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Abstract

Anas's (2004) impossibility theorem (�vanishing cities�) states that monopolistic compe-

tition, economies of scale alone�are insu�cient to explain growth of cities in response to

growing population or decreasing trade costs; cities decline. Is this conclusion an artefact

of unrealistic assumptions? Instead of Anas's normative approach with social planner, we

consider positive approach: migration or developers' equilibria. Still, �vanishing� remains ro-

bust to more realistic modi�cations! Finally, we interpret �vanishing� as a realistic outcome:

industries, free of externalities, should locate in countryside. Generalizing our comparative

statics, we conclude that simultaneous growth of number and size of cities is implausible in

such industries.
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1 Introduction

Contemporary urban development shows rather typical tendency of many manufacturing facilities
to locate in small cities or even in a countryside. The examples include not only traditional milling,
beer brewing and other food industries but even car assembling. More generally, nowadays manu-
facturing is one of the least urbanized activities (see, for instance, Holmes and Stevens (2004) on
U.S. and Canada or Kolko (2010) on comparison between manufacturing and services). As a result,
big cities are more and more �deindustrialized�, specialized on exporting services. The services are
governance of territories by governments, governance of multi-plant �rms by headquarters, educa-
tion, banking, etc. Small cities, instead of exporting such services, produce manufacture and tend
to decrease in size. Should we say that decreasing small cities can be a natural outcome of market
evolution, driven by noticeably reduced trade costs?

Urban theory and economic geography (see Fujita and Thisse, 2002) has a lot to say about
�agglomeration forces� driving �rms and workers together into cities, and about countervailing
�dispersion forces.� Among the latter, commuting costs, land rent and other diseconomies of size
understandably restrict the city size. Alternatively, well-known Krugman's Core-Periphery model
uses agricultural population as a dispersion force instead of commuting costs. It predicts that large
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trade costs can support many small cities, whereas decreasing trade costs force agglomeration into
few large cities, and this view has become popular.

The opposite tendency � evolution towards smaller and smaller cities � is also predicted by
market theory in several settings. In particular, Starrett's (1978) impossibility theorem states that
without economies of scale or externalities, explanation of trading cities is impossible: economy
would generate �backyard capitalism. However, even accounting for externalities, Henderson (1974)
has achieved somewhat similar prediction. He assumes intra-industry externalities, but inter-
industry ones are absent, commuting costs work as dispersion force. Then, such world generates
mono-industry cities. Describing competition between two cities or regions, Helpman (1998) has
explored the tension between the agglomeration force stemming from preference for variety and
a dispersion force stemming from limited housing supply. Somewhat similarly treating two cities,
Tabuchi (1998) introduces competition for land as a dispersion force. Both models result in
similar result on arising dispersion: equal distribution of population between two regions when
transportation costs become low enough.

Extending this line of reasoning to emerging system of cities instead of given two cities, Anas
(2004) studies a normative setting. World (or country) population given, a social planner maxi-
mizes the per-consumer welfare by choosing the number of cities, under monopolistic competition à
la Dixit-Stiglitz, with iceberg trade costs. The agglomeration force amounts to economies of scale,
whereas the dispersion force stems from commuting costs (a square root of the city size). The main
theorem describes optimal cities under growing world population as follows: their number increases
but the size of each decreases, and eventually drops down to technologically admissible minimum.
The explanation is that the bene�t of living in a big city (close to many producers) decreases
when more and more varieties are imported from a growing world, whereas the commuting costs
remain the same. Anas interprets his surprising result as a theoretical counter-example: without
externalities simple monopolistic competition mechanism is insu�cient to produce growth of cities
in response to growing population, or/and decreasing trade costs, to understand the evolution of
cities. Our goal is to check robustness of this idea and to expand it.

Our setting uses Anas's (2004) model as a baseline. We have suspected his normative set-
ting and restrictive assumptions to drive his unexpected result. Does it remain valid in more
realistic settings? Instead of central planner, we explore two positive alternatives: (1) migration
equilibrium, where each citizen voluntarily can choose a city to live or can settle a new city (under-
standing how production and trade will respond to her choice); (2) developers' equilibrium, where
each city decides to invite or not additional citizens (also understanding the production/trade con-
sequences). These two versions remind two cases in theory of clubs: the migration setting describe
�open clubs� that everybody can joint irrespective of the will of its residents; another one relate to
�closed clubs.�1

As in Anas (2004), we use familiar Dixit-Stiglitz preferences and iceberg trade costs, assume
some technological minimum of city size called �village.� Commuting costs also keep the same
form and we similarly stick to symmetry, ignore the discrete nature of cities, �rms and citizens,
continuous model being more tractable.

Among results, we start with Migration equilibria. These equilibria are multiple, not uniquely
determined by preferences and costs. One can study only the �zone of equilibria.� Formally, under
given world population L and trade freeness φ, every symmetric composition of n cities (of equal
sizes) is a migration equilibrium, in the sense that consumer's utility is the same everywhere.

1We cannot directly rely on club theory, because our clubs-cities are interacting : they in�uence each other
through trade.
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However, we consider only stable equilibria. Stability means that small perturbation should be
reversed by migration forces. It includes two conditions: (i) no dispersion: nobody wants to settle
a new city; (ii) no agglomeration: nobody wants to migrate to another similar city (which thereby
could become slightly bigger and less attractive).

Propositions 1 and 2 describe �vanishing� cities. The zone of (L, φ, n) admissible for stable
cities turns out bounded, cities must disappear in 3 cases: (i) when the current number n of cities
becomes bigger than certain uniform bound n∗, or (ii) when world population L becomes bigger
than certain uniform bound Ld∗; or (iii) when trade freeness φ becomes bigger than certain uniform
bound φd∗.

