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Graphs

Graph is the mathematical term for a “network” - often visualized as
vertices (points, nodes) connected by edges (lines, arcs)
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Graph theory basics

The origins of graph theory are attributed to the Seven Bridges of
Königsberg problem solved by Leonhard Euler in 1735.
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Social networks

Science - co-authorship network

http://www.jeffkennedyassociates.com:16080/connections/concept/image.html
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Telecommunication networks

Internet colored by IP addresses

http://www.jeffkennedyassociates.com:16080/connections/concept/image.html



8/163

Biological networks
H. Pylori - protein interactions

Image generated using Graphviz
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Transportation networks

Continental Airlines network, 2005
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Graph theory basics

A simple, undirected graph is a pair G = (V ,E ), where V is a finite set of
vertices and E ⊆ V × V is a set of edges, with each edge defined on a pair
of vertices.

6

5 1

4 2

3

V = {1, 2, 3, 4, 5, 6}

E = {(1, 2), (1, 6), (2, 3), (2, 4), (3, 4), (4, 5), (5, 6)}
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Graph theory basics

I If (v , v ′) ∈ E , the two vertices v and v ′ in G are called
adjacent or neighbors, and the edge (v , v ′) is said to be
incident to v and v ′.

I The set of all neighbors of a vertex v in G is denoted by
NG (v), and its cardinality |NG (v)| is called the degree of v in
G and is denoted by degG (v).

I The minimum and the maximum degree of a vertex in G are
denoted by δ(G ) and ∆(G ), respectively.
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Graph theory basics

I A path of length r between vertices v and v ′ in G is a subgraph
of G defined by an alternating sequence of distinct vertices and
edges v ≡ v0, e0, v1, e1, . . . , vr−1, er−1, vr ≡ v ′ such that
ei = (vi , vi+1) ∈ E for all 1 ≤ i ≤ r − 1.

I Two vertices v and v ′ are connected in G if G contains at least
one path between v and v ′.

I A graph is connected if all its vertices are pairwise connected
and disconnected otherwise.
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Graph theory basics

I The distance between two connected vertices v and v ′ in G ,
denoted by dG (v , v ′), is the shortest length of a path between u
and ν in G .

I The largest distance among the pairs of vertices in G defines
the diameter of the graph, diam(G ) = maxv ,v ′∈V dG (v , v ′).

I The connectivity or vertex connectivity κ(G ) of G is given by
the minimum number of vertices whose deletion yields a
disconnected or a trivial graph.

I The density ρ(G ) of G is the ratio of the number of edges to
the total number of possible edges, i.e., ρ(G ) = |E |/

(|V |
2

)
.
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Graph theory basics

I A graph G ′ = (V ′,E ′) is a subgraph of G = (V ,E ) if V ′ ⊆ V
and E ′ ⊆ E .

I Given a subset of vertices S ⊆ V , the subgraph induced by S ,
G [S ], is obtained by deleting all vertices in V \ S and the edges
incident to at least one of them.

I G = (V ,E ), is the complement graph of G = (V ,E ), where
E = {(i , j) | i , j ∈ V , i 6= j and (i , j) /∈ E}.
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Cliques and independent sets

I A subset of vertices C ⊆ V is called a clique if G (C ) is a
complete graph.

I A subset I ⊆ V is called an independent set (stable set, vertex
packing) if G (I ) has no edges.

I C is a clique in G if and only if C is an independent set in Ḡ .
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Cliques and independent sets

I A clique (independent set) is said to be

– maximal, if it is not a subset of any larger clique (independent
set);

– maximum, if there is no larger clique (independent set) in the
graph.

I ω(G ) – the clique number of G .

I α(G ) – the independence (stability) number of G .
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Cliques and independent sets

1

5 2

4 3

1

5 2

4 3

Complement

{1,2,5} : maximal clique {1,2,5} : maximal 
independent set

{1,4} : maximal 
independent set {1,4} : maximal clique

{2,3,4,5} : maximum clique {2,3,4,5} : maximum 
independent set

GG
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Dominating sets

I A subset D ⊆ V is called a dominating set if any vertex in V
either belongs to D or has a neighbor in D.

