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1 Introduction

Since the fundamental paper of Rothschild (1974) it is known that when consumers

do not know from which distribution of offers to select their information, the optimal

consumer search rule may well be different from the typical search protocol that

is characterized by a reservation price property. The main reason is that on the

basis of past search observations, consumers update their beliefs about their search

environment. Depending on the environment, it may well be that after observing

a relatively good outcome consumers infer that even better outcomes are likely

to be observed in the next search round and rationally conclude to continue to

search, whereas after observing a relatively bad outcome consumers infer that better

outcomes are unlikely and thus stop searching.

The consumer search literature has, however, by and large, neglected this ob-

servation. The typical model in the consumer search literature studies consumers

searching sequentially in an environment that is fully known to the consumers. For

example, the celebrated models by Stahl (1989) and Wolinsky (1986), and much

of the literature that takes them as a starting point, have consumers comparing

the current price-product offer with the expected price-product offer when contin-

uing to search. In these models consumers can make correct predictions about the

prices or price distributions chosen by firms. In this environment, the optimal search

rule is indeed characterized by a reservation price property: at or above a certain

reservation utility level consumers decide to buy, otherwise they continue to search.

At the heart of the consumer search literature lies the assumption that consumers

do not know the prices charged by different firms. In most markets where consumers

are indeed imperfectly informed about prices, it is likely they also do not know the

underlying costs of firms. Cost information is, however, obviously relevant for the

firms’ pricing decisions. In such markets, learning is important as consumers cannot

have correct predictions about the prices or price distributions that are unconditional

on the underlying unknown costs.

There is a small amount of literature on learning and consumer search that
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takes consumer uncertainty about firms’ costs into consideration (see, Benabou and

Gertner (1993), Dana (1994), Fishman (1996) and more recently, Yang, and Ye

(2008), Tappata (2009), Janssen et al. (2011) and Chandra and Tappata (2011)).

Most of this literature is inspired by retail gasoline markets where the common

wholesale price of crude oil is the most important determinant of the (variation

in) costs of retailers, and consumers are uncertain about these costs due to the

large fluctuations of this wholesale price on the world market. The observations

by Rothschild are of immediate concern to this literature. However, these papers

continue to characterize equilibria where the consumer search rule is characterized

by a reservation price.

Our paper is the first to systematically incorporate Rothschild’s observations on

non-reservation price strategies into an equilibrium search model with endogenous

firm behaviour.5 Benabou and Gertner (1993) also mention the fact that in their

model reservation price equilibria (RPE) may not exist. They set up the equations

that have to be satisfied in a non-RPE. They perform some simulation analysis

numerically characterizing non-RPE for some parameter values, but they neither

have an analysis characterizing these non-RPE, nor do they show the conditions

under which these equilibria exist.6

RPE take the form of perfect Bayesian equilibria where consumers update their

beliefs about the underlying costs (and therefore on the expected price they en-

counter on their next search) after observing a price. The above mentioned litera-

5Even though our paper focuses on consumer search, similar considerations apply to the labour

search literature that uses reservation wage equilibrium (see McCall (1970) for pioneering work in

this direction, and subsequent literature as, for example, surveyed in Rogerson et al. (2005)).
6Benabou and Gerther (1993, pp. 74) state that the “non-reservation price equilibria (if they

exist) are too complicated for us to solve” and argue that these equilibria are “somewhat less

appealing intuitively than the previous reservation price equilibria” (pp. 81). They mention that

the reservation price property is ”required in particular for demand functions to be downward

sloping” (pp. 74). However, in order to make firms indifferent over the range of prices in a mixed

strategy equilibrium, a firm’s total demand must be downward sloping. In our model, it may be

that the demand of an individual consumer is upward sloping in a non-reservation price equilibrium,

but it need not be.
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ture is not very satisfactory for a number of reasons. First, RPE implicitly assume

certain out-of-equilibrium beliefs and this literature has not made it clear whether

these out-of-equilibrium beliefs satisfy game theoretic refinement concepts commonly

employed in asymmetric information games. Second, the literature shows that for

certain parameter values RPE do not exist (no matter what the out-of-equilibrium

beliefs are), especially when the search cost is relatively small and the uncertainty

about costs is relatively large (cf., Dana (1994) and Jansen et al. (2011)). When

RPE do not exist, it is an unanswered question what kind of equilibria do ex-

ist. Third, one would expect that when costs are uncertain consumers may want

to search in equilibrium. When consumers observe a high price they are uncertain

about whether this is due to a relatively high (common) production costs or whether

this particular firm is charging a high margin. One may expect that this uncertainty

leads to consumers searching more, but the RPE which are characterized in these

homogeneous goods markets, have firms charging prices below the consumer reser-

vation price and therefore all consumers buy at the first firm.

In response to these points, this paper argues that, first, RPE are very sensitive

to how one specifies the out-of-equilibrium beliefs, and that these equilibria do not

satisfy, for example, the logic of the D1 equilibrium refinement (hereafter the D1

logic) that is commonly employed in games with asymmetric information (cf., Cho

and Sobel, 1990). Second, we prove that non-RPE exist for all parameter values, that

there are parameter values for which multiple non-RPE exist, and we find that in

any equilibrium satisfying the D1 logic, firms price in such a way that consumers find

it indeed optimal to follow a non-reservation price strategy. Third, in all equilibria

satisfying the D1 logic consumers actively search beyond the first firm. In particular,

there is a region of ”high” prices that are set with positive probability such that

consumers are indifferent between buying and searching and consumers continue to

search with strictly positive probability.

The non-RPE we characterize are not only interesting from a methodological

perspective, but also provide a different perspective on the implications of cost un-

certainty for consumer behaviour. First, the literature mentioned above shows that
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in RPE consumers are better off without cost uncertainty as the ex ante expected

market price they have to pay is lower if they know the costs than if they do not.

When cost uncertainty is large we find that consumers may benefit from cost uncer-

tainty as they rationally search more than without cost uncertainty. As consumers

search more and compare more prices, firms have less market power arising from

search frictions and set lower prices on average. This ”additional search” effect can

be quantitatively significant.

Second, our results have implications for the empirical work on consumer search

models, and in particular on the question of what search strategies consumers ac-

tually follow in real online or offline markets. In a recent paper De los Santos,

Wildenbeest and Hortacsu (2012) show that actual search strategies by consumers

buying books online do not follow the sequential search protocol. De los Santos et al.

(2012) take two predictions from the sequential search protocol: (i) consumers buy

from the last store visited unless all stores have been visited7 and (ii) the decision

whether to continue to search depends on the outcome of the previous search. They

find that consumers go back and buy from shops they already have visited before

they have visited all firms, and they do not find that consumers searching once are

more likely to buy at relatively low prices compared to the first price observation of

consumers searching twice. By making a distinction between consumers searching

sequentially and reservation price strategies, our results show that both findings are

not inconsistent with the sequential search protocol, although they are inconsistent

with consumers following reservation price strategies. We show that when the cost

uncertainty is large, non-RPE typically have a region of intermediate prices where

the probability of a sale is lower when the price is low. This would imply that the

consumers may well condition their search behaviour on current price observations,

but that this does not imply that consumers are more likely continuing to search if

they observe higher prices.8 In particular, we show that for some parameter values

7De los Santos et al. (2013) interpret their observations in the context of a learning model, where

consumers learn from prices about unobserved characteristics that drive the pricing decisions of

firms.
8Even though we consider consumers having unit demand, interpreting the probability with
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consumers accept higher prices in the first search round and reject lower ones. As

we study a duopoly market in the main part of the paper, consumers cannot go back

to previously sampled firms before they have sampled all firms. The first prediction

from the sequential search protocol is thus trivially satisfied in our basic model. We

show, however, that one type of equilibrium we derive can be analyzed for N firms

and in that case, the optimal sequential search behaviour of consumers is consistent

with consumers going back to previously sampled firms, before they have sampled

all firms.9

Third, there is marketing oriented literature on reference price effects (see, e.g.,

Putlet (1992), Kalyanaram and Winer (1995) and Mazumdar, Raj and Sinha (2005)).

This literature points to the fact that consumers have particular pricing points

around which consumer demand is very sensitive to price changes. This may lead to

situations where consumer demand drops significantly if firms price above this refer-

ence point, whereas at higher prices consumers are willing to buy again. Such ”ref-

erence point” demand behaviour can occur in non-RPE when the cost uncertainty

is large. After observing intermediate prices above the ”reference price”, consumers

rationally infer that these prices are not chosen by high cost firms. Knowing costs

are low, consumers find these prices too high to buy, however, and they continue to

search for sure. This inference creates a gap in the equilibrium price distribution

of the low cost firms. In all of the equilibria with a gap, consumer behaviour is

such that at prices above the gap consumers buy again, but with a relatively low

probability.

The rest of the paper is organized as follows. Section 2 describes the model and

the equilibrium concept we use. Section 3 describes our analytical results. We first

show that any RPE assumes specific out-of-equilibrium beliefs that, for example, do

not satisfy the D1 logic. We then characterize non-RPE, where the determination of

which a consumer buys as the consumer’s demand, non-reservation price equilibria always have

price regions where individual demands are downward sloping, but there may also be regions

(depending on the parameter values) where individual demands are upward sloping.
9In the discussion section at the end of the paper, we come back to the complications regarding

studying non-reservation price equilibria with more than two firms.
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the upper bound is independent of the specific assumption about out-of-equilibrium

beliefs. We then show that the independence of specific out-of-equilibrium beliefs

implies that the density function of the low cost firm at the highest price at which

consumers buy with positive probability has to be equal to zero so that after observ-

ing this price, consumers infer that costs are high (and therefore are not inclined to

buy at higher prices). Next, we characterize the equilibrium price distributions for

high and low cost firms. The distributions are such that the cumulative distribution

function of a high cost firm first-order stochastically dominates that of a low cost

firm. We then show that in any equilibrium, there is active search by consumers.

Using these characterizations we finally show that an equilibrium always exists.

Section 4 shows by means of a numerical analysis, the effects of cost uncertainty

on profits, expected prices and consumer welfare. It also performs a comparative

statics analysis with respect to the model parameters. Section 5 briefly discusses a

generalization of our duopoly model to N firms and shows that in equilibrium the

optimal search rule of consumers may imply that consumers first continue searching

at another firm, and then go back to a previously sampled firm before all firms

are sampled. Section 6 concludes with a discussion, while proofs are given in two

Appendices.

2 The Model

The sequential search model we analyze is based on Dana (1994) and Janssen et

al. (2011). Essentially, the model incorporates cost uncertainty in Stahl (1989).

