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Abstract. Iterated admissibility, i.e. the iterated deletion of weakly dom-
inated strategies, is an important and extensively applied solution concept for
complete information games. To understand when it is the appropriate one,
conditions under which players want to avoid strategies that are weakly dom-
inated in some reduced game along the procedure (although possibly not in
the �nal set!) must be provided. It is intuitive that these conditions have to
incorporate some cautious attitude of the players. Yet, to what extent players
are cautious and assume that opponents are must be carefully de�ned in or-
der to provide a correct motivation for iterated admissibility. Brandenburger,
Friedenberg and Keisler (ECMA, 2008) de�ne a notion of rationality, including
a full-support requirement for lexicographic beliefs, which delivers iterated ad-
missibility when players adopt it, assume (to a de�ned extent) that opponents
adopt it, and so on, up to some �nite level. This notion of rationality cannot
be commonly assumed in their sense by players unless heavy exogenous re-
strictions to beliefs apply. Here, we provide meaningful but weaker notions of
cautiousness and assumption such that cautious rationality can be commonly
assumed by players and iterated admissibility is captured.
Keywords: iterated admissibility, weak dominance, lexicographic proba-

bility systems, assumption, rationality, cautiousness

1 Introduction

Iterated admissibility, coinciding with the iterated deletion of weakly dominated strategies,
is among the most succesful solution concepts for complete information games. First, it
does not rely on any exogenous equilibrium motivation: Players can perform it from scratch
through nothing else than their strategic reasoning. Second, it re�ects an intuitively

�Working paper. We want to thank Adam Brandenburger, Amanda Friedenberg and Jerome Keisler for
inspiring this work. A special thank to Pierpaolo Battigalli for precious discussions and suggestions about
our work. Thanks also to Edward Green, Byung Soo Lee and Burkhard Schipper for their comments.

yICEF, Higher School of Economics, Moscow, emiliano.catonini@gmail.com
zBocconi University, nicodemo.devito@unibocconi.it

1



reasonable behavior: A strategy is not chosen when there is another one that, when it
makes a di¤erence, can only do better.1 Yet, if we exclude some opponents� strategies
with the same motivation, how our strategies perform against them should in principle
not matter, and as Samuelson [13] pointed out a tension emerges. Stahl [14] already
noticed that lexicographic beliefs [5], i.e lists of conjectures in a priority order, can solve
this tension. Having di¤erent conjectures at uncomparable levels of likelihood allows
to disregard some scenarios in the �rst place, yet using them as "tie-breakers" if her
primary conjecture leaves the player undecided about what to do. Therefore, the focus
then shifted to identify the principles that shape the right lexicographic beliefs, which
inform the strategic reasoning of players who choose iteratively admissible strategies.

Brandenburger, Friedenberg and Keisler [6] (henceforth BFK), to whom this work is
much indebted, de�ne notions of rationality and assumption that, opportunely combined,
deliver the iteratively admissible strategies (in a �nite game). First, they incorporate in
rationality a full support requirement, which we will call "open-mindedness": Players put
every possible state of world (including opponents�types, i.e. opponents�beliefs) in the
joint support of their lexicographic probability system2 (henceforth LPS). Second, they
set that an event is assumed by a LPS if every part3 of the event is deemed as in�nitely
more likely than every part of the complementary event. Then, the Authors show an
impossibility result: In a rich enough type structure (complete and continuous), players
are unable to commonly assume rationality, i.e. the corresponding event is empty. The
impossibility ceases to hold for poorer type structures, but this means imposing exogenous
restrictions to the hierarchies of beliefs, which could �nd no justi�cation in the context at
hand. Now, suppose that players are willing to assume that everyone is rational; assume
that everyone is rational and assumes that everyone else is rational; and so on. But if
common assumption of rationality is impossible, at some point players must start having
doubts. Why should they? This puzzling result has inspired other papers. Keisler and
Lee [10] show the existence of complete type structures with discontinuous belief maps
where the impossibility ceases to hold. Heifetz, Meier and Schipper [9] take a more radical
way out by changing the solution concept.4

The aim of this paper instead is to characterize epistemically precisely iterated ad-
missibility, while obtaining a non-empty "cautious rationality and common assumption of
cautious rationality" event in a rich type structure, through di¤erent but meaningful no-
tions of caution and assumption, and independently of the topology on the type structure.5

Consequentialist players do not bother to put in the support of their LPS every possible
belief of the opponents; nor they focus on every part of an event when they want to assume

1Moreover, in dynamic games without relevant ties among payo¤s, iterated admissibility operationalizes
extensive form rationalizability ([12] and [4]). Yet, the analysis of the extensive form solution concept is
required to understand the epistemic motivations: see [4].

2Their notion of lexicographic probability system di¤ers from the one in Blume, Brandenburger and
Dekel [5], in that it requires mutual singularity.

3 Intersection between any open set and the event.
4Also Asheim and Dufwemberg [1] de�ned a solution concept (fully admissible sets) that captures a

form of cautiousness and full belief in rationality and that does not re�ne, nor is re�ned, by iterated
admissibility. Barelli and Galanis [2] instead, characterize iterated admissibility with tie-breaking sets
instead of lexicographic beliefs.