I A dominating set is said to be minimum if there is no smaller
dominating set in the graph.

I A minimum dominating set size is the domination number of G
and is denoted by γ(G ).
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Social networks

A social network is described by G = (V ,E ) where V is the set of
“actors” and E is the set of “ties”.

I actors are people and a tie exists if two people know each other.

I actors are wire transfer database records and a tie exists if two
records have the same matching field.

I actors are telephone numbers and a tie exists if calls were made
between them.
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Social network analysis

“Popular” social networks:

I Kevin Bacon Number

I Erdös Number

I Six degrees of separation and small world phenomenon in
acquaintance networks
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Cohesive subgroups

I Cohesive subgroups are “tightly knit groups” in a social
network.

I Social cohesion is often used to explain and develop sociological
theories.

I Members of a cohesive subgroup are believed to share
information, have homogeneity of thought, identity, beliefs,
behavior, even food habits and illnesses.
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Applications

I Acquaintance Networks - criminal network analysis

I Wire Transfer Database Networks - detecting money
laundering

I Call Networks - organized crime detection

I Protein Interaction Networks - predicting protein functions

I Gene Co-expression Networks - detecting network motifs

I Stock Market Networks - stock portfolios

I Internet Graphs - information search and retrieval

I Wireless and telecommunication networks - clustering and
routing
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Properties of cohesive subgroups

Some desirable properties of a cohesive subgroup are:

I Familiarity (degree);

I Reachability (distance, diameter);

I Robustness (connectivity);

I Density (edge density).
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Clique

Clique is the earliest model of a cohesive subgroup.

The “perfect cluster”
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However ...

Perfect may mean impractical. Some examples:

4-connected

1kw6 (lyase)

2-club

1ruz (viral protein)

.7-quasiclique

1dxr (photosynthesis)

3-core3-plex

1p9m (signaling)1xg0 (immune sys.)
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Alternatives to clique

G = (V ,E ). S ⊆ V is

I s-clique if dG (v , v ′) ≤ s, for any v , v ′ ∈ S (Luce 1950)

I s-club if diam(G [S ]) ≤ s (Alba 1973, Mokken 1979)

I s-plex if δ(G [S ]) ≥ |S | − s (Seidman & Foster 1978)

I s-defective clique if G [S ] has at least
(|S |

2

)
− s edges (Yu et

al. 2006)

I k-core if δ(G [S ]) ≥ k (Seidman 1983)

I k-block if κ(G [S ]) ≥ k (Moody & White 2003)

I γ-quasi-clique if ρ(G [S ]) ≥ γ (Abello et al. 2002)

I (λ, γ)-quasi-clique if δ(G [S ]) ≥ λ(|S | − 1) and ρ(G [S ]) ≥ γ
(Brunato et al. 2008)

I ...
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Alternative clique definitions

(a) Vertices are distance one away from each other

(b) Vertices induce a subgraph of diameter one

(c) Every one vertex forms a dominating set
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Alternative clique definitions

(d) Degree: Each vertex neighbors all vertices

(e) Density: Vertices induce a subgraph that has all possible edges

(f) Connectivity: need to be remove all vertices to obtain a
disconnected induced subgraph
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Defining clique relaxations

We can define clique relaxations by

(i) restricting a violation of an elementary clique-defining property
or by

(ii) ensuring the presence of an elementary clique-defining property
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(i) Restricting a violation

Pairs of vertices are distance at most s away from each other –
s-clique

Induced subgraph is of diameter at most s – s-club

4-connected

1kw6 (lyase)

2-club

1ruz (viral protein)

.7-quasiclique

1dxr (photosynthesis)

3-core3-plex

1p9m (signaling)1xg0 (immune sys.)
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(i) Restricting a violation

Any set of size s ensures domination – s-plex

4-connected

1kw6 (lyase)

2-club

1ruz (viral protein)

.7-quasiclique

1dxr (photosynthesis)