Simplifying the analysis, in order to focus on non-RPE, we consider a duopoly

model with inelastic demand. The two firms sell a homogenous good and face the

same marginal production costs. Marginal cost can be either high cH or low cL, with

probabilities α and 1 − α, respectively. Without a loss of generality, we normalize

fixed costs to zero. Firms know the cost realization, but consumers do not. After

observing the realization of cost, firms simultaneously set prices and we denote the

(symmetric) price distributions chosen by firms by FL(p) and FH(p) when cost is

7



Low or High, respectively. The highest price which will be charged by low and

high cost firms is denoted by pL and pH , respectively. Each firm’s objective is to

maximize profits, taking the prices charged by the other firm and consumers’ search

behavior as given.

On the demand side of the market we have a unit mass of risk-neutral consumers

with identical preferences. Each consumer j ∈ [0, 1] has a unit demand and has the

same constant valuation v > 0 for the good. Observing a price below v, consumers

will either buy one unit of the good or search for a lower price. In the latter case,

they have to pay a search cost s to obtain one additional price quote, i.e. search is

sequential. A fraction λ ∈ (0, 1) of consumers, shoppers, have a zero search cost.

These consumers sample all prices and buy at the lowest price. The remaining

fraction of 1 − λ consumers – non-shoppers – have a positive search cost s > 0

and visit each of the two firms at their first search with equal probability. These

consumers face a non-trivial problem when searching for low prices, as they have

to trade off the search cost with the expected benefit from search. After observing

their first price quote, non-shoppers update their beliefs about firms’ underlying

production costs. Consumers can always go back to previously visited firms incurring

no additional cost.10 We assume that v is large relative to c and s so that v is not

binding. The probability that non-shoppers buy after observing price p is denoted

by β(p). With the remaining probability 1−β(p) these consumers continue to search.

As consumers do not know the underlying production cost, β(p) does not depend

on the cost realization. Denote by ρi the consumers’ reservation price if they were

to infer that the firms’ production cost equals ci for sure. That is, if after observing

a price p consumers infer that cost equals ci for sure, then consumers are willing to

buy at any price at or below ρi and prefer to continue to search if prices are larger.

It is by now a standard argument in the search literature that due to the presence

of shoppers and non-shoppers there does not exist an equilibrium in pure strategies

and that an equilibrium in mixed strategies does not have mass points at particular

10Janssen and Parakhonyak (2014) analyze the case where this assumption is replaced by costly

recall.
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prices.11 As a consequence, if a firm sets a price equal to the upper bound pi,

i = H, L, of the price distribution it will not sell to the shoppers and will sell at

most to half of the non-shoppers. Profit π(p|ci) when setting price p and cost is

ci, i = H, L can thus be written as

π(p|ci) =

[
λ(1− Fi(p)) +

1− λ

2
β(p) +

1− λ

2
(1− β(p))(1− Fi(p))+

1− λ

2

∫ p

p

(1− β(p̃))fi(p̃)dp̃

]
(p− ci).

(1)

This expression can be understood as follows. First, a firm only attracts the shoppers

if the other firm charges a higher price, which occurs with probability 1−Fi(p). The

number of non-shoppers buying from firm i gives a more complicated expression.

There is a fraction (1−λ)/2 of non-shoppers that randomly first visits firm i and they

buy immediately from that firm with probability β(p).The remaining non-shoppers

that randomly first visit firm i continue searching the other firm and come back to

firm i if the other firm has a higher price. Finally, the non-shoppers that first visit

the other firm and decide to continue to search buy from firm i if it has a lower

price. As firm i does not know which price the other firm charges, this expression

involves an expected number of consumers.

As this is a game with asymmetric information about production cost, the ap-

propriate equilibrium concept is that of a Perfect Bayesian Equilibrium where the

out-of-equilibrium beliefs satisfy some reasonable restrictions. To see how the spec-

ification of out-of-equilibrium beliefs plays a role, assume that consumers hold out-

of-equilibrium beliefs such that, if a price above their reservation price is observed,

they think that the lowest cost level has been realized with probability one and

therefore continue to search. In such a case, in equilibrium no firm would set a price

11In our context, with asymmetric information between consumers and firms, the argument is

more subtle. In principle, firms equilibrium pricing strategies could have a mass point, with prices

in a left-neighborhood of that point not being in the support of the mixed strategy distribution.

After observing an out-of-equilibrium price in this region, consumers could believe that these prices

are set in case firms have low cost, giving them an incentive to continue searching (in which case

it is not optimal to set these prices). One can show, however, that these out-of-equilibrium beliefs

are inconsistent with the D1 logic.
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above the reservation price and therefore such a price observation is clearly an out-

of-equilibrium event. Thus, these optimistic beliefs about expecting low cost (and

thus low prices on the next search) may support equilibria where the highest price

charged by firms is the reservation price of the Stahl (1989) model where firms are

known to have low cost. This out-of-equilibrium belief is, however, not reasonable,

as we will argue.

Ideally, the characterization of the upper bound of the price distributions should

not depend on arbitrary assumptions regarding out-of-equilibrium beliefs. As we will

see in the next section, this can only be achieved if at the upper bound consumers

believe that the underlying cost is high. If an out-of-equilibrium price above the

upper bound is then observed, consumers will want to continue to search independent

of their beliefs of the underlying cost. One way to achieve this is to require that a

strong refinement holds and that equilibria satisfy the logic of the D1 criterion (Cho

and Sobel, 1990). The D1 criterion was developed in the context of pure signaling

games with one sender. The game we consider here is a two-sender game. The

beliefs of the receivers (the non-shoppers) in our model are only based on the single

price they have observed, and because of the assumption of common cost the firms

have to be of the same type, the out-of-equilibrium belief of non-shoppers is simply

a mapping from the observed price to the type distribution of cost, like in the one-

sender game. Deviation by a sender (firm) to an out-of-equilibrium price generates

a set of possible optimal actions of the receiver (non-shopper).

Consider a firm i that unilaterally deviates to a certain price p that lies outside

the support of its equilibrium price distribution. Let Bi(p) be the set of a firm

i’s total demand from shoppers and non-shoppers that can be generated by buying

probabilities βi(p) of non-shoppers (at firm i at price p) that are best responses

to some non-shoppers’ belief. Each qi(p) ∈ Bi(p) ⊂ [0, 1] is the demand of firm i

at price p for some profile of non-shoppers’ beliefs about firm i′s type and optimal

choices given these beliefs when the other firm plays according to its equilibrium

strategy. In the spirit of the D1 criterion,12 we compare the sets of demands for

12A similar treatment is given in Janssen and Roy (2010) for a more complicated inference
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which it is gainful for different types of firm i to deviate to price p.

More precisely, consider any perfect Bayesian equilibrium where the equilibrium

profit of firm i when it is of type τ is given by πi∗
τ , τ = H, L. Consider any p outside

the support of the equilibrium price distribution. If for τ, τ ′ ∈ {H, L}, τ ′ 6= τ,

{qi ∈ Bi(p) : (p− cτ )qi ≥ πi∗
τ } ⊂ {qi ∈ Bi(p) : (p− cτ ′)qi > πi∗

τ ′}

where “⊂” stands for strict inclusion, then the D1 logic suggests that the out-of-

equilibrium beliefs of buyers (upon observing a unilateral deviation by firm i to price

p) should assign zero probability to the event that firm i is of type τ and thus (as

there are only two types and firms have a common type), assign probability one to

firm j being of type τ ′.

Definition 1. A symmetric perfect Bayesian equilibrium satisfying the D1 logic is

characterized as follows:

1) each type τ = H, L of firm i uses a price strategy FL(p), FH(p) that maximizes

its (expected) profit, given the competing firms’ price strategies and the search

behavior of consumers;

2) given the distribution of firms’ prices, consumers’ search strategy, characterized

by β(p), is optimal given their beliefs, and they update their beliefs about cost

given the price they observe, Pr(c = cH |p), by using Bayes’ Rule if possible

and formulate out-of-equilibrium beliefs that are consistent with the D1 logic

whenever they observe an out-of-equilibrium price.

In what follows, we concentrate on the characterization and existence of perfect

Bayesian equilibria satisfying the D1 logic to ensure that at the upper bound of the

price distribution consumers believe that cost is high so that independent of specific

assumptions about out-of-equilibrium beliefs consumers prefer to continue to search

if they observe a price that is larger than the upper bound.

problem where consumers observe all prices and there are N firms.
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3 Characterisation and Existence of D1 Equilib-

ria

In this section we provide a characterisation of the set of equilibria that satisfies

the D1 logic as defined in the previous section. To this end, let P = [0, p], with

p = max{pL, pH} and β(p) : P → [0, 1]. Define convex sets P(0,1) = {p : p ∈ P, 0 <

β(p) < 1}, P1 = {p : p ∈ P, β(p) = 1} and P0 = {p : p ∈ P, β(p) = 0}. We consider

equilibria where β(p) is continuously differentiable in the interior of each of these

sets and we show that such an equilibrium always exists.

We first show that RPE do not satisfy the D1 logic. To do so, we define RPE as

an equilibrium where non-shoppers buy at prices at or below a certain reservation

price ρ. Janssen et al. (2011), among others, have shown that in a RPE (i) both

types of firms choose to set the reservation price with positive density and (ii) the

expected price when cost is low, E(p|cL), is lower than the expected cost when cost

is high, E(p|cH). Accordingly, the updated belief about cost after observing the

reservation price, Pr(cL|ρ), is larger than 0. The next Proposition shows that after

observing a price p = ρ + ε, for some small ε, the D1 logic forces non-shoppers to

believe that the cost is high and that therefore they prefer to buy at these prices.

This defies, however, the property of a reservation price. Thus, any perfect Bayesian

equilibrium satisfying the D1 logic must be a non-RPE.

Proposition 1. Any reservation-price equilibrium does not satisfy the D1 logic.

The D1 logic asks which type of firm (high or low cost) has the most incentive to

deviate to prices above the reservation price. It turns out that high cost firms have

more incentive to deviate. Thus, as (i) both high and low cost firms put positive

density on charging a price equal to the reservation price, (ii) at the reservation

price consumers are indifferent between buying and continuing to search and (iii) the

expected price when cost is high is strictly larger than when cost is low, consumers

strictly prefer to buy at prices just above the reservation price if they believe these

out-of-equilibrium prices to be set by high cost firms. Given these beliefs, firms

would then, however, have an incentive to deviate and set these higher prices defying
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the notion of equilibrium. Thus, RPE require that after observing prices above the

reservation price, consumers infer that cost is low with sufficiently high probability,

while the logic of the D1 criterion requires consumers to believe cost is high upon

observing such high prices.

To characterize the price distributions of non-RPE, we first show that the upper

bounds of the low and high cost price distributions have to be identical. If this were

not the case, there would be a region of prices above the upper bound of, say, the

low cost distribution that are only chosen by high cost firms, and this would imply

that β(p) = 1. Low cost firms would then have an incentive, however, to deviate to

such prices.

Lemma 1. In any equilibrium, pL = pH ≡ p.