5A topology will be needed only to construct a Borel sigma-algebra of events.
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it. Yet, if cautious, they care about considering all opponents�strategies as possible to
some extent; coherently, when they assume an event, they consider each relevant com-
ponent of the event (characterized by a particular payo¤ implication) as in�nitely more
likely than each component of the complementary event. Cautiousness is invariant to the
type structure topology and �nds an explicit correspondence in hierarchies: full support
of �rst-order beliefs. In our view, instead, the interpretation of open-mindedness is more
problematic: paradoxically it can be obtained even putting probability zero on the most
relevant event, the open-mindedness of the opponents (see the Discussion).6 Our notion
of assumption is invariant to the type structure topology too and still has a meaningful
preference-based representation (provided in the Appendix).

As a type structure, we adopt the mutually singular canonical one developed by
Catonini and De Vito [7] (henceforth CDV). The canonical type structure allows to rep-
resent all meaningful hierarchies of lexicographic beliefs about strategies, so that no ex-
ogenous restriction is super-imposed and the states of interest will be entirely identi�ed
by the conceptually relevant events. Such type structure is complete, continuous and mu-
tually singular, and it allows to compare results and identify the di¤erences with BFK.
Moreover, mutual singularity requires each measure of the LPS to represent the player�s
hypothesis conditional on the fact that the preceding ones do not realize, consistently with
the preference-based representation of assumption we provide.

2 Cautiousness, assumption and iterated admissibility

2.1 Preliminaries

For every Polish space X, let M(X) denote the set of Borel probability measures on
it. Let Nk(X) := (M(X))k and N (X) := [k2NNk(X) denote the sets of lenght k and
any-lenght lexicographic beliefs. Moreover, let Lk(X) � Nk(X) and L(X) = [k2NLk(X)
denote the sets of lenght k and any-lenght LPS�s, i.e. the lexicographic beliefs � =
(�1; :::; �k) satisfying mutual singularity : There exist Borel sets E1; :::; Ek in X such that
for every p � k, �p(Ep) = 1 and �p(Eq) = 0 for q 6= p. Finally, let N+(X) � N (X) and
L+(X) � L(X) denote the sets of full-support lexicographic beliefs and LPS�s, i.e. such
that [k2NSupp�k = X

For any � = (�1; :::; �k) 2 Nk(X�Y ), we denote bymargY � := (margY �1; :::;margY �k)
the marginal lexicographic belief over the subspace Y .

Consider the strategic form of a �nite complete information game hI; (Si; ui)i2Ii, where
I is the �nite set of players and, for every i 2 I, Si is the �nite set of strategies and
ui : S ! R is the payo¤ function. For all pro�les of sets (Xi)i2I we will denote by X�i the
cartesian product over all players but i, and by X the cartesian product over all players.
De�ne the expected payo¤ function �i :M(Si)�M(S�i)! R in the usual way. A pure
strategy si or a pure opponents�subpro�le of strategies s�i as argument of �i will indicate
the probability distribution putting probability 1 on it.

6The intuitive interpretation of open-mindedness is rescued in BFK by the de�nition of assumption,
according to which players to put positive probability on every part of the rationality event if they assume
it. The use of open-mindedness with our notion of assumption, instead, would remain misleading.
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The tuple T = hSi; Ti; �iii2I is a lexicographic type structure [6] if, for every i 2 I,
Ti is a Polish type space and �i : Ti ! L(T�i � S�i) is the measurable belief map that
associates each type with a LPS over opponents� strategies and types. A lexicographic
type structure is complete if each �i is onto; it is continuous if each �i is continuous. Each
cartesian product of sets is endowed with the product topology and a Borel �-algebra of
events. Given any two type structures T = hSi; Ti; �iii2I and T 0 = hSi; T 0i ; �0iii2I , a type
morphism between them, if it exists, is measurable map � = (� i : Ti ! T 0i )i2I such that
for every i 2 I, ti 2 Ti and measurable E � S�i � T�i, �i(ti)(E) = �0i(� i(ti))(� i(E)),
where � i : (si; ti) 7! (si; � i(ti)).

2.2 Iterated admissibility

Iterated admissibility is a reduction procedure of the set of strategy pro�les that relies on
the admissibility criterion.

De�nition 1 Fix a cartesian set Xi�X�i � Si�S�i. A strategy si 2 Xi is admissible
with respect to Xi � X�i if there exists �i 2 M(S�i) such that Supp�i = X�i and
�i(si; �i) � �i(s0i; �i) for every s0i 2 Xi.

The iteration of admissibility delivers a chain of cartesian subsets of strategy pro�les
S0 = S; S1; S2; ::: such that for every i 2 I, si 2 Si and n 2 N, si 2 Sni if and only if
si 2 Sn�1i and it is admissible with respect to Sn�1i � Sn�1�i .

In a �nite game, for every n 2 N, Sn is non-empty and there exists M 2 N such
that Sn = SM for all n � M . A standard result due to Pearce [12] allows to claim
that a strategy si 2 Xi is admissible with respect to Xi�X�i if and only it is not weakly
dominated over Xi�X�i. Thus, iterated admissibility coincides with the iterated deletion
of weakly dominated strategies.

As already argued, looking at mere, fully mixed conjectures may wrongly justify the
choice of an iteratively inadmissible strategy: For a player i there may be strategies that
are not weakly dominated over SM and yet do not belong to SMi . The reason is that a
player who performs iterated admissibility wants to avoid also strategies that are weakly
dominated over some previous set of the chain. Thus, she considers every opponents�
subpro�le in that set still possible to some extent. Yet, the ones that do not survive the
following step must not be considered nearly as likely as the ones that do, otherwise we
would run the opposite risk of rescuing strategies that are weakly dominated over SM .
Hence, we need lists of conjectures at uncomparable levels of likelihood. These lists are
nothing else than lexicographic beliefs over opponents�strategy subpro�les, which we call
lexicographic conjectures. One cannot impose them to be mutually singular, otherwise
some iteratively admissible strategy that are never the only best reply to conjectures over
SM�i may �nd no justi�cation (see the original example of [3] in BFK).