It means that, other parameters given, whatever the historical city system is, growth of L,
φ or n makes our city system abruptly switching to complete dispersion, because of individual
migration. This conclusion on migration looks more interesting for us than Anas's global optimality
of cities. It surprisingly contrasts Krugman's agglomeration outcome. Why? Because Krugman's
agglomeration force and dispersion force decrease together with trade freeness, and the second
force decreases faster, which seems a doubtful assumption for modern cities. In our case, as in
Krugman, the agglomeration force is the bene�ts of combining �rms and consumers, it decreases
in trade freeness. However, our dispersion force is the commuting cost and it does not change with
trade freeness, this explains the outcome. Similarly, under constant city sizes, the dispersion force
does not change with world population but the agglomeration force weakens, because of increasing
share of imported varieties in consumption, that makes domestic production less important.

Of course, both Anas's and our analysis of this general tendency are too stylized, in comparison
to richer urban models that describe a heterogenous city system, for instance, Tabuchi and Thisse
(2006), Behrens et al. (2010). We rather provide a link between these developed models and
two-regional models that economic geography has relied on. Our goal here is more modest; we
just make a step in analysis of endogenous city systems and show that some industry may become
dispersed, due to the tendency revealed by Anas. We also interpret this as a realistic outcome for
some kind of cities, in contrast to his negative interpretation.

However, instead of limiting cases, detailed comparative statics can be more interesting: What
happens to the city system before its abrupt disintegration into villages? How economic parameters
matter for gradual changes in cities? Proposition 3 states that growing population the migration
stability can make city size either gradually shrink or collapse but not increase.

To get additional predictions, one should cope with equilibria multiplicity and de�ne a reason-
able selection among equilibria. Our �developers' equilibrium� imposes new restrictions on cities,
in addition to migration stability. We assume that citizens are able to restrict the entry to their
city, or attract new people by small privileges, and thereby increase average welfare. Such col-
lectively rational behavior is represented by benevolent city government called �local developer or
city major� (unlike Anas's global planner but alike those developers who maximize the price of
land by trying to please the citizens). Such developers may launch a new city. When attracting
a citizen, the developer is myopic enough to ignore the consequences of this development to the
whole world: depopulating other cities and changing their economic variables. Caring only about
changes in her city, correctly anticipating production and trade, she optimizes average welfare with
respect to her city size N . We explore two versions of such equilibria: �myopic� or �wise�, both
displaying similar features.

It turns out that the zone of (symmetric) stable developers' equilibria is a curve N(L) within
migration equilibria, it is bounded near the origin, for higher L it disappears and the result is
cities' disintegration (Proposition 4). Additionally (whenever cities are multiple), the equilibrium
city size gradually decreases with world population or trade freeness, before dropping down to
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its technological minimum. This version of the model di�ers from Anas's global optimization�
in respect of ignoring the interests of other cities by local government and her myopic views on
the rest of the world. However, the main conclusion remain: the tendency of (manufacturing,
industry-speci�c) towns to decrease and eventually collapse down to minimal technological size.

Summarizing, we generally support this prediction and conclude that cities comprised of in-
dustries lacking intra- or inter-industries externalities�should have a tendency to decrease and
eventually reach their minimal technological size. The rest of the paper is organized as follows:
Section 2 presents our baseline model, Section 3 studies migration equilibria. Section 4 deals with
developers' equilibria, and the �nal section concludes. The Appendix is devoted to proofs and
possible extension of the model.

2 Model: system of cities with migration

Now we introduce the model of cities' system very close to Anas's one, except for: (1) possibly
asymmetric cities and (2) migration process instead of social planner. We start with the description
of internal city structure and then embed it into a system of cities. We construct the general equi-
librium one sector model and relegate to the Appendix B the discussion of the possible extension
of the model to two sectors.

City. Traditionally, we consider monocentric and circular cities endowed with Central Business
District (CBD) where the production and trade take place. The only production input is labor
supplied by consumers � citizens. Each consumer needs one unit of land and possesses a unit of
time which she spends on commuting to the workplace (CBD) and labor. The cost of commuting
is s units of time per a unit of distance, therefore, consumer living at distance x from CBD spends
sx units of time for commuting and supplies h(x) = 1− sx units of labor for production. Suppose
there is N residents in a given city. Then, the radius of such a city becomes r =

√
N/π. Given

individual labor supply and uniform distribution of citizens within a city, overall labor supply for
production H is given by

H(N) =

ˆ r

0

2πxh(x)dx = πr2 − 2πr3/3 = N − kN3/2, (1)

where k ≡ 2s/3
√
π is a constant, summarizing commuting cost. We denote the average (per-

citizen) labor supply in a city as
θ(N) ≡ H(N)/N.

In addition, we assume zero opportunity value of land and free reallocation within a city.
Now, we explain how redistribution of rent makes income proportional to the labor supply.

Suppose that the city size is r. We have normalized the land rent on the edge of the city to
zero. Since consumers face the same price vector, free reallocation of consumers should lead to
disposable income equalization among them. In addition we assume that the local government
collects the land rent and distributes it equally among citizens in a form of lump-sum transfer.
Then disposable income of every citizen in a city of size N is

I(N) = θ(N)w ≡ (1− k
√
N)w,

which is decreasing in city size.2

2To see details of rent redistribution, see that at any city point the sum of rent cost and commuting cost must be
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System of cities and goods. Suppose there are n cities with population masses (N1, N2, ..., Nn).
There is only one di�erentiated good in the economy. Each variety is produced by only one �rm
residing in some city. All cities trade to each other through some common �hub�, which can be
just sea, i.e., transport cost for each pair of cities is the same. The market for varieties is monop-
olistically competitive. So, endogenous is the mass mi of varieties (and hence, �rms) produced in
city i.