If firms set a price equal to the upper bound p, their profits will be equal to

1−λ
2

β(p)(p− ci). As in equilibrium, for any price in the support of the price distrib-

ution this expression has to be equal to (1), we have that

λ(1− Fi(p)) +
1− λ

2
β(p) +

1− λ

2
(1− β(p))(1− Fi(p))+

1− λ

2

∫ p

p

(1− β(p̃))fi(p̃)dp̃ =
1− λ

2
β(p)

p− ci

p− ci

. (2)

At intervals of prices in the support of the price distribution where β(p) = 1,

or, β(p) = 0, this equation can be solved for Fi(p) in a straightforward manner. If

0 < β(p) < 1, (2) can be transformed into an exact differential equation that can

be solved as shown in the proof of the following Proposition.

Proposition 2. The equilibrium price distribution, which makes firms indifferent

between all the prices, is given by:

Fi(p) =



2
√

1−(1−λ)β(p)−
R p

p
(1−λ)β(p)(p−ci)

(ep−ci)
2√

1−(1−λ)β(ep)
dep

2
√

1−(1−λ)β(p)
if p ∈ P(0,1)

1− 1−λ
2λ

[
β(p)p−ci

p−ci
− 1−

∫ p

p
(1− β(p̃))fi(p̃)dp̃

]
if p ∈ P1

1− 1−λ
1+λ

[
β(p)p−ci

p−ci
−
∫ p

p
(1− β(p̃))fi(p̃)dp̃

]
if p ∈ P0

(3)
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Using the characterization of the price distributions, we can now state that FH(p)

first-order stochastically dominates the low cost distribution FL(p). Thus, as in RPE

we continue to have the expected price when cost is low, E(p|cL), being lower than

the expected price when cost is high, E(p|cH).

Corollary 1. For all p < p, FL(p) ≥ FH(p) and whenever 0 < FH(p) < 1, FL(p) >

FH(p).

Using these characterizations of the distribution functions it is not too difficult

to see that if we want that the upper bound of the distributions p is not determined

by arbitrary out-of-equilibrium beliefs, it must be the case that after observing p

consumers believe that firms have high cost for sure, and that given this inference,

non-shoppers are indifferent between buying now and continuing to search. If this

were not the case, and non-shoppers would have out-of-equilibrium beliefs such that

Pr(c = cH |p) = 1 for prices p > p, then they would prefer to buy at these prices,

giving firms an incentive to deviate (see the proof of Proposition 1 for details). Thus,

the upper bound of the price distributions has to be equal to the reservation price

in case consumers know cost is high, i.e.,∫ p

p
H

FH(p)dp = s. (4)

As FH(p) first-order stochastically dominates FL(p) this implies that if an out-of-

equilibrium price larger than p is observed, consumers will always want to continue

to search independent of their beliefs of the underlying cost.

The above also implies that in any equilibrium satisfying the D1 logic it must

be the case that consumers actively search with strictly positive probability.

Proposition 3. In any Perfect Bayesian Equilibrium that satisfies the D1 logic

where β(p) is continuously differentiable, it must be the case that consumers update

their beliefs about the underlying cost in such a way that Pr(cH |p) = 1, β(p) < 1 and

that

β′(p) = − β(p)

p− cL

.
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It follows that there is a region of prices that both types of firms charge with

strictly positive probability where consumers continue to search with strictly positive

probability.

Corollary 2. The probability that in equilibrium non-shoppers actively search is

positive.

To fully characterize a D1 equilibrium of the model, we have to inquire into

the non-shoppers’ equilibrium strategy, β(p), with 0 ≤ β(p) ≤ 1. Optimal search

behaviour implies that whenever 0 < β(p) < 1 the non-shopper is indifferent between

buying now and continuing to search, implying that

(1− α)fL(p)

(1− α)fL(p) + αfH(p)
ΦL(p) +

αfH(p)

(1− α)fL(p) + αfH(p)
ΦH(p) = s, (5)

where Φi(p) =
∫ p

0
Fi(x)dx. This equation says that after a non-shopper observes

price p he will update his beliefs about the underlying cost of the firms and given

these updated beliefs concludes that buying now yields the same expected pay-off as

continuing to search. Optimal search behaviour also implies that the non-shoppers

strictly prefer to buy (β(p) = 1) if, and only if, the LHS of (5) is strictly smaller than

s and that the non-shoppers strictly prefer to search (β(p) = 0) if, and only if, the

LHS of (5) is strictly larger than s. Together with (3) this behaviour characterizes

an equilibrium.

As shown in the Appendix, equation (5) defines a differential equation which

starting from initial conditions for p and β(p) defines the function β(p) going down-

ward.13 This function can continue to satisfy 0 < β(p) < 1 or it may at some price

point p reach the boundaries β(p) = 1 or β(p) = 0. If for some prices β(p) = 1, the

following lemma shows that (5) implies that in any equilibrium β′(p) = 0 has to

hold at the largest price point p where β(p) = 1.

Lemma 2. Let p∗ be such that β(p∗) = 1 and for any sufficiently small ε > 0

β(p∗ + ε) < 1. If p∗ is in the interior of the support of Fi(p), i = L, H, then it must

be that β′(p∗) = 0.

13Note that (5) implies we should have β′(p) = −β(p)(p− ci) as derived in Proposition 3.
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Figure 1: No gap equilibrium
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We will now inquire into the existence question. The main question is whether

for all parameter values cL, cH , λ, α and s we can find values of p and β(p) such

that equation (3) defines proper distribution functions that are upward sloping, and

that the search strategy of non-shoppers satisfies the optimality condition (5). For

relatively small cost differences cH − cL it turns out that this question reduces to

the question of whether we can find p and β(p) such that equation (4) and β′(p) = 0

at the largest price p∗ where β(p∗) = 1. In this solution the distribution functions

defined in (3) are upward sloping , i.e., fL(p), fH(p) ≥ 0, and for all prices smaller

than p∗ as defined in Lemma 2, β(p) = 1. We will call such an equilibrium a “no

gap equilibrium” and an example is given in Figure 1. This Figure illustrates that

at high prices β(p) < 1 and at lower prices β(p) = 1 and the price distributions do

not have a gap. Figure 1 also illustrates that the demand of individual consumers

is downward sloping.

For larger cost differences cH − cL these requirements do not constitute an equi-

16



librium, however, as ρL will be smaller than p
H

,where ρL is implicitly defined by∫ ρL

p
L

FL(p)dp = s. (6)

If ρL < p
H

, then it cannot be the case that β(p
H

) = 1. The reason is that at prices

smaller than p
H

and larger than ρL non-shoppers infer that cost cannot be high

and therefore prefer not to buy, but to continue to search, i.e., β(p) = 0 for all

ρL < p < p
H

. On the other hand, non-shoppers will always buy immediately at

prices smaller than ρL, i.e., β(p) = 1 for all p < ρL. This in turn implies that there

will be a gap in the price distribution of low cost firms at prices just above ρL. There

are two possibilities in this case. First, low cost firms do not charge prices in the

interval (ρL, p
H

) where β(p) = 0. In this case it is clear that β(p
H

) = β(ρL) = 1

would imply that low cost firms are not indifferent between charging p
H

and ρL.

Thus, we have β(p
H

) < 1. A second case that can arise is when low cost firms

charge prices in the subset of the interval (ρL, p
H

) where β(p) = 0. To make low

cost firms indifferent between charging p
H

and prices in the interval (ρL, p
H

) it

must be that β(p
H

) = 0. The fact that for large cost differences we should have

β(p
H

) < 1 is the main reason why Dana (1994) and Janssen et al. (2011) find that

(independent of out-of-equilibrium beliefs) RPE do not always exist (as in these

equilibria β(p
H

) = 1).

Thus, for larger cost differences any equilibrium has a gap in the low cost price

distribution where β(p) = 1 for all p ≤ ρL, β(p) = 0 for all prices p in the interval

(ρL, p
H

) and β(p
H

) < 1. There are different types of these gap equilibria. One

dimension along which these equilibria differ is whether or not low cost firms choose

prices in the interval (ρL, p
H

) where β(p) = 0. If they do, it is only consumers

who have observed both prices who buy, and they buy at the lowest price in the

market. We therefore denote such an equilibrium as a competitive gap equilibrium.

If firms do not choose with positive probability prices in this interval, then we simply

speak of a regular gap equilibrium. Another dimension along which these equilibria

differ is whether or not there is a subset of prices in the interval (p
H

, p) where non-

shoppers buy for sure and β(p) = 1. If there is such an interval, we will denote
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such an equilibrium as a monopolistic gap equilibrium. Combining these different

dimensions, we thus may have four different types of gap equilibria. Note that in

all these equilibria, the gap is only in the low cost price distribution.

Figure 2 illustrates a regular gap equilibrium where 0 < β(p) < 1 for all prices

p ∈ [p
H

, p]. In this case p and β(p) are determined such that (4) and (6) hold. The

cost difference is larger than that in Figure 1 and low cost firms either set low prices,

or choose prices that are much larger, with a gap in between. In this equilibrium,

there are four regions of prices where non-shoppers exhibit different behavior. At

high prices (above p), the consumers definitely continue to search. Consumers are

indifferent between buying and continuing to search for all prices p ∈ [p
H

, p] as they

update the beliefs about cost being low and the probability of finding lower prices

if continuing to search. At prices below p
H

(and above ρL) non-shoppers search for

sure. Finally, at prices below ρL non-shoppers buy for sure. Although the parameter

value of cH is larger in Figure 2 than in Figure 1 (40 against 34, but average cost is

the same) the support of the high cost price distribution has lower prices due to the

fact that non-shoppers search more actively.

Figure 3 illustrates a monopolistic gap equilibrium. At prices close to p, but also

at prices close to p
H

non-shoppers are indifferent between buying and continuing

to search and β(p) < 1. At prices at and close to p
H

β(p) > 0 and β′(p) > 0, the

low cost distribution function is much steeper in this price region than the high

cost distribution function. There is a relatively small gap in the low cost price

distribution and β(p) = 1 for all p ≤ ρL. At the lowest price p such that β(p) = 1,

β(p) is not continuously differentiable.14 This equilibrium can co-exist with the

equilibrium represented in Figure 2.

When the cost difference is large and the fraction of shoppers is large, the only

way to satisfy condition (6) is to have a competitive gap equilibrium where β(p
H

) =

0. Figure 4 provides an example. In this case, low cost firms choose to set prices

just below p
H

with positive probability before a gap is created to ensure that (6)

holds.