With respect to lexicographic conjectures, we take the standard de�nition of lexico-
graphic best reply. For any two vectors x; y 2 Rk, we write x �L y if either xp = yp for
every p � k or there exists q � k such that xq > yq and xp = yp for every p < q.
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De�nition 2 Consider a player i 2 I and a lexicographic conjecture � 2 N (S�i). A
strategy si 2 Si is a lexicographic best reply to �i = (�1i ; :::; �

k
i ) if for every s

0
i 6= si,

(�i(si; �
p
i ))

k
p=1 �L (�i(s0i; �

p
i ))

k
p=1.

That is, a strategy is optimal against a lexicographic conjecture if it defeats each other
strategy before (along the list) the opposite occurs (or if they are equivalent against all
conjectures of the list). This optimality notion is the starting point of our construction.

2.3 Rationality and cautiousness

Fix any lexicographic type structure T = hSi; Ti; �iii2I . We are primarily interested in
strategy-type pairs where each player plays a lexicographic best reply to her lexicographic
conjecture.

De�nition 3 A strategy-type pair (si; ti) 2 Si�Ti is rational if si is a lexicographic best
reply to margS�i�i(ti) 2 N (S�i). We denote by Ri the set of all rational (si; ti) 2 Si�Ti.

Cautiousness instead is a property of the type alone. A cautious type deems all oppo-
nents�strategies as possible to some extent.

De�nition 4 A type ti 2 Ti is cautious if margS�i�i(ti) 2 N
+ (S�i). We denote by Ci

the set of all (si; ti) 2 Si � Ti where ti is cautious.

In terms of induced hierarchies, cautiousness corresponds to having a full-support �rst-
order belief. Moreover, cautiousness is invariant to the type structure topology and to type
morphisms in the following strong sense: A cautious type in the original type structure is
mapped into a cautious type in the destination structure by a type morphism.

In BFK, a strategy-type pair (si; ti) is rational only if �i(ti) has full support (other than
si being a lexicographic best reply to margS�i�i(ti)). We call this di¤erent full-support
property "open-mindedness" to distinguish it from cautiousness.

De�nition 5 A type ti 2 Ti is open-minded if �i(ti) 2 L+(T�i � S�i).

In terms of hierarchies, open-mindedness guarantees full-support of �rst-order beliefs
too; full support of higher-order beliefs depends on the type structure.7 Instead, open-
mindedness does no have the same invariance properties of cautiousness with respect to
topology and type morphisms.

Overall, open-mindedness is clearly stronger than cautiousness: full-support of the
entire LPS implies full support of the marginal LPS, but the vice versa is not true. So, an
open-minded type is cautious but a cautious type needs not be open-minded. Yet, cautious
rationality is still a su¢ cient condition for admissibility. Therefore we can provide the
following weakening of the analogous result in BFK.

7We conjecture that also in a complete but not continuous type structure, open-mindedness does not
imply full support of all orders of belief in the induced hierarchy. The type structure of [10] could be a
case in point. See CDV for details.
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Proposition 1 Fix a type structure T = hSi; Ti; �iii2I . If strategy-type pair (si; ti) 2
Si � Ti is cautiously rational, then si is admissible.

Proof: If (si; ti) 2 Si � Ti is cautiously rational, then si is a lexicographic best reply
to margS�i�i(ti) 2 N

+(S�i), where �i(ti) = (�
1
i ; :::; �

k
i ) 2 L(S�i � T�i). By Proposition

1 in [5], to every margS�i(�
1
i ; :::; �

k
i ) 2 N+ (S�i) there corresponds a probability measure

�i 2M (S�i), with Supp�i = S�i, such that �i(si; �i) � �i(s0i; �i) for every s0i 2 Si. �
We denote by R1i := Ri \ Ci the set of cautiously rational strategy-type pairs;

Cautious rationality, R1, will be the �rst building block of our epistemic characterization
of iterated admissibility, capturing the �rst step.

2.4 Assumption

To capture the further iterations of admissibility, we need to de�ne the events that identify
and motivate the right lexicographic conjectures over opponents�behavior. These events
will be based on the concept of assumption. When a player assumes an event E, she should
not completely rule out the possibility that the complement of E occurs. Yet, she must
consider E in�nitely more likely than its complement. This translates �rst into E having
probability 1 up to some measure of the LPS and 0 thereafter. But this is not enough.
In BFK it is required that every part of the event (intersection between an open set and
the event) is given positive probability by some measure in the LPS. Here we only require
that every "relevant part" (intersection between a strategy-based cylinder and the event)
is given positive probability by some measure in the LPS. This implies that a player, when
assuming an event, gives a positive probability to every payo¤-relevant component of the
event and deems it in�nitely more likely than the complementary event.

De�nition 6 A LPS �i = (�1i ; :::; �
k
i ) 2 L(S�i � T�i) assumes an event E � S�i � T�i

at level l � k if:

1. �qi (E) = 1 for every q � l;

2. �qi (E) = 0 for every q > l;

3. for every cylinder Y = fs�ig � T�i, if Y \ E 6= ;, then �pi (Y \ E) > 0 for some
p � k.