Consumers have identical Constant Elasticity of Substitution (CES) preferences over the set
of varieties:

U =

[
n∑
i=1

ˆ mi

0

x
(σ−1)/σ
kji dj

]σ/(σ−1)
, (2)

where xkji is a consumption of variety j produced in the city i by a consumer in the city k and
σ > 1 is the elasticity of substitution. Consumer k maximizes in xk her utility (2) subject to the
budget constraint

n∑
i=1

ˆ mi

0

pkjixkjidj ≤ I(Nk), (3)

where pkji is the price of variety j produced in city i and consumed in city k. Taking the �rst-
order conditions and expressing the Lagrange multiplier from the budget, we obtain the consumer
demand function x(·) in the form:

xkji(pkji, Ik, Pk) = p−σkjiI(Nk)/P
1−σ
k Pk =

[
n∑
i=1

ˆ mi

0

p1−σkji dj

]1/(1−σ)
, (4)

with Pk being a price index. It is �perfect�, as a price of one unit of utility, in the sense that
indirect utility of a consumer in the city k is Vk = I(Nk)/Pk.

In Appendix F we also explain the two-sector version of the model, where preferences over the
two goods have standard Cobb-Douglas form:

Ǔ =

[ n∑
i=1

ˆ mi

0

x
(σ−1)/σ
kji dj

]σ/(σ−1)µ

M1−µ.

As soon as the budget shares remain constant, the qualitative features for this extension remains
the same as the below analysis of one-sector model. The extension explains how manufacturing
cities can coexist with services-cities, being important for interpretation.

Producer. Each producer is a price-maker for her variety. Standardly for monopolistic com-
petition literature, we assume that producer in city i has a cost function C(y) = (cy + F )wi, i.e.
producer has �xed labor cost F to set up a plant and marginal labor requirement c of production.
Trade within a city is costless, whereas trade with other cities requires iceberg transportation cost
τ > 1. It means that supplying one unit of good in city k requires τ units of good shipped from
city i. Under these assumptions pro�t function of each producer j in city i is

πji =
n∑
k=1

(pkji − τkicwi)xkji(pkji, Ik, Pk)Nk − Fwi (5)

the same. Hence, the rent at any point x must be R(x) = s(r−x)w, where w is wage per unit of time, and total rent
in the city is TR =

´ r
0
2πxs(r−x)wdx = πswr3/3 = kwN3/2/2. Since local government distributes the rent equally,

we can now calculate disposable income of every citizen in a city of sizeN as I(N) = w(1−3k
√
N/2)+kwN3/2/2N =

(1− k
√
N)w.
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which she maximizes in prices subject to demand functions (4) taking the price indexes as given.
Here, τki = 1 if k = i and τki = τ otherwise, re�ecting the fact that consumption in a city di�erent
from our city requires larger production. Standardly, under CES preferences, such pro�t function
is concave and has a unique maximum. Then, symmetry of producers leads to symmetric pricing
by all �rms from a given city. This allows us to drop index j in further discussion. Standard �rst
order condition for producer's problem delivers

pki =
στkicwi
σ − 1

πi =

(
n∑
k=1

τkicxkiNk

σ − 1
− F

)
wi. (6)

Free entry into the market drives �rms' pro�t in every city to zero. Combining zero-pro�t
condition with labor market clearing yields equilibrium mass of varieties in every city:

mi =
Niθ(Ni)

Fσ
∀i. (7)

Finally, equilibrium wages and their consequences pki, I(Nk) can be obtained from market
clearing for a representative variety produced in each city:

n∑
k=1

τkip
−σ
ki I(Nk)Nk

P 1−σ
k

= (σ − 1)F/c ∀i (8)

Trade equilibrium associated with a system of n cities of given sizes (N1, N2, ..., Nn) is de�ned

as a bundle {xki}k=1,n

i=1,n
of consumption values, a bundle of prices {pki}k=1,n

i=1,n
, vector of varieties masses

{mi} and vector of wages {wi} such that: (1) consumption values solve consumers problems (2)
subject to budget constraint (3) given prices, wages and set of available varieties; (2) prices solve
producers problems (5) given demand function (4), price indexes and wages; (3) �rms earn zero
pro�t (free entry); (4) labor market and market for every variety clear.

We do not discuss existence of such general equilibria, pointing out later on existence of sym-
metric ones (that we study and disturb). Further, every trade equilibrium delivers indirect utility
Vk = θ(Nk)wk/Pk to any consumer in city k. Suppose, the world population amounts to L con-
sumers.

Standardly, we call n cities of sizes (N1, N2, ..., Nn) amigration equilibrium if (1)
∑n

i=1Ni =
L and (2) related trade equilibrium yields the same level of indirect utility across cities: Vk =
Vi ∀k, i.

Naturally, the symmetric distribution of population across arbitrary number of cities is a mi-
gration equilibrium. Indeed, symmetric cities imply symmetric trade equilibrium, then cities are
interchangeable. However, our goal is to understand, when such symmetric migration equilibrium
is stable, in the sense that small perturbation is not ampli�ed. Therefore, we shall consider mainly
symmetric (or close to symmetric) population distributions across cities. Let us reserve notation
(n,N) for the symmetric equilibrium with n cities of size N , so that L = nN .

3 Migration stability

In this section we discuss the stability of any symmetric equilibrium (n,N) against small pertur-
bation in population distribution. First, we de�ne two kinds of stability: migration to villages and
migration to other cities.
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1. Consider a system of slightly asymmetric cities. Starting from n cities of size N , suppose
that new (n+ 1)-st city of size ε is created, one of old cities taking size Ñ = N − ε. If in new trade
equilibrium indirect utilities Vi evaluated at point ε ≈ 0 satisfy Vn+1(ε) < Vn(Ñ), we say that this
migration equilibrium (n,N) is (strictly) stable against dispersion, otherwise it is not.

2. Consider a system: 1-st city of size N1 = N +ε, 2-nd city of size N2 = N −ε and n−2 cities
of size N . If in related trade equilibrium incremental utility dV1(N+ε)

dε
evaluated at the point ε ≈ 0

is negative, we say that migration equilibrium (n,N) is (strictly) stable against agglomeration,
otherwise it is not.