14Note that Lemma 2 only applies to the largest price p where β(p) = 1.
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Figure 2: Regular gap equilibrium
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Figure 3: Monopolistic gap equilibrium
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Figure 4: Competitive gap equilibrium
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One can numerically compare for a given cost realization (i) the expected first

price observation conditional on the price being accepted and (ii) the expected first

price observation conditional on it not being accepted. De los Santos et al. (2012)

observe that in their sample the first conditional expected price is larger than the

second, and they rightly claim that this is inconsistent with RPE. For the parameter

values used in Figures 2-4 one can compute and compare both conditional expected

prices to conclude that for the high cost realization these non-RPE are consistent

with the finding of De los Santos et al. (2012): for Figure 2 the numbers are 42.94

and 42.83, respectively, for Figure 3 the numbers are 50.81 and 49.83, respectively,

while for Figure 4 they are 45.19 and 45.11, respectively.

In any gap equilibrium, we have some interval of prices just above ρL that are

not charged with positive probability. In this interval it is natural to have out-

of-equilibrium beliefs satisfying Pr(cL|p) = 1 for all p ∈ (ρL, p
H

) implying that

β(p) = 0. This out-of-equilibrium belief not only follows from the D1 logic, but

also from the weaker notion of the Intuitive Criterion (Cho and Kreps, 1987). The

reason is as follows: by setting a price equal to p
H

a high cost firm already attracts

all shoppers and all non-shoppers that first visited that firm. Of the remaining non-

shoppers it will sell to all who continue to search after having visited the first firm.
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By deviating to a lower price, a firm can never get a higher demand, and lowering

the price, can only lower the profits. A low cost firm may have an incentive to

deviate to prices p ∈ (ρL, p
H

) if β(p) is high enough. As the high cost type does not

have an incentive to deviate and the low cost type may have an incentive (depending

on the reaction of the non-shoppers), the Intuitive Criterion implies that β(p) = 0

for all p ∈ (ρL, p
H

).

The following Theorem shows that an equilibrium satisfying the D1 logic exists

for all values of the exogenous parameters.

Theorem 1. For any values of s, λ, cL, cH and α an equilibrium satisfying the D1

logic exists.

The proof is constructive and shows that for any combination of parameter values

one of the four types of equilibria defined above has to exist. The proof consists of

several lemmas and is given in Appendix II. For a range of parameter values the

equilibrium is not unique, while for other parameter values the equilibrium is unique.

To better understand the equilibrium structure, Figure 5 shows for given values of

s, λ and α how the equilibrium configuration may depend on the cost difference

cH − cL.

For relatively small values of λ, Figure 5(a) shows there are three possible equi-

librium configurations, depending on whether the cost difference is small, large or

intermediate. If the cost difference is relatively small, there is a unique equilibrium

without a gap in the low cost distribution. When cH is close to cL the value of β(p)

becomes closer to 1 and in the limit, when cost uncertainty disappears the Stahl

equilibrium is the only possible equilibrium. If, on the other hand, the cost differ-

ence cH − cL is relatively large, then there exists a unique regular gap equilibrium.

The value of β(p) has to be relatively low to satisfy the equilibrium conditions for

such an equilibrium to exist. Finally, if the cost difference cH− cL is at intermediate

values, a monopolistic gap equilibrium co-exists together with two regular gap equi-

libria.15 For larger values of λ, Figure 5(b) distinguishes four possible equilibrium

configurations, while equilibrium is unique for each value of the cost difference

15This multiplicity of equilibria seems to be genuine and it is not easy to select among these
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Figure 5: β as a function of cost difference.
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Figures 2, 3 and 4 show that non-RPE do not exhibit a simple monotone relation-

ship between price and the probability of buying (or the probability of continuing

to search). In a gap equilibrium, the β(p) functions have an increasing segment,

indicating that at higher prices the probability of consumers buying is higher (and

thus the probability they continue searching is lower). Figure 4 shows an extreme

case of this where there is a region of prices that are set by low cost firms such that

non-shoppers continue to search for sure, while at higher prices the probability of

continuing to search is lower. Thus, these Figures indicate that the optimal search

behaviour may be highly nonmonotonic in price. De los Santos et al. (2012) empir-

ically find that it is not the case that at higher prices, consumers are more likely to

continue to search. Our analysis shows that this does not rule out that consumers

search sequentially, although it does rule out that consumers follow reservation price

strategies.

Equilibria where the low cost price distribution has non-compact support may

be interpreted as a search theoretic foundation for the reference price principle that

is discussed in marketing (see the references in the Introduction). In our model,

reference prices endogenously arise from the fact that consumers rationally infer

that a certain low price will only be set when cost is low, and if the common cost

equilibria. Fershtman and Fishman (1992) use a stability argument to argue that one of the

equilibria in their search model is unstable. It is difficult to see how a stability argument can be

invoked in our context as the behaviour of consumers is not characterized by a single parameter

as in their model, but by the function β(p).
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is really low, then the chances of finding low prices are good so, it is rational to

continue searching for better deals. Thus, it is better for firms not to set prices just

above these reference prices. If higher prices are to be set, it is better to choose

prices in a higher range where the probability of a sale is large enough.

4 Comparative Statics and A Comparison with

Related Models

We are now in a position to compare the equilibrium outcomes of our model with

two benchmark models, and to perform some numerical comparative statics analysis.

On one hand, we use Stahl (1989) as a benchmark to show the implications of cost

uncertainty. On the other hand, we use Dana (1994), or equivalently Janssen et al.

(2011), as a benchmark for the outcome of RPE with cost uncertainty. As shown

in Janssen et al. (2011) the expected price under RPE is larger than the weighted

average of the expected price of the high and low cost equilibria as developed by

Stahl (1989) and in that sense, consumers are worse off under cost uncertainty. In

this Section we show that this result may well be reversed for non-RPE.

There are several effects that play a role when comparing the outcomes of non-

reservation equilibria with those of RPE. First, for a given upper bound p, lowering

β(p) from an initial value of 1 (which is the value in the case of RPE) implies that

there are more consumers making price comparisons. This implies firms tend to

lower their prices as a reaction to the increased competition. A second effect is

a direct consequence: as for a given upper bound expected prices will be lower,

therefore searching for lower prices becomes more beneficial (as the expected prices

after a search are lower), lowering the upper bound (as it is equal to the high-cost

reservation price). The third effect is that in a non-RPE non-shoppers believe that

cost is high after observing the upper bound, while in a RPE as in Dana (1994) and

Janssen et al. (2011) the upper bound equals the weighted average of the reservation

prices when cost is certainly low or certainly high. Higher upper bounds of the price

distribution tend to be associated with higher expected prices.
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Figure 6 shows the typical effect on ex ante expected prices of these three effects.

Expected price is a good measure of the surplus of the non-shoppers. When they

continue to search non-shoppers pay the search cost, but they also get to buy at the

lowest of two prices. As in equilibrium, when they search twice they are indifferent

between buying and searching, the additional expected benefit of the possibility of

buying at a lower price is exactly offset by the cost of the additional search. In

both situations, the average cost is taken to be 25 and the cost difference cH − cL,

measured on the horizontal axis, varies between 0 (implying the cost is known to

be 25) and 50 (where cL = 0 and cH = 50). When the cost difference is 0 all

models results in the same expected price. In the Stahl (1989) model where cost

is known the expected price is a fixed number larger than the cost level, where the

fixed number depends on λ and s, but not on c. The ex ante expected price reported

here for the Stahl model is the weighted costs plus this fixed number. This expected

price is thus decreasing in the cost difference cH − cL, if α < 0.5 (as in Figure 6).

The expected price in Dana (1994) or Janssen et al. (2011) is known to be higher

than the ex ante weighted average of the expected prices in the Stahl model. The

Figures also show that the RPE analyzed in these two papers does not exist for

larger cost differences. Figures 6(a) and 6(a) show that for smaller cost differences

expected prices are even larger than the ones reported in Janssen et al. (2011). The

Figures also show, however, that for larger cost differences the expected price in a

non-RPE becomes smaller and that it can even become smaller than the ex ante

weighted average of expected prices in the Stahl model. Figure 6(a) shows that this

difference can be in the order of 10%, which is non-negligible.

In the different panels of Figure 7, we perform a numerical comparative static

analysis showing how expected price and the probability that non-shoppers search

twice, which is given by

E(1− β(p)) = α

∫ ρH

p
H

(1− β(p))fH(p)dp + (1− α)

∫ ρH

p
L

(1− β(p))fL(p)dp

changes with the changes in the different exogenous parameters s, λ and a.
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Figure 6: Expected prices as a function of cost difference.
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The first two panels (7(a) and 7(b)) show the dependence on search cost. For

small search cost, a large fraction of non-shoppers performs two searches and the

expected price is close to the average marginal cost of 25. When the search cost

increases from initially low levels, the expected price increases and the fraction of

non-shoppers performing two searches decreases (giving firms more market power).

At search cost levels close to 2, there are multiple gap equilibria, and it may be

that the expected price is decreasing in search cost. When the search cost further

increases a no gap equilibrium emerges and the probability of non-shoppers searching

twice becomes very close to 0. Panel (7(b)) also shows that starting from an initially

small search cost, non-shoppers will search less when the search cost increases. In

this way, non-shoppers partially mitigate the increase in market power typically

associated with higher search cost.

The middle two panels (7(c) and 7(d)) show the dependence on the fraction of

shoppers. When λ is small, there are many non-shoppers and a no gap equilibrium

exists. In such an equilibrium very few non-shoppers perform two searches and

the expected price is high. When λ increases, the expected price decreases, but in

the area where multiple equilibria exist the difference in the expected price can be

quite large as the fraction of non-shoppers performing two searches differs greatly

between the different equilibria. When λ increases further, we enter the area where

only competitive gap equilibria exist. In this case increasing λ leads to a higher

probability that low-cost firms price in the area where β(p) = 0 and the average
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Figure 7: Comparative Statics.
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price increases slightly.

The last two panels (7(e) and 7(f)) show the dependence on the probability

that the cost is high. When this probability is high, there is a no-gap equilibrium

and consumers search very little, since there is a low probability of obtaining a

substantially lower price. In this region the higher the α, the higher the expected

price. For lower values of α there is a monopolistic gap equilibrium with qualitatively

similar properties. When α is sufficiently low, there are multiple gap equilibria and

the incentives to search can be high, pushing the prices down. The expected price

can be both increasing and decreasing in α depending on which of the regular gap

equilibria is chosen.

5 Oligopoly Markets: an Extension

In general, it is difficult to analytically characterize non-RPE when there are more

than two firms in the market due to the fact that depending on the prices observed,

consumers may perform a different number of searches, creating complications for

solving for the price distribution of firms. Nevertheless, the following result on the

optimal search behaviour of consumers helps to considerably reduce the complexities

in analyzing certain types of equilibria under an oligopoly. In this result we denote

by pt the price a non-shopper observes in search round t.

Proposition 4. Suppose, the consumer was indifferent between continuing to search

or buying after the first price observation p(1) and fH(p) > fL(p) for all p ∈ P(0,1).