On the other hand, �i assumes E à la BFK if 1 and 2 hold and 3 holds for every
open Y � S�i � T�i. In BFK, this is not exactly the de�nition of assumption but a
characterization, which they then use as a working de�nition. We chose to take directly a
de�nition of this kind for our notion of assumption because, like in BFK, it is the one that
can be easily given a preference-based representation, which we expose in the Appendix.
The gist of it is the following: If i assumes the event E, she prefers to bet on the realization
of any relevant part in E (i.e. a part of E that can be distinguished by its observable
implication) rather than on the complement of E.

It is straightforward to notice that our notion of assumption is weaker than the one in
BFK: If a LPS assumes an event E in BFK, it also assumes E here because cylinders are
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open sets. Clearly the vice versa is not true. Yet, it is interesting to notice that if �i is
open-minded and E is open, the two notions coincide: Every part of E is an intersection
between two open sets, so it is open, so by full support is given positive probability by
some measure of the LPS like assumption a la BFK requires.

Proposition 2 If �i 2 L(S�i�T�i) assumes E à la BFK, then �i assumes E. Conversely,
suppose that �i has full-support and E is open. Then, if �i assumes E, �i assumes E à
la BFK.

Our notion of assumption has a very convenient property: invariance with respect to
the topology of the type structure (keeping the same sigma-algebra). As Keisler and Lee
[10] show, instead, there exist di¤erent topologies on the type structure that generate the
same Borel sigma-algebra where one can �nd types whose LPS displays common BFK-
assumption of rationality, which is impossible with the topology that makes the belief
maps continuous. Interestingly, this is also connected to the equivalence with our notion
of assumption, as shown later in the Discussion.

We �nally de�ne the corresponding operator Ai, which takes an event E � S�i � T�i
and yields the set of strategy-type pairs that assume E. The operator is non-monotonic:
If F � E, it needs not be the case that Ai(F ) � Ai(E). Otherwise, assumption would
not be suitable to characterize iterated admissibility: as already observed, in a reduced
game along the procedure, previously eliminated strategies may be not weakly dominated
anymore.

2.5 Common assumption of cautious rationality

In this section, we adopt the mutually singular canonical type structure T �u = hSi;�i; giii2I
developed by CDV, because it features some fundamental properties for our purposes.
First, it is mutually singular, complete and continuous, making results comparable with
BFK. Second and most importanlty, as CDV prove, it is terminal with respect to every
structure T = hSi; Ti; �iii2I where each type induces a mutually singular hierarchy.8 Fo-
cusing on a two-players game for notational simplicity, the hierarchy induced by a type ti
is the sequence hi(ti) = (b1i (ti); b

2
i (ti); :::) where b

1
i = margS�i�i(ti), b

2
i 2 N (S�i �N (Si))

is the level-by-level pushforward of �i(ti) on S�i � M(Si) through f : (s�i; t�i) 7!
(s�i; ��i(t�i)), and so on. For our purposes we will not need to induce beliefs beyond
the second order. The hierarchy is mutually singular if for some m 2 N, bmi (ti) is a LPS.
Terminality means that there exists a type morphism between every such T and T �u . In
words, T can be embedded in T �u as a belief-closed subspace.

8As Lee [11] noticed, mutual singularity can be just "cosmetic" when putting probability on di¤erent
types at di¤erent levels does not mean putting probability on di¤erent opponents� hierarchies, because
of possible redundancies. For this reason, mutual singularity of the type structure is not su¢ cient for
the existence of a type morphism in the canonical one. Mutual singularity of the hierarchy induced by
each type, instead, is su¢ cient for common belief in mutual singularity (and coherence) of the hierarchies.
Such hierarchies are exactly those captured by the ones captured by the mutually singular canonical type
structure (see CDV).
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In the canonical type structure, we can de�ne the cautious rationality and m�th or-
der assumption of cautious rationality, as well as the cautious rationality and common
assumption of rationality events9 inductively as follows:

Rm+1i : = Rmi \ (Ai(Rm�i)), 8m � 1;
R1 : = \m2NRm:

The behavioral implications of the �rst events correspond step-by-step to the iter-
atively admissible strategy pro�les. The last event is non-empty too and its behavioral
implications coincide with the �nal set of the iterated admissibility procedure. These facts
are summarized in the following characterization theorem.

Theorem 1 In the canonical mutually singular type structure, for every n � 1, Sn =
ProjSR

n. Moreover, SM = ProjSR
1:

The strategy of the proof is the following. We construct a �nite mutually singulare
type structure with both uncautious and cautious types. To the cautious types we attach
LPS�s that justify playing the admissible strategies and will display assumption of cautious
rationality up to di¤erent orders, or common assumption of cautious rationality. We obtain
the latter by letting a subset of cautious types that can rationally play the iteratively
admissible strategies "believe in each other" in their primary hypothesis. Then, we embed
this structure into the mutually singular canonical one, exploiting its terminality property.
Cautious rationality is preserved by the type morphism and types are constructed in such
a way to assume the orders of cautious rationality they have been intended for in the
canonical type structure.

Proof: For every n � M + 1; i 2 I and si 2 Sni , take a �nsi 2 M(Sn�1�i ) such that
Supp�nsi = S

n�1
�i and for every s0i 2 Si, �i(si; �nsi) � �i(s

0
i; �

n
si).

Now we build the �nite type structure that we will embed in the canonical one. For
every i 2 I and 0 � n �M+1, create a set of types Tni =

�
tnsi
	
si2Sni

. Let Ti := [n�M+1T
n
i .