3-core3-plex

1p9m (signaling)1xg0 (immune sys.)
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(i) Restricting a violation

We replaced one with at most s in the alternative clique definitions

We can also replace all with all but s
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(i) Restricting a violation

Degree: Each vertex neighbors all but s vertices – s-plex again

Density: Vertices induce a subgraph that has all but s possible
edges – s-defective clique

Connectivity: need to be remove all but s vertices to obtain a
disconnected induced subgraph – s-bundle
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(ii) Ensuring a property

Each vertex has degree at least k – k-core

4-connected

1kw6 (lyase)

2-club

1ruz (viral protein)

.7-quasiclique

1dxr (photosynthesis)

3-core3-plex

1p9m (signaling)1xg0 (immune sys.)
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(ii) Ensuring a property

At least k vertices need to be removed

to disconnect the induced subgraph – k-block

4-connected

1kw6 (lyase)

2-club

1ruz (viral protein)

.7-quasiclique

1dxr (photosynthesis)

3-core3-plex

1p9m (signaling)1xg0 (immune sys.)
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Relative relaxations

Vertices induce a subgraph that has the fraction γ of all possible
edges – γ-quasi-clique

4-connected

1kw6 (lyase)

2-club

1ruz (viral protein)

.7-quasiclique

1dxr (photosynthesis)

3-core3-plex

1p9m (signaling)1xg0 (immune sys.)
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Nature of a clique relaxation
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Nature of a clique relaxation
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s-clique vs s-club

6

5 1

4 2

3

I {2,3,4} is a 1-club ... the
“regular” clique

I {1,2,4,5,6} is a 2-club

I {1,2,3,4,5} is a 2-clique but
NOT a 2-club

I maximality of a 2-club is harder
to test

s-clique appears to be a weaker cluster than s-club
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Nature of a clique relaxation
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Weak clique relaxations

Distance-based: s-clique (weak s-club)

Vertices in S are distance at most s away from each other in G .

Connectivity-based: weak k-block

Any two vertices in S have at least k vertex-independent paths
between them in G
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Clique relaxations taxonomy

Clique Relaxations 

Restricting clique 

property  violation  

Ensuring a fixed-size 

clique property 

Standard/Weak Absolute/Relative Structural/Statistical 
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Order of a clique relaxation

It may be useful to relax more than one elementary clique-defining
property

I Clique is the only clique relaxation of order 0

I Clique relaxations of first order relax one of the elementary
properties (distance, diameter, ...) used to define clique

I Clique relaxations of second order relax two of the elementary
clique-defining properties

I ...
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Higher order clique relaxations

Simple Higher Order Relaxations: relaxing multiple elementary
clique-defining properties simultaneously

(λ, γ)-quasiclique: Each vertex is connected to at least λ(|S | − 1)
vertices, and the induced subgraph has at least the fraction γ of all
possible edges.

Robust Higher Order Relaxations: connectivity embedded into
the definition (k-robustness/k-heredity)

k-robust s-club: The induced subgraph is not only an s-club, but
also the removal of up to k vertices still preserves the s-club
property.
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Additional elementary

clique-defining properties

A subset of vertices C is a clique in G if and only if one of the
following conditions hold:

g) Independence number α(G [C ]) = 1;

h) Vertex cover number τ(G [C ]) = |C | − 1;

i) Chromatic number χ(G [C ]) = |C |;
j) Clique cover number χ̄(G [C ]) = 1;

k) Edge connectivity number λ(G [C ]) = |C | − 1.
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Canonical clique relaxations

17/36

Canonical clique relaxations

Reachability Familiarity Composition Robustness

Diameter Domination(1) Density(2) Degree(3) Connectivity(4)

Clique “one” “one” “all” “all” “all”

s-club “at most s”

s-plex “s ”

γ-quasiclique “at least γ”

k -core “at least k ”

k -connected “at least k ”

(1) All vertices are dominated by, (2) Edges included, (3) Every vertex is connected to, (4)To disconnect, remove
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Diameter of k-cores