Then if the consumer continued, she stops searching after the second price observa-

tion p(2) and buys at min{p(1), p(2)}.

There are two interesting aspects about this Proposition. First, if a non-shopper

observes two prices p(1) and p(2), with p(1) < p(2), then the Proposition says the

consumer will stop searching and go back to the first firm if the high cost density

is larger than the low cost density. Thus, going back to previously sampled firms

before all firms are searched may well be consistent with a sequential search. De

los Santos et al. (2012) have observed that consumers do go back to previously
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sampled firms before having visited all firms. This is inconsistent with reservation

price strategies, as they noted, but not necessarily with sequential search.

Second, if in a non-RPE we have that fH(p) > fL(p) in the price region where

β(p) < 1, then we know that non-shoppers will never search beyond the second firm,

and the profit function under oligopoly can be written as

π(p|ci) =

[
λ(1− Fi(p))N−1 +

1− λ

N
β(p) +

1− λ

N
(1− β(p))(1− Fi(p)) +

1− λ

N − 1

N − 1

N

∫ p

p

(1− β(p̃))fi(p̃)dp̃

]
(p− ci)

so that the differential function which has to be solved to find the distribution

functions reduces to

−2

[
1 +

λN(N − 1)

2 (1− λ)
(1− Fi)

N−2 − β(p)

]
dFi +

[
β′(p)Fi + β(p)

p− ci

(p− ci)
2

]
dp = 0.

(7)

This differential equation can be solved numerically, and it can be checked whether

fH(p) > fL(p) indeed holds for all prices in the price region where β(p) < 1. In Figure

8 we illustrate the distribution functions that solve (7) for particular parameter

values. It can be checked that the condition on the density functions is satisfied.

6 Discussion and Conclusion

In this paper we have considered search markets where consumers do not know the

underlying common costs of firms. If consumers do not know the prices different

firms charge, it is natural that they also do not know the underlying cost. We have

argued that in this environment of cost uncertainty, the standard RPE considered

in the consumer search literature suffer from some severe limitations. It has already

been shown in the literature that RPE do not always exist in such an environment,

but we add that RPE implicitly assume specific out-of-equilibrium beliefs that do

not seem to always be reasonable. We characterize non-RPE that do not depend on
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Figure 8: Equilibrium price distributions and stopping probability for N = 3
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assumptions regarding out-of-equilibrium beliefs in defining the upper bound of the

price distributions.

In non-RPE non-shoppers are indifferent between buying and continuing to

search over a range of prices. As prices in this range are set with positive prob-

ability, these non-RPE have active search with positive probability in equilibrium.

Thus, we extend the Rothschild (1974) finding by showing in a model with endoge-

nous price setting that consumers do not choose reservation price strategies. An

extreme example of a non-reservation price strategy which arises in our equilibrium

analysis is when the cost difference is large, and the low cost distribution does not

have connected support. In this case, over the whole range of prices that are charged

when cost is high, consumers randomize between searching and buying and at an

interval of prices below this price range, consumers rationally decide to continue to

search as they expect cost to be low.

We show that non-RPE always exist. This result is important as it resolves the

issue raised in the earlier literature as to what type of perfect Bayesian equilibria

may exist in an asymmetric information game, if a RPE does not exist.

We also show that non-RPE have very different properties from RPE. One im-
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portant result in this respect is that the expected market prices may well be lower

under cost uncertainty than under cost certainty. The reason is that cost uncertainty

makes it possible for consumers to rationally search more than under cost certainty

and this additional search has a quantitatively important pro-competitive effect on

prices.

Our results on non-RPE also have important consequences for the empirical

literature on consumer search models that is recently taking off. We have shown that

non-RPE may be consistent with the observations of De los Santos et al. (2012) as (i)

consumers may rationally continue to search at lower prices, while they buy at higher

prices and (ii) consumers may stop searching and buy at a previously visited store,

before they have observed all prices in the market. Moreover, the price distributions

of non-RPE are quite different from the regular price distributions found in RPE.

It would be challenging to see whether these price distributions provide a good fit

with data.

As a first inquiry into non-RPE, we have made some assumptions that restrict

the immediate application of this paper to real world markets. We mainly consider

duopoly markets and also consider the uncertainty that is characterized by two cost

states only. There does not seem to be a particular reason why non-RPE cannot be

characterized (or at least numerically calculated) for these different possible exten-

sions, and some of these extensions are clearly non-trivial. One issue that needs to

be addressed in the generalizations to oligopoly markets is how consumer inferences

after observing two (or more) prices interact with the consumer search decisions.

In the extension analyzed in this paper, we dealt with the easiest of different pos-

sible cases that can arise. In general, however, different possible search behaviours

interact in a complicated way with the incentive of firms to choose different prices.

This paper made a first step analyzing non-RPE. There are many theoretical and

empirical challenges that lie ahead.
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7 Appendix I: Proofs of Lemmas, Propositions

and Corollaries

Proposition 1. Any reservation-price equilibrium does not satisfy the D1 criterion.

Proof. As only non-shoppers buy at the reservation price, in a reservation price

equilibrium the profits of low and high cost firms are given by πL = 1−λ
2

(ρ − cL)

and πH = 1−λ
2

(ρ− cH), respectively. If non-shoppers buy with probability β(p) after

observing an out-of-equilibrium price p > ρ, then the deviating firm makes a profit

of πi = 1−λ
2

β(p)(p− ci), i = 1, 2. This is larger than the equilibrium profit if

β(p) >
ρ− ci

p− ci

.

As the RHS of this inequality is decreasing in ci for all p > ρ, the high cost firms have

a wider range of responses from the consumers for which it is profitable for them to

deviate to prices p > ρ. The D1 refinement thus requires that the out-of-equilibrium

belief Pr(cL|p) = 0 for all p > ρ.

As after observing the reservation price non-shoppers are indifferent between

buying and continuing to search

ρ = s + Pr(cL|ρ)E(p|cL) + Pr(cH |ρ)E(p|cH).

As Pr(cL|ρ) > 0 and E(p|cL) < E(p|cH), it follows that for some ε small enough

and p = ρ + ε,

p < s + E(p|cH).

Thus, given the D1 out-of equilibrium beliefs non-shoppers prefer to buy at prices

just above ρ. Therefore it is optimal for both types of firms to deviate from the RPE

and choose a price (just) above the reservation price.

Lemma 1. In any equilibrium, pL = pH ≡ p.

Proof. If the upper bounds are not equal it must be the case that pH > pL, or vice

versa. As the argument in both cases is identical, we only consider the case where

pH > pL, Due to the fact that the price distributions do not have mass points, it
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must be the case that in a left neighborhood of pH high cost firms charge prices

with strictly positive probability. For any small ε > 0 consider then the interval

(pH − ε, pH) . If a low type firm would not charge prices in this interval, consumers

would know that cost is high after observing prices in this interval. Given that

consumers are (at least) indifferent between buying and not buying at pH (as, if

consumers prefer to continue to search after observing pH , no firm would ever charge

pH), they strictly prefer to buy at prices the interval (pH − ε, pH) . But then low cost

firms would prefer to set prices in this interval as well instead of charging pL. Thus,

pL = pH .

Proposition 2. The equilibrium price distribution, which makes firms indifferent

between all the prices, is given by:

Fi(p) =



2
√

1−(1−λ)β(p)−
R p

p
(1−λ)β(p)(p−ci)

(ep−ci)
2√

1−(1−λ)β(ep)
dep

2
√

1−(1−λ)β(p)
if p ∈ P(0,1)

1− 1−λ
2λ

[
β(p)p−ci

p−ci
− 1−

∫ p

p
(1− β(p̃))fi(p̃)dp̃

]
if p ∈ P1

1− 1−λ
1+λ

[
β(p)p−ci

p−ci
−
∫ p

p
(1− β(p̃))fi(p̃)dp̃

]
if p ∈ P0

(8)

Proof. Assuming the function β(p) is differentiable, equation (2) can be rewritten

as

−2 [1− (1− λ)β(p)] fi(p) + (1− λ)β′(p)Fi(p) = −(1− λ)β(p)
p− ci

(p− ci)
2

by taking the derivative of both sides of the equality sign. This equation can be

explicitly written as a differential equation:

−2 [1− (1− λ)β(p)] dFi +

[
(1− λ)β′(p)Fi + (1− λ)β(p)

p− ci

(p− ci)
2

]
dp = 0. (9)

As

−2
∂ [1− (1− λ)β(p)]

∂p
6=

∂
[
(1− λ)β′(p)Fi + (1− λ)β(p) p−ci

(p−ci)
2

]
∂Fi
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this is an inexact linear differential equation. However, it can be made exact by

dividing (9) by
√

1− (1− λ)β(p) :

−2
√

1− (1− λ)β(p)dFi +

[
(1− λ)β′(p)Fi + (1− λ)β(p) p−ci

(p−ci)
2

]
√

1− (1− λ)β(p)
dp = 0.

The solution to this exact differential function is a function Z(Fi, p) = Ci (where

Ci is an integration constant) with ∂Z
∂p

=

�
(1−λ)β′(p)Fi+(1−λ)β(p)

p−ci

(p−ci)
2

�
√

1−(1−λ)β(p)
and ∂Z

∂Fi
=√

1− (1− λ)β(p). It follows that the solution Z(Fi, p) is given by

−2Fi

√
1− (1− λ)β(p) +

∫
(1− λ)β(p)(p− ci)

(p− ci)
2
√

1− (1− λ)β(p)
dp + Ci = 0.

This equation can be solved explicitly for Fi(p), to yield (3), where the integration

constant Ci is found by setting Fi(p) = 1.

If, β(p) = 1 or β(p) = 0 in an interval of prices (p̂, p̃) , then the equilibrium price

distribution can be simply directly calculated from (2).

Corollary 1. For all p < p, FL(p) ≥ FH(p) and whenever 0 < FH(p) < 1, FL(p) >

FH(p).

Proof. From the previous Proposition, it follows that FH(p) < FL(p) if, and only if,

(1−λ)β(p)(p−cH)

(p−cH)2
√

1−(1−λ)β(p)
> (1−λ)β(p)(p−cL)

(p−cL)2
√

1−(1−λ)β(p)
for all p. This, is the case if

(p− cH)2(p− cL) < (p− cL)2(p− cH).

This can be rewritten as

(cH − cL)p2 − ((cH − cL)pp + cLcH(cL − cH) < 0

or p2 − pp− cLcH < 0, which is definitely the case.

Proposition 3. In any Perfect Bayesian Equilibrium that satisfies the D1 criterion

where β(p) is continuously differentiable, it must be the case that consumers update

their beliefs about the underlying cost in such a way that Pr(cH |p) = 1, β(p) < 1 and

that

β′(p) = − β(p)

p− cL
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Proof. First, it is clear that β(p) > 0 as otherwise no high cost firm would charge p

with positive density. Following the same logic as in the proof of Proposition 1, but

replacing ρ by p and adjusting the argument for β(p), it is easy to see that the D1

logic requires that the out-of-equilibrium belief Pr(cL|p) = 0 for all p > p. As again,

non-shoppers have to be indifferent between buying and continuing to search after

observing p we have that

p = s + Pr(cL|p)E(p|cL) + Pr(cH |p)E(p|cH).