For every i 2 I, de�ne a belief map �i : Ti ! L(S�i � T�i) by the following inductive
procedure.

� For every si 2 Si, take a �sii 2M(S�i � T�i) such that SuppmargS�i�
si
i 6= S�i. Let

�i(t
0
si) := (�

si
i ).

� For every si 2 S1i , take a �
si
i 2 M(S�i � T 0�i) such that margS�i�

si
i = �1si . Let

�i(t
1
si) := (�

si
i ).

� For every 1 < n �M and si 2 Sni , take the �i 2M(S�i�Tn�1�i ) such that for every
s�i 2 Sn�1�i , �i((s�i; t

n�1
s�i )) = �

n
si(s�i). Let �i(t

n
si) := (�i; �i(t

n�1
si )).

� For every si 2 SM+1
i , take the �i 2M(S�i�TM+1

�i ) such that for every s�i 2 SM+1
�i ,

�i((s�i; t
M+1
s�i )) = �

M+1
si (s�i). Let �i(t

M+1
si ) := (�i; �i(t

M�1
si )):

9We prove in the Appendix that all the sets we use are events.
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Notice that for every i 2 I and ti 2 Ti, ti is cautious by marginal full support of the
last measure in �i(ti), and �i(ti) is mutually singular by disjoint supports. Moreover,
b2i (ti) = (�1; :::; �k) is mutually singular: notice that for every p < k, �p puts positive
probability only on opponents��rst-order beliefs of lenght k�p; morever, �k and �k�1 put
positive probability only respectively on non full-support and full-support opponents��rst-
order beliefs. Hence, the structure can be embedded in the mutually singular canonical
type structure T �u = hSi;�i; giii2I . Keep the same labelling for types after the embedding.
Then, with a slight abuse of notation, we can write that for every i 2 I and ti 2 Ti,
�i(ti) = gi(ti).

First, we prove by induction that for every i 2 I, n � M and si 2 Sni , (si; tnsi) 2
Rni nRn+1i , which implies Sni � ProjSiR

n
i .

� Inductive hypothesis (n � 1 � M): For every i 2 I, m � n � 1 and si 2 Smi ,
(si; t

m
si ) 2 R

m
i nRm+1i .

� Basis step (n = 1). For every i 2 I and si 2 Si, t0si 62 R1i because t
0
si is not

cautious. Hence, for every si 2 S1i , gi(t1si) puts probability 0 on R
1
�i, but gi(t

1
si) is

cautious and has si as a lexicographic best reply, so (si; t1si) 2 R
1
i nR2i .

� Inductive step (n � M). Take any i 2 I and si 2 Sni . By the inductive
hypothesis, the measures in gi(tnsi) = (�1i ; :::; �

n
i ) have supports in, respectively,

Rn�1�i nRn�i; :::; (S�i��i)nR1�i. Moreover, SuppmargS�i�
m
i = S

n�m
�i for every m < n.

Therefore, gi(tnsi) assumes R
m
�i at level n �m, so (si; tnsi) 2 R

n
i . Yet, since �

1
i puts

probability 0 on Rn�i, (si; t
n
si) 62 R

n+1
i .

In a similar way,10 for every i 2 I, si 2 SM+1
i and m � M , gi(tM+1

si ) = (�1i ; :::; �
M
i )

assumes Rm�i (at level M �m), so that (si; tM+1
i ) 2 RM+1

i . But then, Supp�1i � RM+1
�i

and SuppmargS�i�
1
i = S

M+1
�i , so gi(tM+1

si ) assumes also RM+1
�i . Hence, (si; tM+1

si ) 2 RM+2
i .

By induction, it is immediate to show that then for every n 2 N, gi(tM+1
si ) assumes Rn�i.

Hence, (si; tM+1
si ) 2 R1i and SMi = SM+1

i � ProjSiR
1
i .

For the opposite inclusion, take as inductive hypothesis that Sn � ProjSR
n, that

together with the opposite inclusion already proved implies Sn = ProjSR
n.

Take any (si; ti) 2 Rni � Rn�1i . Notice that si is a lexicographic best reply to the
lexicographic conjecture margS�igi(ti) = (�

1
i ; :::; �

k
i ), where, if n > 1, gi(ti) assumes R

n�1

at some level l � k; if n = 1, set l = k. By the inductive hypothesis, it follows that
si 2 Sn�1i , for every i 2 I. Hence it is enough to show the existence of a probability
measure �i 2 M(S�i) such that Supp�i = Sn�1�i and �i(si; �i) � �i(s

0
i; �i) for every

s0i 2 Sn�1i . If si is indi¤erent to all s0i against the �rst l conjectures, si is a best reply to any
convex combination �i := �1�1i+:::+�l�

l
i, and since by the third requirement of assumption

10Notice that, since pairs of the kind (s�i; tM+1
s�i ) appear in the �rst measure of gi(t

M+1
si ), one can show

that tM+1
si assumes Rn�i only provided that (s�i; t

M+1
�i ) 2 Rn�i, for every s�i 2 SM+1

�i . The inductive
procedure can start because for every j 2 I, (sj ; tM+1

sj ) 2 R1j .
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Supp�i = S
n�1
�i , si 2 Sni . Else, let d be the minimum positive value �i(si; �

q
i )� �i(s0i; �

q
i )

over s0i 2 Si and q � l. Then, si is a best reply to any convex combination �i :=
�1�

1
i + :::+�l�

l
i such that for every p < l, �p+1 � l � (max

s2S
�i(s)�min

s2S
�i(s)) � �p � d. Since

Supp�i = S
n�1
�i , then si 2 Sni .