Let S be a k-core in G . If G [S ] is connected then diam(G [S ]) ≤ d ′k ,
where

d ′k = max

{⌈ |S |
k + 1

⌉
, 3

(⌊ |S | − z

k + 1

⌋
− 1

)
+ z , z ∈ {0, 1, 2}

}

This bound is sharp

Ǩk+2(u1,u′1)

u1 u′1

Kk→

Ǩk+1(v1,v′1)

v1 v′1

Kk−1→

Ǩk+1(vc−1,v′c−1)

vc−1 v′c−1

Kk−1→

Ǩk+2(u2,u′2)

u2 u′2

Kk→

Figure 1: Illustration of G1 construction.

x0
x1 x2 x3 x4 x5 xd−1 xd

Kq without edge (x0,x2)

Figure 2: Illustration of G2 construction, where q = ||

1
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Diameter of γ-quasi-cliques

Let S be a γ-quasi-clique in G . If G [S ] is connected, then
diam(G [S ]) ≤ dγ , where

dγ =

⌊
|S |+ 1

2
−
√
γ|S |2 − (2 + γ)|S |+ 17

4

⌋
.

x0
x1 x2 x3 x4 x5 xp−1 xp

Kq without edge (x0,x2)

Figure 1: Illustration of G2 construction.

G′1

a b

Kk→

G′′1

a′ b′

Kk−1→

G′′1

a′ b′

Kk−1→

G′1

a b

Kk→

Figure 2: Illustration of G1 construction.

1



49/163

Cohesiveness properties

20/36

Cohesiveness properties

S ⊆ V Diameter Dominating Set Minimum Degree Edge Density Connectivity

Clique “one” “one” “all” “one” “all”

s-club s |S|−1 1 2
|S| 1

s-plex s s |S|−s 1− s−1
|S|−1 |S|−2s+2

k -core d ′k |S|−k k k
|S|−1 2k +2−|S|

γ-quasi-clique dγ |S|
⌈

γ
(|S|

2
)
−
(|S|−1

2
)⌉

γ
⌈

γ
(|S|

2
)
−
(|S|−1

2
)⌉

k -block
⌊ |S|−2

k +1
⌋

|S|−k k k
|S|−1 k
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Optimization problems

Let relaxed clique refer to a subset of vertices that satisfies the
definition of an arbitrary clique relaxation concept.

Definition

A subset of vertices S is called a maximal relaxed clique if it is
a relaxed clique and is not a proper subset of a larger relaxed
clique.

Definition

A subset of vertices S is called a maximum relaxed clique if
there is no larger relaxed clique in the graph. The maximum
relaxed clique problem asks to compute a maximum relaxed
clique in the graph, and the size of a maximum relaxed clique
is called the relaxed clique number.
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Clique relaxations: s-plex

Definition

A subset of vertices S is said to be a s-plex if the minimum degree
in the induced subgraph δ(G [S ]) ≥ |S | − s

i.e. every vertex in G [S] has degree at least |S| − s.

5 4

1

3

2

6

I {3,4,5,6} is a 1-plex ... the
“regular” clique

I {1,3,4,5,6} is a 2-plex
(and NOT a 1-plex)

I {1,2,3,4,5,6} is a 3-plex
(and NOT a 2-plex)
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Complementary structure: co-s-plex

Definition

A subset of vertices S is a co-s-plex if the maximum degree in the
induced subgraph ∆(G [S ]) ≤ s − 1.

i.e. degree of every vertex in G [S ] is at most s − 1.

S is a co-s-plex in G if and only if S is an s-plex in the complement
graph Ḡ .

5 4

1

3

2

6

5 4

1

3

2

6

3-plex Co-3-plex
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Structural Properties of an s-Plex

If G is an s-plex then

1. Every subgraph of G is a s-plex;

2. If s < n+2
2 then diam(G ) ≤ 2;

3. κ(G ) ≥ n − 2s + 2.

4. Any s vertices in G form a dominating set in G .

I s-plexes for “small” s values, guarantee reachability and
connectivity while relaxing familiarity.
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Structiural properties

Definition (Heredity)

A graph property Π is said to be hereditary on induced subgraphs, if
for any graph G with property Π the deletion of any subset of
vertices does not produce a graph violating Π.