When a symmetric migration equilibrium (n,N) satisfy both stability conditions, we call it a
migration stable equilibrium.

The �rst de�nition means that small shift of population from a city into previously unpopulated
area doesn't create incentives for catastrophic movement to this newly created town. The second
notion of stability means that small movement of population from one city to another does not
make this city more attractive, it makes sense when n ≥ 2.

Now we formulate the conditions when a symmetric equilibrium is stable in both senses.

Lemma. (Stability conditions) (1) Symmetric migration equilibrium (n,N) is stable against dis-
persion if and only if

1− k
√
L

n
>

[
1 + (n− 1)τ 1−σ

nτ 1−σ

]− 1
σ
− 1
σ−1

. (9)

(2) Symmetric migration equilibrium (n,N) is stable against agglomeration if and only if

2σ − 1

(σ − 1)
(
σ − 1 + σ 1+(n−1)τ1−σ

1−τ1−σ

) < k
√
L

2
√
n− 3k

√
L
. (10)

Proof. See Appendix.

The region of stable combinations (L, φ, n) described in Lemma is displayed on Fig. 1 for
speci�c values σ = 11, k = 0.005 (simulated). All combinations inside this shaded area generate
stable equilibria, because our Lemma gives necessary and su�cient conditions.

In Fig. 1 we see that the zone of stable equilibria is bounded in all three dimensions L, n, φ.
This zone has a complex shape: there is a grotto under the hill (see our subsequent �gures for
details). Our further plan is to prove such boundedness for any parameter values k, σ.

In some sense, it means studying the comparative statics of such shaded area. Speci�cally,
to correctly resolve the Anas's question about �vanishing cities�, we describe now, how the region
of stable migration equilibria changes with the population of the whole system or/and with trade
frictions.

First of all, we simplify notation by (standardly) introducing trade freeness φ ≡ τ 1−σ ∈ [0, 1].
It is decreasing in the elasticity of substitution σ and higher φ imply freer trade. For any number n
of cities, the condition of stability against dispersion can be reformulated in two alternative ways:

(1) given trade freeness φ, total population is bounded from above as

L(n) ≤ Ld(n) =
n

k2

[
1−

(
1 +

1− φ
nφ

)− 1
σ
− 1
σ−1

]2
;
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Figure 1: Region of stable equilibria.

(2) given total population L, freeness of trade is bounded from above as

φ(n) ≤ φd(n) =
1

1 + n

[(
1− k

√
L/n

)− 2σ−1
σ(σ−1) − 1

] .
Similarly, under any number of cities n, the condition of stability against agglomeration requires

that:
(1) given freeness of trade φ, total population is bounded from below:

L(n) ≥ La(n) =
n

k2

[
2

σ + 2 + (σ−1)σnφ
(2σ−1)(1−φ)

]2
;

(2) given total population L, freeness of trade is bounded from below:

φ(n) ≥ φa(n) =
1

1 + n σ(σ−1)
(2σ−1)

(
2
√
n−3k

√
L

k
√
L

−σ+1
) .

In other words, two kinds of stability conditions provide upper and lower bound on such
parameter values that any symmetric migration equilibrium can be stable. Using these bounds,
the following proposition shows that population growth or trade liberalization (increasing freeness)
must lead to non-existence of stable equilibria.

Proposition 1. (No stable cities in large/free world)
(1) Maximal stable population Ld(n) is bounded from above; i.e., there exists such Ld∗ < ∞,

that any equilibrium (n, L/n) is unstable against dispersion whenever L > Ld∗;
(2) Maximal stable freeness φd(n) is separated from one; i.e., there exists such φd∗ < 1, that

any equilibrium (n, L/n) is unstable against dispersion whenever φ > φd∗.

Proof. (1) We start with the behavior of Ld(n) when n goes to in�nity. Brief inspection reveals that
this limit is of type∞×0 indeterminacy. However, we can apply l'Hospital's rule to rearrangements:

lim
n→∞

k√Ld(n) =
1−

(
1 + 1−φ

nφ

)− 2σ−1
(σ−1)σ

1/
√
n

=

2σ−1
σ(σ−1)

(
1 + 1−φ

nφ

)− 2σ−1
(σ−1)σ

−1 (
−1−φ

n2φ

)
− 1

2n3/2

 ,
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Figure 2: How region of migration stable equilibria shrinks w.r.t. trade freeness φ.

and get

lim
n→∞

[
k
√
Ld(n)

]
= 0.

Then, by continuity limn→∞ L
d(n) = 0. This fact can be interpreted as existence of some n̄ such

that ∀n ≥ n̄ Ld(n) ≤ Ld(1) > 0. By Weierstrass theorem, Ld(n) on interval [1, n̄] attains its
maximum Ld∗ (which is �nite) and, therefore, it is bounded by the value of this maximum on
the whole interval [1,+∞). Then, for L bigger than the universal critical population Ld∗, the
equilibrium (n,N) is unstable for all n.

(2) The proof of the second part is similar. First, applying l'Hospital's rule to the expression
for φd(n), it is possible to show that limn→∞ φ

d(n) = 0. Further, φd(n) is separated from one for
any �nal n, and attains some maximum φd∗ < 1 at some �nite n, like in previous argument. Thus,
φd∗ is separated from 1, so that on the entire interval [1,+∞) 3 n any equilibrium (n, L/n) is
unstable against dispersion.

In other words, if world is large enough or trade is free enough, the only stable outcome is
dispersion of population to �villages�.

The remaining question is boundedness of the region of stability (Fig.1) in dimension n. In
other words, we ask whether there exist stable symmetric equilibria with large number of cities
n. The next proposition precludes this possibility and, therefore, gives additional credibility for
�vanishing cities�.

Proposition 2. (No stable equilibria with many cities). Under any admissible parameters (L, φ, k, σ),
there exist some n̄ such that any equilibrium with bigger number n > n̄ of cities is unstable.