Moreover, since SM � ProjSRM � ProjSR1, it holds SM � ProjSR1. �

3 Discussion

Two natural questions may arise at this point. First: What drives the non-emptiness of
the common assumption of cautious rationality event with respect to BFK�s emptiness
result? The new notion of assumption, the switch from open-mindedness to cautiousness,
or both? Second: Does the non-emptiness hold in every complete and continuous type
structures like BFK�s emptiness?

We have a sharp answer to the �rst question: the new notion of assumption alone. The
key is that our notion of assumption allows to assume at the same level of an LPS nested
events whenever they have the same behavioral implications.11 One may think that this is
impossible with open-mindedness in place of cautiousness: the intuitive understanding of
full support leads to think that, for instance, the event12 "my opponent is open-minded and
rational but does not assume I am open-minded and rational" must be assigned positive
probability. In that case, it would not be possible to assume open-minded rationality
and assumption of open-minded rationality at the same level. But that is not the case.
Even the whole event "my opponent is open-minded" can be assigned probability zero
by a full support measure over the opponent�s type structure. The crucial point is the
following: The event that the opponent is open-minded is "thin", i.e. the event that she
is not open-minded is dense. As we prove in the Appendix, the set of non-full support
measures on a space is dense in the set of all measures and the statement can be extended
to LPS�s; then, being the belief map a homeomorphism, the denseness is transfered to
non-openminded types.13 Hence, for a LPS to have full support, it is su¢ cient that one
measure puts positive probability on each point of the countable dense subset of opponents�
non-open-minded types.14

A constructive way to show the non-emptiness of common assumption of open-minded
rationality is then the following. The construction in the previous section must be repli-

11 In another perspective, a high enough order of assumption of rationality can imply all the further ones,
up to the common assumption of rationality.
12All the following sets are proved to be events (i.e. measurable) in BFK for a complete and continuous

type structure which is metrized like the canonical we adopt (see the Appendix). Hence, they are events
also in our context.
13Thus, the set of open-minded types has empty interior in the mutually singular canonical type struc-

ture. It is shown in CDV that such set is also dense - speci�cally, open-mided types form a residual
subset of the canonical type structure. However, there is a sense in which the set of open-mided types is
"thin". As we show in our companion paper, if the BFK indi¤erence condition holds (cf. BFK, De�nition
10.1), then rational and open-minded strategy-type pairs form a non-dense set (with empty interior) in
the canonical type space.
14A Borel subset of a Polish space is separable.
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cated with two variations. First, the whole canonical structure must be dragged into the
picture and the new types are additional to it. Second, instead of de�ning the set of
uncautious types, the last measure of the LPS attached to each new type must be con-
centrated on the countable dense subset of opponents�non open-minded types. In the
so obtained type structure, the new types still induce mutually singular hierarchies: the
last measure of the attached LPS puts probability one on types from the canonical with
non-full-support �rst order beliefs, while all other measures put probability one on other
new cautious types. Therefore, there is a type morphism that maps the types from the
canonical into their original ones and the new ones into their "twins".

Yet, although technically feasible, we �nd the joint use of open-mindedness, which
represents caution by focusing on every part of the state space, and our notion of assump-
tion, which does not focus on every part of the assumed event, somewhat conceptually
contradictory.15

Keisler and Lee [10] obtain that di¤erent orders of rationality can be assumed (à la
BFK) at the same level by choosing a particular topology that makes the belief maps
discontinuous. Interestingly, since the m-th order assumption of rationality events are
open in their type structure and all considered LPS�s are of full support, by Proposition
2 in their context the BFK notion of assumption coincides with ours. Both for open-
mindedness and assumption à la BFK (conditional on a particular topology), the non-
emptiness results seem to be granted by a mathematical translation of the concepts that
departs from their intuitive understanding, making them more similar to cautiousness and
our version of assumption.

The answer to the second question is no. Every complete and continuous lexicographic
type structure is not compact, because the set of LPS�s is not compact, so continuity and
ontoness require also the type spaces not to be compact. As a consequence, the typical
�nite intersection property arguments used in other epistemic characterizations to show
non-emptiness of the "common belief" sets would not work here. From another viewpoint,
the closed construction of types that "believe in each other", granting non-emptiness of
common assumption of cautious rationality in the canonical structure, may not be found
in a complete and continuous structure. This is the reason why, di¤erently from other
characterization results, our analysis is not carried on in a generic continuous and complete
structure, but in the canonical one.

4 Appendix

4.1 Preference-based representation of assumption

Fix a lexicographic type structure T = hSi; Ti; �iii2I . To shorten notation, it will be
convenient to set 
 := T�i�S�i and to drop i�s subscript from LPS�s �i on 
. Fix a LPS
� = (�1; :::; �k) 2 L(
). Let A be the set of all measurable functions from 
 to [0; 1]. For

15Yang [15] shows the non-emptiness of common assumption of open-minded rationality (in our sense)
in a non-mutually singular canonical structure. Dekel, Friedenberg and Siniscalchi [8] show that dropping
mutual singularity overall the results of BFK can be replicated in the new setting.

11



every x; y 2 A, de�ne %� on A as follows:

x %� y ()
�Z



x(!)d�m(!)

�k
m=1

�L
�Z



y(!)d�m(!)

