configure a test program generation 

tool for particular microprocessor architecture (to create a microprocessor model). 

This helps simplify development of functional tests and, consequently, help 

minimize time spent on functional verification of the microprocessor design. 
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10. Approbation and publications 

The approaches to microprocessor verification described in the present work 

were also discussed in two publications [1] and [2]. The main ideas of the proposed 

solution and a prototype of the developed tool MicroTESK were presented at the 

following conferences and seminars: 

1. 6th Spring/Summer Young Researchers' Colloquium on Software 

Engineering (SYRCoSE 2012), Perm, May 30-31, 2012. 

2. 7th Spring/Summer Young Researchers' Colloquium on Software 

Engineering (SYRCoSE 2013), Kazan, May 30-31, 2013. 

3. Design, Automation and Test in Europe (DATE 2013), University Booth 

exhibition, France, Grenoble, March 19-21, 2013 

4. 50th Design Automation Conference (DAC 2013), the University Booth 

exhibition, USA, Texas, Austin, June 2-6, 2013 

5. Seminar of the Software Engineering Department at Institute for System 

Programming of the Russian Academy of Sciences (ISPRAS), Moscow, 

April 16, 2013 
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11. Conclusion 

In conclusion, it should be said that the overall goal of the project has been 

achieved. A microprocessor test program generation tool that uses formal 

specifications in Sim-mML as a source of information about microprocessor 

configuration and coverage goals has been designed and developed. The proposed 

approach helps minimize the effort and time required to configure the tool for a 

specific microprocessor architecture. This simplifies the process of functional 

verification and saves time of verification engineers. Also, flexible architecture of 

MicroTESK facilitates integration of new components into the tool (support for 

new DSL, test sequence generators, test data generators, constraint solvers, etc). 

This allows using the tools to solve a wide range of verification tasks that involve 

combining different techniques. Trials of the tool in which the ARM7TDMI 

microprocessor was used as an example of a design under test demonstrated 

advantages of the MicroTESK approach over manual development of a 

microprocessor model. 

Due to time constraints, some features were implemented as prototypes that 

provide only a limited functionality. However, research and development will be 

continued in the future. The goal is to develop a fully-functional tool that can be 

used for solving real-life verification tasks in commercial projects. One the most 

important directions of future research is automation of extraction of coverage 

information from Sim-nML models.  
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