Proof. See Appendix.

Comparative statics. How the system of cities may changes when population grows or trade
cost decreases? Do the cities in our model grow, gradually decrease or collapse? We �rst explain
numerical simulations, interpret them, then develop them into a proposition.

Figure 2 plots the regions of migration stable equilibria in (n, L) coordinates for changing trade
freeness: φ = 0.05, 0.1, 0.3.3 In essence, the left panel of Fig.2 contains some projections of stable

3One can easily obtain that our stability conditions (9) and (10) can be rewritten as L > L̃a(N) =
(2σ−1)(1−φ)N

σ(σ−1)φ

[
2

k
√
N
− σ − 2

]
and L < L̃d(N) = (1−φ)N

φ
1

(1−k
√
N)

σ(1−σ)
2σ−1 −1

. It also follows from them that minimal

stable city size does not depend on trade freeness.
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zone from Fig.1 onto (n, L) plane. The right panel inverts this zone into (N,L) space, its straight
line cuts away the cases with less than one city, alike vertical line with abscissa 1 in the left panel.
Main observation is that the larger is freeness�the smaller in some sense is the zone of stable
equilibria. Namely, the boundaries of the zone shrink towards the origin, making the stable area
smaller.

First consider the direction of changes outside stability zone: Does the family of cities go
towards stability or towards collapse? The arrows outside the zone show the migration tendency.
In the right panel we observe that above the upper boundary the tendency works to decreasing
size N of a city (which is shown in the left panel as increasing n = L/N). The arrow in the right
side of the right panel says that when too-big unstable city looses its population, it can reach
sooner or later the region of stability. Similar stable result is shown by the lower left arrow, which
is below the kink breaking the left boundary. Instead, the upper-left arrow (above the kink) in this
panel says, that under su�ciently high population too-small city further looses its population and
collapses into a village. This (upper left) boundary of the stable zone is unstable.

Having this in mind, let us use this �gure to express our intuitions about possible changes
in the city system. To grasp possible impact of growing population L on cities under given φ,
consider the following thought experiment. Assume, for instance, φ = 0.3. Suppose we start with
only one settlement (n = 1) and with population L = 2 which is small enough: Adam and Eve.
What happens? This historical point of urbanization lies below the critical value La(2), i.e., below
the lower bound of related stability zone. So, it cannot happen that the couple lived apart, in
di�erent villages. Instead, they must agglomerate. Suppose now that population grows. Then the
agglomeration tendency remains: all live in the same city. The picture tells that this single-city
pattern of urbanization will persist until population exceeds approximately 600. Starting from this
point further, our growing population can either remain in this city or try to settle a new one.
Two-cities equilibrium becomes possible when population reaches approximately 1100. However,
when population exceeds 1900, any n-city system looses stability, it abruptly collapses into villages
consisting of 1 citizen each (minimal technological size).

Observe that di�erent levels of trade cost make qualitative di�erence. Under φ = 0.1 or
φ = 0.05, on the upper border of stability region there is a weak possibility that growing population
may result in gradually growing number of cities instead of abrupt dispersion, at least on ascending
wing of such region (and decreasing size of each city). Generally, under typical parameters, this
fairy tale and related picture support the idea that either gradual or abrupt decrease in city sizes
is possible in response to growing population or/and trade freeness. (Recall that we study only the
cities based on increasing-returns reason for agglomeration, and leave aside other kinds of cities.)4

We formulate now such tendency as a proposition.

Proposition 3. Assume that during growth of population under �xed other parameters, the number
of cities remain stable until the system reaches the border of stability zone, then this border governs
the process. In this case, further evolution can display either gradually decreasing city size or abrupt
collapse, but not an increase.

Proof. In our stability condition (9), as well as in Fig.2, we see that it is the dispersion condition
(not the agglomeration one) that limits the stable size of the world from above. Therefore, this

4On the other hand, when trade cost is large, after population hits level Ld(1) there is a possibility of the
creation of the another city and the existence of migration stable equilibria with more than one city and total

population larger than Ld(1). Nevertheless, straightforward inspection reveals that maximum stable city size Ld(n)
n

is decreasing in n, therefore, we conclude that it is implausible to observe increase in the representative city size
with increase in the system population in the model economy.
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condition rules the comparative statics. Its violation triggers the increase in the number of cities.
From the formula we see that related city size Ld(n)/n is a decreasing function.

4 Developers' stability

Although notion of migration stability allows us to reduce the number of plausible equilibria and
ensures our impossibility results, the remaining multiplicity of stable equilibria is somewhat dis-
turbing. Therefore, in this section we develop another notion of stability as a selection criterion:
stability against actions by a �developer� (local government) who aims to maximize the represen-
tative citizen's utility in her city and has some power to invite or push out citizens. This situation
di�ers from simple migration by considering intra-city bene�ts from inviting a new citizen or forc-
ing some citizen to go out. Previously we looked on this personal move from the migrant's point
of view. Now we look from the side of the incumbents. Nevertheless, we still impose on the
equilibrium the requirement of stability against dispersion (creation of a new city).

Wise developer. We assume in this paragraph that each developer completely predicts all
changes in the trade equilibrium that will happen after inviting a new citizen from some other city.

(Symmetric) wise developers' equilibrium is a system of cities (n,N) such that it is a strict local
Nash equilibrium among n developers choosing their city sizes. It means that there is an ε̂ > 0
such that all possible local ε-perturbations (ε < ε̂) bring strictly negative bene�t to a developer.

This notion does not touch the possibility of new cities and other asymmetric situations. By
our assumption of wise predictions, the changes in the equilibrium trade and welfare coincide with
predictions that we made when studying migration; the same equations remain valid. This allows
us to show, that the new concept of equilibrium is a selection from previous concept. Namely,
under any φ it is the lower border of related equilibria zone displayed in Fig. 2. Interestingly, a
wise developer would chose a system with the largest number of cities and the smallest city size
among migration stable equilibria.