�k
m=1

:

Given a Borel set E � 
 and acts x; z 2 A, let (xE ; z
nE) 2 A be the act de�ned as
(xE ; z
nE)(!) = x(!) if ! 2 E and (xE ; z
nE)(!) = z(!) if ! 2 
nE. Moreover, let %�E
denote the conditional preference given E, that is, x %�E y if and only if (xE ; z
nE) %�
(yE ; z
nE) for some (implying all) z 2 A.

De�nition 7 A non-empty Borel set E � S�i � T�i is assumed under %� if:

1. (relevance) for every s�i 2 S�i and every cylinder U = fs�ig � T�i, if E \ U 6= ;
then there exist two acts x; y 2 A such that x ��E\U y;

2. (strict determination) for all x; y 2 A, x ��E y implies x �� y.

Proposition 3 An Event E � 
 is assumed by � if and only if it is assumed under %�.

Proof : If � assumes E at level l, then for every x; y; z 2 A and q � l,Z


x(!)d�q(!) =

Z


(xE ; z
nE)(!)d�

q(!);
Z


y(!)d�q(!) =

Z


(yE ; z
nE)(!)d�

q(!).

(A)
Moreover, for every q > l,Z



(xE ; z
nE)(!)d�

q(!) =

Z


(yE ; z
nE)(!)d�

q(!).

Thus, if x ��E y, there exists p � l such that for every q < pZ


(xE ; z
nE)(!)d�

p(!) >

Z


(yE ; z
nE)(!)d�

p(!);Z


(xE ; z
nE)(!)d�

q(!) =

Z


(yE ; z
nE)(!)d�

q(!).

Then by A, x �� y (strict determination).
Moreover, for every s�i 2 S�i, if E \ (fs�ig � T�i) 6= ;, then there exists q � l such

that �q (E \ U) > 0. So, for every x 2 A taking a strictly positive constant value on E\U
and the null act y 2 A, x ��E\U y (relevance).

If � does not assume E, one of the following holds.

1. There exists s�i 2ProjS�iE such that �m (E \ (fs�ig � T�i)) = 0 for everym � k.16
This implies that x ��E\(fs�ig�T�i) y for all x; y 2 A, violating relevance.

16A LPS � = (�1; :::; �k) such that �p(E) = 0 for every p � k falls into this case.
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2. There exist p � k and q � p such that �p(E) 6= 1 and �q(E) 6= 0. Take events
E1;:::;Ek that verify the de�nition of mutual singularity for �. Take x; y 2 A such
that

x(!) = 0; y(!) = 1, if ! 2 EpnE
x(!) = �p(EpnE)=2; y(!) = 0, if ! 2 Eq

T
E

x(!) = y(!) = 0, else.

Thus x ��E y but y �� x, violating strict determination. �

4.2 Proofs of measurability of relevant sets

Endow M(
) with the weak-* topology. Then, for every event E � 
, the set of prob-
ability measures � such that � (E) = p for p 2 Q \ [0; 1] is Borel in M(
). The weak-*
topology is induced by the Prokhorov metric. Call p(�; �0) the Prohorov distance between
�; �0 2 M(
). For each k 2 N, endow Nk(
) with the product topology, N (
) with the
disjoint union topology and Lk(
) and L(
) with the relative topologies. Such topologies
are induced by the following metric: if �i; �0i 2 N (
) have di¤erent lenghts, their distance
�(�; �0) is 1; if �i; �0i 2 Nk(
) for some k, �(�; �0) = maxq�k p(�

q
i ; �

0q
i ). This topology is

the one employed by BFK for their type structures and it is the one arising naturally in
the canonical structure of CDV from the construction. Therefore, the following results
will apply to the canonical structure.

Lemma 1 Fix si 2 Si. The set Bsi of all � 2 L(
) such that si is a lexicographic best
reply to margS�i� is Borel in L(
).

Proof : Fix s0i 6= si. De�ne

OWsi;s0i
: =

n
� 2M(
)

����i(si;margS�i�) � �i(s0i;margS�i�)o ,
OSsi;s0i

: =
n
� 2M(
)

����i(si;margS�i�) > �i(s0i;margS�i�)o .
Take a � 2 OSsi;s0i . There exists " > 0 such that for every �0 2 M(
) with p(�; �0) < ",

�i(si;margS�i�
0)� �i(s0i;margS�i�0) > 0. So OSsi;s0i is open. Since O

W
si;s0i

is the complement

of OSs0i;si
, it is closed.

The set U sik = Bsi \ Lk(
) can be expressed as

U sik =
T
s0i 6=si

�
OSsi;s0i

� Lk�1(
) [
�
OWsi;s0i

�OSsi;s0i � Lk�2(
)
�
[ ::: [

�
OWsi;s0i

�OWsi;s0i � :::�O
W
si;s0i

��
;

so it is Borel in L(
). Finally, Bsi = [k2NU sik , so it is Borel too. �

Lemma 2 The set C of all � 2 L(
) such that margS�i� 2 N
+ (S�i) is Borel.
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Proof : For every s�i 2 S�i, the set Cs�ik := Lk(
)n f� 2 Lk(
) j�m (s�i � T�i) = 0;8m � kg
is Borel by the product topology. Hence, C = [k2N \s�i2S�i C

s�i
k is Borel. �

Lemma 3 Fix an event E � 
. The set AE of all � 2 L(
) that assume E is Borel.