As it follows from Corollary 1 that E(p|cL) < E(p|cH), we can follow the same logic

as in the proof of Proposition 1 to show that if Pr(cL|p) > 0 non-shoppers prefer to

buy at prices just above p and then it is optimal for both types of firms to deviate.

Thus, it must be that Pr(cH |p) = 1.

From Lemma 1 it follows that in the interval (p− ε, p) both types of firms charge

prices with strictly positive probability. As the low cost density at p should be 0

and at prices below p it is positive, it follows that the profits the low cost firm

makes by selling only to non-shoppers reaches a maximum at p = p. Maximizing

1−λ
2

β(p)(p− cL) and imposing the maximum gives

β′(p)(p− cL) + β(p) = 0,

which can only be the case when β(p) < 1.

Corollary 2. The probability that in equilibrium non-shoppers actively search is

positive.

Proof. Since β(p) > 0 we have that β′(p) < 0, and therefore, β(p) < 1. Thus, for

some ε small enough there exist an interval (p− ε, p) where β(p) < 1 and as these

prices are charged with positive probability, there is a strictly positive probability

that consumers search in any equilibrium satisfying the D1 criterion whenever cL <

cH .

Lemma 2. Let p∗ be such that β(p∗) = 1 and for any sufficiently small ε > 0

β(p∗ + ε) < 1. If p∗ is in the interior of the support of Fi(p), i = L, H, then it must

be that β′(p∗) = 0.
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Proof. Suppose, β′(p∗) < 0. Denote ∆fi = fi(p
∗ − ε)− f1(p

∗ + ε). Then, since

fi(p
∗) =

(1− λ)β′(p)Fi(p) + (1− λ)β(p) p−ci

(p−ci)
2

2 [1− (1− λ)β(p∗)]
,

and FL > FH we have ∆fl < ∆fh (both negative).

Denote

ai = (1− λ)β(p)(p− ci)

Then

aL

(p− cL)2
<

aH

(p− cH)2

which implies that fL < fH for prices higher than p∗. This gives fL(p∗−ε)
(1−α)fL(p∗−ε)+αfH(p∗−ε)

=

fL(p∗+ε)+∆fL

(1−α)fL(p∗+ε)+αfH(p∗+ε)+(1−α)∆fL+α∆fH
> fL(p∗+ε)

(1−α)fL(p∗+ε)+αfH(p∗+ε)
. Thus, if consumers

are indifferent at p∗ + ε, they must strictly prefer to continue searching at p∗ − ε,

which can not be the case. Therefore, β′(p∗) = 0 (since it cannot be grater than

0).

Proposition 4. Suppose, the consumer was indifferent between continuing to search

or buying after the first price observation p(1) and fH(p) > fL(p) for all p ∈ P(0,1).

Then if the consumer continued, she stops searching after the second price observa-

tion p(2) and buys at min{p(1), p(2)}.

Proof. Consider a consumer who has observed two prices p(1) and p(2). Given that

the consumer was indifferent after observing p(1), the optimal stopping rule for the

first round gives

w1(p
(1))(ΦL(p(1))− s) + (1− w1(p

(1)))(ΦH(p(1))− s) = 0,

where

w1(p
(1)) =

αfL(p(1))

αfL(p(1)) + (1− α)fH(p(1))
.

After observing p(2) the decision of the consumer is determined by the sign of

w2(p
(1), p(2))(ΦL(p(1))− s) + (1− w1(p

(1), p(2)))(ΦH(p(1))− s),
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where

w2(p
(1), p(2)) =

αfL(p(1))fL(p(2))

αfL(p(1))fL(p(2)) + (1− α)fH(p(1))fH(p(2))
.

Note, that if w2(p
(1), p(2)) < w1(p

(1)) this sign is always negative and the consumer

prefers to stop. This is the case if

αfL(p(1))

αfL(p(1)) + (1− α)fH(p(1))
>

αfL(p(1))fL(p(2))

αfL(p(1))fL(p(2)) + (1− α)fH(p(1))fH(p(2))
,

which can be rewritten as

α2fL(p(1))fL(p(2)) + α(1− α)fL(p(1))fH(p(1))fH(p(2)) >

α2fL(p(1))fL(p(2)) + α(1− α)fL(p(1))fH(p(1))fL(p(2)),

and reduces to

fH(p(2)) > fL(p(2)).

8 Appendix II: Proof of Theorem 1

Here, we prove the existence of equilibrium (Theorem 1) in several lemmas. In

general, and as explained in the main text, we need to prove that the two functional

equations (3) characterizing the distribution functions and the optimality condition

(5) for the search rule of non-shoppers has a solution such that the distribution

functions are well-defined, i.e. the densities are positive. When β(p) = 0 or β(p) = 1,

these conditions are trivially satisfied. When 0 < β(p) < 1 two boundary conditions

need to be satisfied and we have two parameters to satisfy them: p and β(p). First,

we need that fL(p) = 0, which implies that
∫ p

0
FH(x)dx = s. The second boundary

condition is different for different parameter values. For the purpose of formulating

this second boundary condition, implicitly define p∗ ≤ p
H

as

πL(p∗) = πL(p
H

),
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or[
λ(1− FL(p∗)) +

1− λ

2
+

1− λ

2

∫ p
H

p∗
fi(p̃)dp̃ +

1− λ

2

∫ p

p
H

(1− β(p̃))fi(p̃)dp̃

]
(p∗ − cL) =[

λ(1− FL(p
H

)) +
1− λ

2
− 1− λ

2
(1− β(p

H
))FL(p

H
) +

1− λ

2

∫ p

p
H

(1− β(p̃))fL(p̃)dp̃

]
(p

H
− cL).

That is, p∗ is the largest price smaller than p
H

that makes low cost firms indifferent

between (i) setting this price and having uninformed consumers immediately buy

at this price and not buying for sure at any price in the interval (p∗, p
H

) and (ii)

choosing p
H

and have uninformed consumers buying with probability β(p
H

). To see

that p∗ is uniquely defined consider the following two cases. If low quality firms do

not charge prices in the interval (p∗, p
H

) with positive probability, then the demand

at p∗ is independent of p∗ and thus the profit expression is increasing in p∗. In that

case, if β(p
H

) = 1, then p∗ = p
H

, while if β(p
H

) < 1, then p∗ < p
H

. If, on the

other hand, low cost firms do charge prices in the interval (p∗, p
H

) with positive

probability, then the profit at p∗ can be written as

πL(p∗) =

[
1 + λ

2
(1− FL(p∗)) +

1− λ

2
FL(p

H
) +

1− λ

2

∫ p

p
H

(1− β(p̃))fi(p̃)dp̃

]
(p∗−cL),

which using (3) for β(p∗) = 1, can be written as

1 + λ

2

(
1− λ

2λ

[
β(p)

p− cL

p∗ − ci

− 1−
∫ p

p∗
(1− β(p̃))fi(p̃)dp̃

])
(p∗ − cL)

+

(
1− λ

2
FL(p

H
) +

1− λ

2

∫ p

p
H

(1− β(p̃))fi(p̃)dp̃

)
(p∗ − cL),

or
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1− λ2

4λ

[
β(p) (p− cL)−

(
1 +

∫ p

p∗
(1− β(p̃))fi(p̃)dp̃

)
(p∗ − cL)

]
+

(
1− λ

2
FL(p

H
) +

1− λ

2

∫ p

p
H

(1− β(p̃))fi(p̃)dp̃

)
(p∗ − cL),

which is clearly increasing in p∗.

The second boundary condition can then be stated as follows.

(i) If ρL ≥ p
H

, then β′(p) = 0 when p is such that β(p) = 1 (Lemma 2);

(ii) If β(p) < 1 for all p ∈ [p
H

, p], then p∗ = ρL;

(iii) If ρL < p
H

and there is an interval [x, y] of prices p such that β(p) = 1 for

all p ∈ [x, y], then lim
p↓y

β′(p) = 0, and p∗ = ρL.

To simplify notation, we rewrite the distribution functions as

Fi(p) =
2g(p)−

∫ p

p
ai

(x−ci)2g(x)
dx

2g(p)
i = L, H, (10)

where g(p) =
√

1− (1− λ)β(p) and ai = (1 − λ)β(p)(p − ci), and proceed as

follows. We first note that (5) and (3) only need to hold in an interval of prices where

β(p) < 1 and that this is a subset of [ρL, p]. Lemma A.1 shows that this implies

that fL(p) and fH(p) are either both positive or both negative over the relevant

interval. We next show that fH(p) > 0. Together with Lemma A.1, this shows that

if the indifference equation for consumers has a solution, then the price distribution

functions are well-defined, increasing functions. We then rewrite the system into five

proper differential equations and invoke the Pickard-Lindelof theorem of differential

equations to show that the system has indeed a (mathematical) solution that it is

locally unique. Finally, we show that we can satisfy the boundary conditions given

above.

Lemma A.1. For any p ∈ P(0,1), fL(p) · fH(p) ≥ 0.

Proof. As ΦL(ρL) =
∫ ρL

0
Fi(x)dx = ΦH(ρH) =

∫ ρH

0
Fi(x)dx = s, and Φi(p) are

increasing functions it follows that ΦL(p) > s and ΦH(p) < s for all ρL < p < ρH .
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As (5) can be rewritten as

(1− α)fL(p)

(1− α)fL(p) + αfH(p)
(ΦL(p)− s) +

αfH(p)

(1− α)fL(p) + αfH(p)
(ΦH(p)− s) = 0

it follows that both the weights (1−α)fL(p)
(1−α)fL(p)+αfH(p)

and αfH(p)
(1−α)fL(p)+αfH(p)

have to be

positive, which can only be the case if fL(p) and fH(p) have the same sign.

Lemma A.2. For all p ∈ [max(ρL, p
H

), p] ∩ P(0,1), fi(p) > 0, i = L, H.

Proof. As the function β(p) is differentiable, equation (2) can be rewritten as

−2 [1− (1− λ)β(p)] fi(p) + (1− λ)β′(p)Fi(p) = −(1− λ)β(p)
p− ci

(p− ci)
2 ,

which at p reduces to

−2 [1− (1− λ)β(p)] fi(p) = −(1− λ)

[
β(p)

p− ci

+ β′(p)

]
.