Indeed, if the migrant goes out and thereby decreases welfare in the destination city, by symme-
try, she increases welfare in the city of origin. Only when the derivative of welfare w.r.t. migration
is zero, the situation can be a wise developers' equilibrium. Thus, we come to

Proposition 4. (Wise developers' equilibrium) (i) A system of cities (n,N) is a wise developer's
equilibrium only if it satis�es stability against agglomeration as equality:

L = La(n) =
n

k2

[
2

σ + 2 + (σ−1)σnφ
(2σ−1)(1−φ)

]2
; (11)

(ii) It belongs to migration-stable equilibria. Thereby, the developer's equilibrium remain possible
within same three bounds: world population, trade freeness and number of cities�all must be small
enough.

Proof. Established in text.

Myopic developer. Although the introduced notion is perfectly rational, we �nd our require-
ments on local government's foresight too demanding. Indeed, the setup requires a developer to
predict changes not only in his city, but in all cities throughout the country as well. To relax this
requirement we introduce notion of myopic developer. More precisely, we assume that each devel-
oper is myopic (boundedly rational) in predicting outside trade consequences caused by excluding
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or inviting a citizen. It means that when maximizing welfare in her city, she expects no response
from all relevant variables in other cities; population, price indexes and wages are taken as given.
Suppose there are n−1 cities of size N , whereas #1 developer's city has size N1 (to be optimized).
Then, given symmetry in n− 1 other cities, the (trade) equilibrium conditions for price index and
wage in developer's city can be formulated as:

P 1−σ
1 =

Nθ(N)

Fσ

(
στc

σ − 1

)1−σ

(n− 1) +
N1θ(N1)

Fσ

(
σcw1

σ − 1

)1−σ

(12)

(n− 1)τθ(N)N [στcw1/(σ − 1)]−σ

P 1−σ
i

+
θ(N1)N1w1[σcw1/(σ − 1)]−σ

P 1−σ
1

= (σ − 1)F/c (13)

This form of equilibrium conditions is standard. However, developer's optimization with respect
to N1 is di�erent, since she takes N and Pi as given. Denote (perceived by developer) elasticities
of price index and wage in city #1 with respect to local population N1 as ε

P1
d and εw1

d , respectively.
De�nition. We call a symmetric equilibrium (n,N) stable against myopic developer if equal

to zero is (perceived by developer) elasticity of indirect utility εV1d ≡ εθ+εw1
d −ε

P1
d = 0 evaluated at

N1 = N , and the second derivative of the indirect utility w.r.t. N1 is negative and the equilibrium
stable against dispersion.

Proposition 5. (Myopic developers' equilibrium) (i) A system of cities (n,N) is a myopic devel-
oper's equilibrium only if it satis�es the following condition:

L = Lm(n) =
n

k2

[
2

σ + 2 + (σ−1)σnφ
(2σ−1)

]2
; (14)

(ii) It belongs to migration-stable equilibria. Thereby, the developer's equilibrium remain possible
within same three bounds: world population, trade freeness and number of cities�all must be small
enough.

Proof. See Appendix.

The established condition for stability against myopic developer's action is similar to the con-
dition of stability against agglomeration 10. It di�ers only by multiplier (1−φ) in the last term of
the denominator. Thus, the costlier the trade is, the more developer stability behavior resembles
that of stability against agglomeration (and of wise developer). The intuition is straightforward:
cities a�ect each other through trade only. Therefore, the higher are trade cost, the less impact
developer's city has on other cities, and the smaller is the developer's mistake in assumption of
absent change in other cities. Moreover, the developer's myopia pushes the system towards fewer
cities, i.e, larger size: Lm(n) > La(n).

Now we present comparative statics analysis of the stability against developer's action graph-
ically. Fig.3 is Fig.2 supplemented with the line of developer's stable equilibria Lm(n) and its
counterpart L̃m(N)5.

Observe that when the world population L grows, related point on the solid curve of developer's
equilibria moves to the right in the left panel. Its counterpart shifts to the left in the right panel,
which describes the same equilibrium in terms of the city size N = L/n. Such behavior means that
the number of cities increases in response to population growth, whereas the city size decreases.

5Again one can easily derive that L̃m(N) = (2σ−1)N
σ(σ−1)φ

[
2

k
√
N
− σ − 2

]
.
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Figure 3: Developer stable con�gurations in coordinates (n, L) or (N,L) (under k = 0.001, σ = 11).

Similar conclusion follows for trade freeness, only the comparison goes not along each solid
curve but comparing three curves. When freeness increases, the point of equilibrium (for any size
of the world L) goes to the right in the left panel and to the left in the right panel. It again
means that the number of cities increases in response to decreasing trade costs, whereas the city
size decreases. Indeed, Lm(n)/n is again decreasing function of φ meaning that new equilibrium
must have lower city size and, hence, larger number of cities.

5 Conclusion

We have revisited Anas's theorem that claims monopolistic competition being insu�cient to ex-
plain cities: in response to growing population or decreasing trade costs cities in his model decline
and disappear. Questioning Anas's assumptions, instead of his normative approach, we consider
migration or developers' equilibria. Still, vanishing e�ect turns out robust to these realistic modi�-
cations of the model, as well as to multiple sectors in the economy. It can be added that in another
unpublished paper we have tried other forms of preferences and found that vanishing e�ect remains
robust in this dimension also.