Proof : Fix k 2 N and l � k. By the product topology, the sets

A1k;l = f� 2 Lk(
) j�m (E) = 1;8m � lg ,
A2k;l = f� 2 Lk(
) j�m (E) = 0;8m > lg ,

are Borel in Lk(
). Thus, A1k;l\A2k;l is the Borel set of all � 2 Lk(
) satisfying conditions
1 and 2 of assumption for l.

Moreover, for every s�i 2 ProjS�i (E), the set

As�ik;l = f� 2 Lk(
) j�
m (fs�ig � T�i) = 0;8m � lg

is Borel in Lk(
). Notice that

A3k;l = \s�i2ProjS�i (E)
�
Lk(
)�As�ik;l

�
is the Borel set of all � 2 Lk(
) satisfying condition 3 of assumption for l. Hence Ak;l =
A1k;l \ A2k;l \ A3k;l is the Borel set of all � 2 Lk(
) that assume E at level l. Finally,
AE = [k2N [l�k Ak;l, so it is Borel too. �

We have the following corollary:

Corollary 1 Ci, Ri and Ai(E) are Borel subsets of Si � Ti.

Proof : Ri = [si2Si(fsig � ��1i (Bsi)), Ci = Si � ��1i (C) and Ai(E) = Si � �
�1
i (AE)

are Borel in Si � Ti by respectively Lemma 1, 2 and 3, plus the measurability of �i. �

So �nally, for our characterization result we can claim the following

Lemma 4 For each n � 1, Rni is Borel in Si � Ti.

Proof : By Corollary 1, for every i 2 I, the sets R1i = Ci \ Ri and Ai
�
R1�i

�
are

Borel in Si � Ti. So, an easy induction argument shows that, for all n � 1, the sets
Rn+1i = R1i \

�
\m�nAi

�
Rm�i

��
are Borel in Si � Ti. �

4.3 Denseness of non full-support LPS�s

This is a mathematical result of more general interest, so we abstract from 
 to any in�nite
metric space (X; d).

Claim 1 Fix " > 0. Take a � 2 M(X) such that 0 � �(O) < " for some open O � X.
There exists a � 2M(X) such that:
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1. �(O) = 0;

2. for every Y 2 B(X), if �(Y ) = 0, then �(Y ) = 0;

3. p(�; �) < ".

Proof. Take the measure � 2M(X) such that for every Y 2 B(X),
�(Y ) = (�(Y )� �(Y \O))=(1� �(O));

i.e. put probability 0 on O and rescale elsewhere. The measure is well de�ned and
clearly satis�es 1 and 2, so it only remains to show 3. For any Y � X, let Y  :=
fx 2 X : 9y 2 Y; d(x; y) < g be the -neighbourhood of Y . The Prokhorov distance be-
tween �; � 2M(X) is de�ned as:

p(�; �) := inf f > 0 : 8Y 2 B(X); �(Y ) � �(Y ) +  ^ �(Y ) � �(Y ) + g :
For every Y 2 B(X), � (Y ) < v (Y ") + ", since

� (Y )� v (Y ") < �(Y )� v (Y ) =
= (� (O)� v (O)) + (� (Y nO)� v (Y nO))� (� (OnY )� v (OnY )) =

= � (O) + (� (Y nO)� (� (Y nO) =(1� �(O)))) + (�� (OnY ))
and the �rst term is smaller than ", while the second and the third are negative.

For every Y 2 B(X), �(Y ) < �(Y ")+ ", otherwise there would be Y 2 B(X) such that
�(X) = �(Y ) + �(XnY ) � �(Y ) + "+ �(XnY ) > �(Y ) + "+ �(XnY )� " = 1;

where the strong inequality comes from � (Y )� v (Y ) < ", as discussed above.
So the two conditions are veri�ed also for some � < ", implying that " > p(�; �). �

Claim 2 Fix " > 0. Take a � = (�1; :::; �k) 2 L+(X). There exists an open O � X such
that for every q � k, 0 � �q(O) < ".

Proof. Let e be the smallest integer strictly bigger than 1=". Take a set Y1 =�
y1; :::; yke

	
of k � e distinct points in X and call � := minw�ke;q 6=w d(yw; yq). Take a set of

open balls O1; :::; Oke with radius �=2 centered in y1; :::; yke. For every q � k, call cq the
cardinality of the set Wq := fw � ke : �q(Ow) � "g. All open balls are pairwise disjoint,
so it must hold

P
w2Wq

�q(Ow) � 1. Then, cq < e. So, there must exist b � ke such that
for every q � k, b 62Wq. �

Theorem 2 Fix " > 0. Take a � = (�1; :::; �k) 2 L+(X). There exists �0 2 L(X)nL+(X)
such that �(�; �0) < ".

Proof. By Claim 2, there exists an open O � X such that 0 � �q(O) < " for every
q � k. Then, by Claim 1, for every q � k, we can take a �q 2 M(X) such that (1)
�q(O) = 0, (2) for every Y 2 B(X), if �q(Y ) = 0, then �q(Y ) = 0, and (3) p(�q; �q) < ".
By mutual singularity, there exist sets E1; :::Ek in X such that for every p � k, �p(Ep) = 1
and �p(Eq) = 0 for q 6= p. Thus, by 2, for every p � k, �p(XnEp) = 0 and �p(Eq) = 0 for
q 6= p. Hence, �0 = (�1; :::; �k) 2 L(X). Moreover, by 3 �(�; �0) = maxq�k p(�q; �q) < ".
Finally, �0 2 L+(X) because by 1, for every q � k, �q(O) = 0. �
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