As the RHS of this expression equals 0 for ci = cL, the RHS is clearly negative for

ci = cH for any choice of 0 < β(p) < 1. Thus, fH(p) > 0. By continuity there exists

ε > 0 such that for all p ∈ [p − ε, p] fH(p) > 0. Then, by Lemma A.1 fL(·) is

also positive in the interior of this interval. Moreover, Lemma A.1 implies that if

fL(·) and fH(·) change sign it must happen at the same price, which we denote as

p0 ∈ [max(ρL, p
H

), p]. By differentiating (3) and taking the ratio of the derivatives

we obtain

(p− cH)(p0 − cL)2

(p0 − cH)2(p− cL)
=

FH(p0)

FL(p0)

Note, that the left-hand side of this expression is larger than 1 (since p0 < p),

while by Corollary 1 the right-hand side is smaller than 1. Therefore, there is no

such p0 and both densities must be positive.

It thus directly follows from Lemma A.1 and A.2 that both density functions

have to be positive for all For all p ∈ [max(ρL, p
H

), p]∩P(0,1). As for all other prices

β(p) = 0 or β(p) = 1, the density functions are positive for all prices.
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Lemma A.3. The solution to the uninformed indifference equation (5) can be writ-

ten as

g′(p) =
(1− α) aL

2(p−cL)2g(p)
(ΦL(p)− s) + α aH

2(p−cH)2g(p)
(ΦH(p)− s)

(1− α)FL(p)(ΦL(p)− s) + αFH(p)(ΦH(p)− s)
(11)

Proof. Taking the derivative of (10) gives

fi(p) =
1

g(p)

(
ai

2(p− ci)2g(p)
− Fi(p)g

′
(p)

)
.

Then the optimal stopping rule can be rewritten as

0 =
(1− α)

(
aL

2(p−cL)2g(p)
− FL(p)g

′
(p)
)

(1− α)
(

aL

2(p−cL)2g(p)
− FL(p)g′(p)

)
+ α

(
aH

2(p−cH)2g(p)
− FH(p)g′(p)

)(ΦL(p)− s) +

α
(

aH

2(p−cH)2g(p)
− FH(p)g

′
(p)
)

(1− α)
(

aL

2(p−cL)2g(p)
− FL(p)g′(p)

)
+ α

(
aH

2(p−cH)2g(p)
− FH(p)g′(p)

)(ΦH(p)− s),

which can easily be rewritten as the equation in the statement of the Lemma.

We proceed with some facts about the function g′(p). Define

A(p) ≡ (1− α)
aL

2(p− cL)2g(p)
(ΦL(p)− s) + α

aH

2(p− cH)2g(p)
(ΦH(p)− s) (12)

and

B(p) ≡ (1− α)FL(p)(ΦL(p)− s) + αFH(p)(ΦH(p)− s). (13)

We can then write g′(p) = A(p)
B(p)

.

Lemma A.4. Equation A(p) = 0 has at most one root on [p
H

, p].

Proof. From the definition of A(p) it follows that A(p) = 0 if, and only if,

α(s− ΦH(p))

(1− α)(ΦL(p)− s)
=

aL

(p−cL)2

aH

(p−cH)2

=
(p− cH)2(p− cL)

(p− cL)2(p− cH)
.

It is clear that the LHS of this expression is decreasing in p (since both numerator

and denominator are positive for p ∈ [p
H

, p]), while the RHS is increasing in p. Thus,

there is at most one p where A(p) = 0.
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Lemma A.5. For all p ∈ [p
H

, p] such that A(p) > 0, it must be the case that

B(p) > 0.

Proof. A(p) > 0 if, and only if,

(1− α)(ΦL(p)− s)

α(s− ΦH(p))
>

aH

(p−cH)2

aL

(p−cL)2

=
(p− cL)2(p− cH)

(p− cH)2(p− cL)
. (14)

Similarly, B(p) > 0 if, and only if,

(1− α)(ΦL(p)− s)

α(s− ΦH(p))
>

FH(p)

FL(p)
. (15)

The LHS of (14) and (15) are identical; as the RHS of (14) is larger than 1, while

by Corollary 1 the RHS of (15) is smaller than 1, the statement follows.

Now note, that if ρL ≥ p
H

then due to Lemma 2 for all p = [ρL, p] it must be

the case that B(p) > 0 (this immediately follows from Lemmas A.4 and A.5). The

next lemma establishes the same result for the case ρL < p
H

.

Lemma A.6. If ρL < p
H

,then B(p) > 0 for all p
H
≤ p ≤ p.

Proof. It is clear that B(p), B(p
H

) > 0 and that B(p) is continuously differentiable

on p
H

< p < p. We will show that B(p) cannot be equal to 0. Suppose it is and that

there is a x such that B(x) = 0. We show that this implies that B′(x) > 0, which is

inconsistent with the fact that B(p), B(p
H

) > 0.

It is clear that B′(p) = αfL(p)(ΦL(p)− s)+ (1−α)fH(p)(ΦH(p)− s)+αF 2
L(p)+

(1−α)F 2
H(p). Using the fact that α(ΦL(x)−s) = −(1−α)FH(x)(ΦH(x)−s)/FL(x),

we can write

B′(x) = (1− α)

[
fH(x)− fL(x)

FH(x)

FL(x)

]
(ΦH(x)− s) + αF 2

L(x) + (1− α)F 2
H(x).

As fi(p) = 1
g(p)

(
ai

2(p−ci)2g(p)
− Fi(p)g′(p)

)
it follows that

B′(x) =
(1− α)

2g2(p)

[
aH

(p− cH)2
− aL

(p− cL)2

FH(x)

FL(x)

]
(ΦH(x)−s)+αF 2

L(x)+(1−α)F 2
H(x).

As FH(p)
FL(p)

< 1 and aH

(p−cH)2
> aL

(p−cL)2
it follows that all terms are positive and

B′(x) > 0.
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For the existence proof we also need that consumers prefer to buy as long as

β(p) = 1. The proof is a simple adaptation of a proof given by Dana (1994) that

in a reservation price equilibrium uninformed consumers strictly prefer to buy at all

prices in the support of the price distribution of the high cost firm that are strictly

smaller than the reservation price.

Lemma A.7. If β(p) = 1 on a certain interval [x, y] and uninformed consumers

weakly prefer buying to continuing searching at p = y, then these consumers strictly

prefer buying to continuing searching at p ∈ [x, y).

Proof. If β(p) = 1, then

fH(p)

fL(p)
=

(p− cH)2(p− cL)

(p− cL)2(p− cH)
.

This expression is decreasing in p. Thus, after observing a larger price, updating

beliefs results in uninformed consumers believing it is more likely that cost is high.

The expected pay-off of continuing to search is thus larger at larger prices. At the

same time, the pay-off of buying at a higher price decreases. Thus, if a consumer is

indifferent between the two options at p = x, then he must strictly prefer buying at

p < x.

We also need that along the equilibrium path we construct consumers prefer to

continue searching when β(p) = 0. This is, however, trivial, as β(p) = 0 only occurs

along the equilibrium path when ρL < p < p
H

, but in that case consumers infer that

it is only low cost firms that charge such prices, and non-shoppers prefer to search

on as these prices are above ρL.

In the proof of the Theorem, we use the fact that the system of differential

equations (5) and (3) has a unique solution. To this end, we prove in the next

Lemma that this is the case by applying the Pickard-Lindelof theorem.

Lemma A.8. The system of differential equations given by (3) and (5) with bound-

ary values Φi(p0), Fi(p0), β(p0), i = L, H such that

FL(p0)(ΦL(p0)− s) + (1− α)FH(p0)(ΦH(p0)− s) > 0
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β(p0) < 1

has a unique solution in a neighbourhood of p0.

Proof. To apply the Pickard-Lindelof theorem, we need to rewrite our system in

the form where the derivatives of certain functions are expressed as functions of

these functions themselves. We do this in the following way: we define a function

Φi(p) =
∫ p

p
Fi(p)dp, so that Φ

′
i(p) = Fi(p), and a function zi(p) =

∫ p

0
(1−λ)β(p)(p−ci)

(x−ci)2g(x)
dx,

so that z′i(p) = − (1−λ)β(p)(p−ci)
(p−ci)2g(p)

. Using these transformations, we can rewrite our

system as :

z′i(p) = −(1− λ)β(p)(p− ci)

(p− ci)2g(p)
, i = L, H;

Φ′
i(p) =

2g(p)− zi(p)

2g(p)
, i = L, H;

and

g′(p) =
α aL

2(p−cL)2g(p)
(ΦL(p)− s) + (1− α) aH

2(p−cH)2g(p)
(ΦH(p)− s)

α
(
1− zL(p)

2g(p)

)
(ΦL(p)− s) + (1− α)

(
1− zH(p)

2g(p)

)
(ΦH(p)− s)

=

−
α aL

(p−cL)2
(ΦL(p)− s) + (1− α) aH

(p−cH)2
(ΦH(p)− s)

α (zL(p)− 2g(p)) (ΦL(p)− s) + (1− α) (zH(p)− 2g(p)) (ΦH(p)− s)
,

whenever g(p) >
√

λ (β(p) < 1) and g′(p) = 0 if g(p) =
√

λ.

To apply the Pickard-Lindelof theorem, we need that the RHS of this system

of differential equations is Lipschitz-continuous with respect to (g, zi, Φi), i = L, H.

Denoting bi = − (1−λ)β(p)(p−ci)
(p−ci)2

, i = L, H, the derivatives of the vector-function

representing the RHS of the system of five differential equations for z′L, z′H , Φ′
L, Φ′

H , g′

with respect to g, zi, Φi is summarized in the matrix

∇ =



bL

g2 0 0 0 0

bH

g2 0 0 0 0

−2g(p)−zL

2g2 − 1
2g

0 0 0

−2g(p)−zH

2g2 0 − 1
2g

0 0

D1 D2 D3 D4 D5


,
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where

D1 =
2(αbL(ΦL − s) + (1− α)bH(ΦH − s))(α(ΦL − s) + (1− α)(ΦH − s))

[αzL(ΦL − s) + (1− α)zH(ΦH − s)− 2g(α(ΦL − s) + (1− α)(ΦH − s))]2

D2 = − α(ΦL − s)(αbL(ΦL − s) + (1− α)bH(ΦH − s))

[αzL(ΦL − s) + (1− α)zH(ΦH − s)− 2g(α(ΦL − s) + (1− α)(ΦH − s))]2

D3 = − (1− α)(ΦH − s)(αbL(ΦL − s) + (1− α)bH(ΦH − s))

[αzL(ΦL − s) + (1− α)zH(ΦH − s)− 2g(α(ΦL − s) + (1− α)(ΦH − s))]2

D4 =
(2bLg − 2bHg + bHzL − bLzH)α(1− α)(Φ1 − s)

[αzL(ΦL − s) + (1− α)zH(ΦH − s)− 2g(α(ΦL − s) + (1− α)(ΦH − s))]2

D5 = − (2bLg − 2bHg + bHzL − bLzH)α(1− α)(Φ1 − s)

[αzL(ΦL − s) + (1− α)zH(ΦH − s)− 2g(α(ΦL − s) + (1− α)(ΦH − s))]2

Due to our condition FL(p0)(ΦL(p0)− s) + (1− α)FH(p0)(ΦH(p0)− s) > 0

all Di’s are bounded and our vector-function is continuously differentiable. It is

known that if a function is continuously differentiable on [p
H

, p], then it is Lipschitz-

continuous on this interval.16 The statement of the Lemma then is an application

of the Pickard-Lindelof theorem.