As a result, we came to interpretation of vanishing e�ect as a realistic outcome. In real life,
many industries that do not need externalities from a city�really relocate to countryside or small
towns. This model is one of possible explanations why it can be the case. Moreover, the two-sector
model version suggests that industries with smaller shares in consumer spending�should be less
urbanized; this hypothesis looks interesting and can be tested on data.
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A Proofs

Proof of Lemma. (1) Consider a city system (n + 1, N,N, ..., N − ε, ε) perturbed by a new
town of size ε. Since �rst n− 1 cities are symmetric we concentrate on trade equilibrium which is
symmetric for those cities and take labor in the �rst city as numeraire. This implies wage wi = 1
for all these i = 1, n− 1. Using pricing rule (6) that uses constant markups, this system has at
most six distinct prices (domestic and export price for normal city, same for the disturbed city,
and for new town):

pii =
σc

σ − 1
, pi′i =

στc

σ − 1
, pnn =

σcwn
σ − 1

,

pi′n =
στcwn
σ − 1

, pn+1,n+1 =
σcwn+1

σ − 1
, pi′,n+1 =

στcwn+1

σ − 1
. (15)

This system can be aggregated into price indexes, evaluated at point ε = 0, so that we distinguish
only �big� cities from �new� one (by symmetry, we obtain wn = 1):

Pi =

[
Nθ(N)

Fσ

(
σc

σ − 1

)1−σ

(1 + (n− 1)τ 1−σ)

]1/(1−σ)
(16)

Pn+1 =

[
Nθ(N)

Fσ

(
στc

σ − 1

)1−σ

n

]1/(1−σ)
(17)

At trade equilibrium the utilities depend also on wages. To �nd the wages we recall constant
�rm size and use market clearing equations (8) for varieties produced in n big cities and in (n+1)-st
city which is small:
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(1 + (n− 1)τ 1−σ)θ(N)N [σc/(σ − 1)]−σ

P 1−σ
i

= (σ − 1)F/c (18)

nτθ(N)N [στcwn+1/(σ − 1)]−σ

P 1−σ
i

= (σ − 1)F/c. (19)

Taking a ratio of these two conditions, we obtain the equilibrium (shadow) wage in (n+ 1)-st
city:

w−σn+1 =
1 + (n− 1)τ 1−σ

nτ 1−σ
(20)

Recall that θ(0) = 1. Therefore, we can rewrite comparison of utilities in small and big cities
Vn+1 ≤ Vn as comparison of real incomes wn+1/Pn+1 ≤ θ(N)/Pn. Substituting de�nition of
θ(N), wn+1 and the ratio of price indexes from above we get result (9).

(2) Consider a city system (n, N + ε,N − ε,N, ..., N) perturbed by small migration ε from the
second city to the �rst one (as in de�nition of agglomeration stability). We apply the same method.
There are again at most six distinct prices and we can write down the equilibrium equations for
the price indexes and wages taking labor in cities i = 3, n as numeraire:

P1 =

[
(N + ε)θ(N + ε)

Fσ

(
σcw1

σ − 1

)1−σ

+
(N − ε)θ(N − ε)

Fσ

(
στcw2

σ − 1

)1−σ

+
Nθ(N)

Fσ

(
στc

σ − 1

)1−σ

(n− 2)

]1/(1−σ)
(21)

P2 =

[
(N + ε)θ(N + ε)

Fσ

(
στcw1

σ − 1

)1−σ

+
(N − ε)θ(N − ε)

Fσ

(
σcw2

σ − 1

)1−σ

+
Nθ(N)

Fσ

(
στc

σ − 1

)1−σ

(n− 2)

]1/(1−σ)

Pi =

[
(N + ε)θ(N + ε)

Fσ

(
στcw1

σ − 1

)1−σ

+
(N − ε)θ(N − ε)

Fσ

(
στcw2

σ − 1

)1−σ

+
Nθ(N)

Fσ

(
σc

σ − 1

)1−σ

(1 + (n− 3)τ 1−σ)

]1/(1−σ)

(N + ε)θ(N + ε)w1[σcw1/(σ − 1)]−σ

P 1−σ
1

+
τ(N − ε)θ(N − ε)w2[στcw1/(σ − 1)]−σ

P 1−σ
2

+(n− 2)
τNθ(N)[στcw1/(σ − 1)]−σ

P 1−σ
i

= (σ − 1)F/c (22)
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τ(N + ε)θ(N + ε)w1[στcw2/(σ − 1)]−σ

P 1−σ
1

+
(N − ε)θ(N − ε)w2[σcw2/(σ − 1)]−σ

P 1−σ
2

+(n− 2)
τNθ(N)[στcw2/(σ − 1)]−σ

P 1−σ
i

= (σ − 1)F/c

Di�erentiating this system of equation w.r.t. ε we aim to sign dV1
dε

at the symmetric point ε = 0.
Note that: (1) at the symmetric point w1 = w2 = 1; (2) by symmetry and de�nition of N2

we have dw2

dε
= −dw1

dε
and similar equality applies to price indexes; �nally, dPi

dε
= 0, i.e. for any

third city (i 6= 1, 2) the e�ect from population increase in city #2 cancels out with the e�ect from
exactly same decrease in city #1. Denote the elasticity of any variable X with respect to ε as
EX ≡ dX

dε
ε
X
and totally di�erentiate equations (21) and (22) with respect to ε we obtain:

(1− σ)(1 + (n− 1)τ 1−σ)EP1 = (1− τ 1−σ)(1 + Eθ + (1− σ)Ew1) (23)

σ(1 + (n− 1)τ 1−σ)Ew1 = (1− τ 1−σ)(1 + Eθ + Ew1 + (σ − 1)EP1) (24)

We are interested in the elasticity of indirect utility, which can be expressed as EV1 = Eθ +
Ew1 − EP1 . Solution to the system of elasticity equations delivers:

Ew1 − EP1 = (1 + Eθ) 2σ − 1

(σ − 1)
(
σ − 1 + σ 1+(n−1)τ1−σ

1−τ1−σ

)
Therefore, stability condition EV1 ≤ 0 can be rewritten in a form

2σ − 1

(σ − 1)
(
σ − 1 + σ 1+(n−1)τ1−σ

1−τ1−σ

) ≤ − Eθ

1 + Eθ
.

Recall that θ(N) = 1−k
√
N and, hence, Eθ = − k

√
N

2(1−k
√
N)
. Substituting Eθ into previous inequality

delivers result (10). Q.E.D.
Proof of Proposition 2. As we have shown in the proof of Proposition 1, critical Ld(n) ap-

proaches zero with a speed 1/n. Therefore, consider the following limit and apply to it l'Hospital's
rule:

lim
n→∞

k√nLd(n) =
1−

(
1 + 1−φ

nφ

)− 2σ−1
(σ−1)σ

1/n
=

2σ−1
σ(σ−1)

(
1 + 1−φ

nφ

)− 2σ−1
(σ−1)σ

−1 (
−1−φ

n2φ

)
− 1
n2

 =
(2σ − 1)(1− φ)

σ(σ − 1)φ

Similarly,

lim
n→∞

k√nLa(n) =

2

σ+2+
(σ−1)σnφ

(2σ−1)(1−φ)

1/n
=

2n

σ + 2 + (σ−1)σnφ
(2σ−1)(1−φ)

 =
2(2σ − 1)(1− φ)

σ(σ − 1)φ

Combining these limits together and applying continuity we obtain limn→∞ n(La(n)−Ld(n)) >
0. This implies that there exists n̄ such that ∀n ≥ n̄ La(n) > Ld(n), or equivalently, there is no
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L such that La(n) ≤ L ≤ Ld(n), which is the necessary condition for migration stable equilibrium.
Q.E.D.

Proof of Proposition 5. Let as perform comparative static exercise w.r.t. N1. Taking
elasticity of the equilibrium conditions we �nd

(1− σ)(1 + (n− 1)τ 1−σ)EPnd = 1 + Eθ + (1− σ)Ewnd (25)

σ(1 + (n− 1)τ 1−σ)Ewnd = 1 + Eθ + Ewnd + (σ − 1)EPnd (26)

Here the subscript d emphasizes that elasticity is perceived by developer. They look very
much alike the elasticity equations for the stability against agglomeration (23) and (24), only
without (1 − φ) multiplier on the right hand side. Therefore, the costlier the trade is, the more
developer stability behavior resembles that of stability against agglomeration. The intuition is
straightforward: cities a�ect each other through trade only. Therefore, the higher are trade cost,
the less impact developer's city has on other cities, and therefore, the smaller is the developer's
mistake in assumption of no change in other cities. Solving these equations and evaluating the
elasticity of indirect utility we obtain:

EV1d =
2σ − 1

(σ − 1)(2σ − 1 + σ(n− 1)φ)
(1 + Eθ) + Eθ (27)

Straightforward algebra yields the result.

B Extension to two sectors

A thoughtful reader could noticed the discrepancy between our theoretical framework and its em-
pirical interpretation. Describing �deurbanization� of a particular manufacturing industry among
others, we have dealt so far with general equilibrium model with one sector only. However, this sec-
tion shows how our setup may be embedded into multi-sector framework maintaining qualitatively
similar results.

Model. Assume our small-city system remains the same. However, now it trades also with
outside world that produces some aggregate good M (money), which describes, as usual, other
sectors. Our citizens consume two goods: composite good U produced in our cities (de�ned as 2)
and good M produced outside. Preferences over the two goods have standard Cobb-Douglas form:

Ǔ =

[ n∑
i=1

ˆ mi

0

x
(σ−1)/σ
kji dj

]σ/(σ−1)µ

M1−µ

where Ǔ denotes overall utility of consumption and 0 < µ < 1. It is maximized under the budget
constraint

n∑
i=1

ˆ mi

0

pkjixkjidj + PMM ≤ I(Nk)

that includes outside good and its price PM , that may include cost of transportation to our cities.
Internal structure of our city system remains the same, however, now cities trade their local good for
outside one. Outside world consists of some L2 consumers having similar utilities and producing
outside good M . Our �rms and developers take the price PM of outside world as given either
because this world is big enough or it exploits linear technology.
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Analysis. Under Cobb-Douglas preferences, the indirect utility in any city i is de�ned (up to
a constant multiplier) as follows:

Vi =
θ(Ni)wi

P µ
i P

1−µ
M

.

One can see that new indirect utility has the only di�erence from previous Vi: it has power
µ < 1 over the local good price index Pi. All our results are derived from such indirect function (it
summarizes other elements of the model). Hence, to be sure that our results apply in the extended
version of the model it is su�cient to discuss: What changes when µ becomes smaller than 1?

Presence of the outside good softens the impact of local price index on utility. Does this fact
work in favor or against agglomeration? Other things equal, one of positive e�ects of growing
city is decreasing price index, being composed of more cheaper home-produced varieties relative
to more expensive imported ones. This price e�ect acts towards agglomeration. Therefore, among
systems with di�erent µ, the one described in details before (µ = 1) has the greatest driving
force for agglomeration. Thereby, our dispersion results for µ = 1 remain valid for any smaller µ,
even being enforced (the zone of stable equilibria must shrink). This argumentation bridges our
economic interpretation with the developed theoretical setup.

Interpretation. In comparing the model with reality, the comparative statics in µ suggests a
testable prediction. Indeed, under Cobb-Douglas preferences, parameter µ represents the share of
income spent on the local good. Recall also (see Fig.3 and related discussion) that the cities' size
decreases in response to decreasing trade costs, or growing population. A new topic is comparative
statics in parameter µ. It should push cities' size in the same direction as trade freeness φ, because
both work as dispersion forces (more accurate proof needs further study), against agglomeration.
Thus, in cross-section comparison among industries, one would expect to observe negative corre-
lation between the urbanization level of each sector and the share of consumer spending on its
product. Implementing this task, one needs to control only for technological di�erence in trans-
portation and employment. Cost parameters (c, F ) do not a�ect the city size. To the best of our
knowledge, this hypothesis is novel, and it can be tested in future work.
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