We are now in the position to prove the existence theorem.

Theorem 1. An equilibrium satisfying the logic of D1 exists.

Proof. Fix some p > max(ρNU
L , cH + s), where ρNU

L is the standard Stahl reservation

price in case there is no ex ante cost uncertainty and cost is known to be low.

We show that for any p all equilibrium conditions except
∫ p

p
H

FH(p)dp = s can be

satisfied. Then we show, that this last condition always can be satisfied by the

appropriate choice of p.

As p > ρNU
L consumers can be indifferent after observing p and therefore there

is a β ≡ β(p) < 1 with β′(p) = −β(p − cL). For any such β < 1 let β(p), FL(p)

and FH(p) be defined in the usual way with FL(p) = FH(p) = 1. That is, for any

16Proof of this statement can be found on this web-page:

http://unapologetic.wordpress.com/2011/05/04/continuously-differentiable-functions-are-locally-

lipschitz/
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p in the support of the mixed strategy distribution, firms make the same profits

and consumers are indifferent between buying and continuing to search whenever

0 < β(p) < 1. Each β defines its own function β(p). We use the notation β(p; β)

when we want to make explicit that the function β(p) depends on the choice of β.

From Lemmas A.4, A.5 and A.6 it follows that the conditions of Lemma A.8 are

satisfied for any p at which a consumer is indifferent. Thus, for any β1 6= β2 it must

be the case that β(p, β1) 6= β(p, β2). For some choices of β it may well be the case

that there is p′ ∈ (p
H

, p) such that β(p′, β) = 1. Denote p̃ = sup p′.

Claim 1. We claim that there is such a β0 that FL and FH are solutions to

the equal profit condition for firms and either (i) p̃ exists and β′(p̃, β0) = 0 or (ii)

β′(p
H

, β0) < 0 with β(p
H

, β0) = 1, where β(p, β0) is the solution to the indifference

condition of consumers.

We prove this claim in two steps.

Claim 2. There is a β1 (small enough) such that the equal profit conditions

are satisfied and the solution to the indifference condition of consumers is such that

β(p, β1) < 1 for all p ∈ (p
H

, p].

Suppose, that this is not the case, and for any choice of β1 there is such p0 ∈

(p
H

, p) that β(p0, β1) = 1. Then, πL(p0) ≥ 1−λ
2

(p0 − cL) > 1−λ
2

(cH − cL). On the

other hand πL(p) = 1−λ
2

β1(p− cL). Therefore, there is such β1 that πL(p0) > πL(p)

which cannot be the case in equilibrium. Thus the claim is correct.

Claim 3. There is β2 (large enough) such that equal profit conditions are

satisfied and the solution of the indifference condition of consumers is such that p̃

exists.

Indeed, since β(p, 1) = 1, β′(p, 1) < 1 (see Proposition 3) and β is continuously

differentiable in both arguments, β2 always exists.

Now, we show that claim 1 follows from claims 2 and 3. Let β0 be the smallest

β such that a p0 ∈ [p
H

, p] exists with β(p0, β0)=1. If p0 = p
H

then (ii) holds. If not,

then p̃ = sup p0 and since β(·, ·) is continuously differentiable in both arguments we

obtain β′(p̃, β0) = 0.

Now we analyze these two cases sequentially. First, suppose (i) holds. Note, that
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the condition imposed by Lemma 2 is automatically satisfied for this β0.

Suppose it is the case that if we define β(p, β0) = 1 ∀p < p̃ the reservation price

for the low cost difference implicitly defined by equation (6) yields as a solution that

ρL ≥ p
H

. In this case all the equilibrium conditions are satisfied.

Now, suppose that if β(p, β0) = 1 ∀p < p̃ we get that ρL < p
H

. This β0 does

not satisfy the equilibrium requirements, since it needs to be the case that β(p) = 0

for all p ∈ (ρL, p
H

). In this case we construct a solution with a gap in the low-cost

distribution FL(p). In order to do so we choose some p̂ ∈ [p
H

, p̃], and construct a

solution with β(p) < 1,∀p ∈ [p
H

, p̂) and β(p) = 1,∀p ∈ [p̂, p̃] using FL(p̂), FH(p̂)

obtained as solutions on p ∈ [p̂, p] as boundary values (which we can always do due

to Lemma A.8). Define p∗ ≤ p
H

as in the beginning of the Appendix.

Note, that limp̂↓p
H

p∗ = p
H

implies there exists a p̂ such that p∗ > ρL. From

Lemmas A.4 and A.5 it follows that for any p ∈ [p
H

, p̂) β′(p) > 0. Together with

Lemma A.8 this implies that β(p
H

) is decreasing in p̂. Thus, either (a) we can find

a p̂ ∈ [p
H

, p̃] such that p∗ = ρL and all the equilibrium conditions are satisfied, or

(b) p∗ > ρL for all p̂ ∈ [p
H

, p̃], or (c) β(p) = 0 for some p > p
H

.

First deal with case (b) and consider the set β < β0. Note that for any such β we

have β(p, β) < 1,∀p ∈ [p
H

, p] and that πL(p) = 1−λ
2

β(p− cL). Thus, limβ→0 πL(p) =

0 ⇒ limβ→0 p∗ = cL. However, ρL ≥ cL + s. Since β(·, ·) is continuous in both

arguments, and for β0 p∗ > ρL there must be β1 such that p∗ = ρL. This is the

equilibrium if β(p) > 0 for all p > p
H

.

Now, suppose that we have case (c), possibly in combination with case (b), or

even (a) and β is such that β(p, β) = 0 for some p ∈ [p
H

, p]. Denote β0 as the

upper bound such that β(p
H

, β0) = 0. We show that it is possible to construct an

equilibrium such that β(p, β0) = 0 for all p ∈ (ρL, p
H

] and p∗ = ρL. We construct an

equilibrium where low-cost firms still choose prices in a left region of pH , [p′, p
H

]. In

this region consumers search with probability one, and the profit function is defined

by

πL(p) =

(
1 + λ

2
(1− FL(p) +

1− λ

2

∫ p

p

(1− β(p̃))f(p̃)dp̃

)
(p− cL)
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Note, that for any choice of p′ it must be the case that p∗ < p′. However,

by choosing p′ sufficiently low, FL(p′) can be chosen arbitrary close of zero, which

implies that ρL is arbitrary large since
∫ ρL

p
FL(p)dp = s. Therefore, there is such a

p′ that p∗ = ρL, which completes the proof of case (i) for fixed p.

Consider then briefly case (ii) where β′(p
H

, β0) < 0 with β(p
H

, β0) = 1. If the

reservation price for the low cost distribution implicitly defined by equation (7)

yields as a solution that ρL ≥ p
H

all the equilibrium conditions are satisfied. If not,

then we can proceed as in the two cases (b) and (c) analyed above, and show along

the same lines that an equilibrium exists.

We have now proved that for any fixed p > max(cH + s, ρNU
L ) we can satisfy

all equilibrium conditions apart from the fact that in equilibrium we should have∫ p

p
H

FH(p) = s. We now prove that we can always choose p such that this indifference

condition is also satisfied. To do so, we first realize that if cH > cL we have

lim
p↓ρNU

L

∫ p

p
H

FH(p)dp < s.

We next show that for p large enough, the other equilibrium conditions can only be

satisfied if ∫ p

p
H

FH(p)dp > s.

As
∫ p

p
H

FH(p)dp is continuous in p it follows then that there must be a p such that∫ p

p
H

FH(p)dp = s.Thus, the only thing to be proved is that for p large enough,∫ p

p
H

FH(p)dp > s. To this end, it follows from

π(p|cH) =
1− λ

2
(1− β(p))(p− cH) <

1− λ

2
(p− cH)

and

π(p
H
|cH) >

1 + λ

2
(p

H
− cH)

and the fact that a firm has to be indifferent between charging the upper and lower

bound of the price distribution that

p− p
H

>
2λ

1 + λ
(p− cH). (16)
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Thus, the support of the mixed strategy distribution grows without bound when p

becomes larger. Suppose then that
∫ p

p
H

FH(p)dp < s even for large p. This would

imply that for all ε > 0 there exist a large p such that FH(
p+p

H

2
) < ε. Let us then

consider the profit a firm makes when setting prices p
H

and [p + p
H

]/2 :

π(p
H
|cH) =

[
1 + λ

2
+

1− λ

2

(∫ p+p
H

2

p
H

(1− β(p̃))fi(p̃)dp̃ +

∫ p

p+p
H

2

(1− β(p̃))fi(p̃)dp̃

)]
(p

H
− cH),

and

π

(
p + p

H

2
|cH

)
=

[
1 + λ

2
−
[
λ +

1− λ

2
(1− β(

p + p
H

2
))

]
FH

(
p + p

H

2

)
+

1− λ

2

∫ p

p+p
H

2

(1− β(p̃))fi(p̃)dp̃

](
p + p

H

2
− cH

)
.

As by choosing p we can make FH

(
p+p

H

2

)
arbitrarily small and as 1− β(p̃) < 1,

it is clear that

π(p
H
|cH) <

[
1 + λ

2
+

1− λ

2
FH

(
p + p

H

2

)
+

1− λ

2

∫ p

p+p
H

2

(1− β(p̃))fi(p̃)dp̃

]
(p

H
−cH),

so that

π

(
p + p

H

2
|cH

)
− π(p

H
|cH) >[

1 + λ

2
+

1− λ

2

∫ p

p/2

(1− β(p̃))fi(p̃)dp̃− 1− λ

2
FH

(
p + p

H

2

)]
p− p

H

2
−

λFH

(
p + p

H

2

)(
p + p

H

2
− cH

)
.

using (16) it follows that

π

(
p + p

H

2
|cH

)
− π(p

H
|cH) >{[

1 + λ

2
+

1− λ

2

∫ p

p/2

(1− β(p̃))fi(p̃)dp̃− 1− λ

2
FH(

p + p
H

2
)

]
λ

1 + λ
−

λFH(
p + p

H

2
)

}
(p− cH),
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which is clearly positive for large p. This implies that for large p a high cost firm can-

not be indifferent over the whole support of the price distribution if
∫ p

p
H

FH(p)dp < s.

Finally, Lemmas A.1 and A.2 guarantee that the distribution functions are well-

defined. This completes the proof.
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