Definition (Weak heredity)

A graph property Π is said to be weakly hereditary, if for any graph
G = (V ,E ) with property Π all subsets of V demonstrate the
property Π in G .
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Structiural properties

Definition (Quasi-heredity)

A graph property Π is said to be quasi-hereditary, if for any graph
G = (V ,E ) with property Π and for any size 0 ≤ r < |V |, there
exists some subset R ⊂ S with |R| = r , such that G [S \ R]
demonstrates property Π.

Definition (k-Heredity)

A graph property Π is said to be k-hereditary on induced subgraphs,
if for any graph G with property Π the deletion of any subset of
vertices with up to k vertices does not produce a graph violating Π.
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Yannakakis theorem

I The maximum Π problem is to find the largest order induced
subgraph that does not violate property Π

I Π is said to be nontrivial if it is true for a single vertex graph
and is not satisfied by every graph

I Π is said to be interesting if there are arbitrarily large graphs
satisfying Π

Theorem (Yannakakis, 1978)

The maximum Π problem for nontrivial, interesting graph properties
that are hereditary on induced subgraphs is NP-hard.
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Clique relaxation and node deletion problems

 

Clique 

relaxation  

problems  

Node deletion 

problems 

with heredity  

Node deletion problems  
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Max weight node deletion problem

Given

I a simple, undirected graph G = (V ,E ),

I positive weights w(v) for each v ∈ V ,

I and a nontrivial, interesting and hereditary (on induced
subgraphs) property Π.

Find

ν(G ) = max{w(P) : P ⊆ V , G [P] satisfies Π},
where w(P) =

∑
v∈P w(v) and G [P] is the subgraph induced by P.
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Generalizing max clique algorithms

Some of the most practically effective algorithms for the maximum
clique problem rely on the fact that clique is hereditary on induced
subgraphs.

I Carraghan and Pardalos (1990) - used as DIMACS benchmark

I Österg̊ard (2002)

We use this observation to develop a generalized algorithm for the
minimum weight node deletion problem.
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Generalized algorithm

I Order vertices V = {v1, v2, · · · , vn}, define Si = {vi , vi+1, · · · , vn}
I We compute the function c(i) that is the weight of the maximum

induced subgraph with property Π in G [Si ].

I Obviously, c(n) = w(vn) and c(1) = ν(G ).

I For the unweighted case with w(vi ) = 1, i = 1, . . . , n we have

c(i) =

{
c(i + 1) + 1, if the solution must contain vi

c(i + 1), otherwise

I For the weighted case, c(i) > c(i + 1) implies that vi belongs to
every optimal solution, and c(i) ≤ c(i + 1) + w(vi ).
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Generalized algorithm

I We compute the value of c(i) starting from c(n) and down to
c(1), and in each major iteration work with a current feasible
solution P, a candidate set C , and an incumbent solution S .

I Pruning occurs when
I w(C ) + w(P) < w(S) or
I c(i) + w(P) < w(S), where i = min{j : vj ∈ C}.

I Problem-specific features:

I candidate set generation;
I vertex ordering.
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Edge-based clique relaxations

Given a graph G = (V ,E ) and a subset of edges E ′, the
edge-induced subgraph for E ′ is given by G (E ′) = (V ′,E ′), where

V ′ = {v ∈ V : ∃(u, v) ∈ E ′}

We will call a vertex v a neighbor of an edge (u, u′) ∈ E if v is
adjacent to both u and u′
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k-Community

Let E ′ ⊆ E and G (E ′) = (V ′,E ′). Then V ′ is called a k-community
if every edge in E ′ has at least k neighboring vertices in G (E ′).

Just like the maximum k-core, the maximum k-community can also
be found in polynomial time using a simple iterative procedure.
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Examples



69/163

Useful properties

Properties:

1. A clique of size k is both a (k − 1)-core and (k − 2)-community.

2. If the k-core of G is empty, then ω(G ) < k + 1.

3. If the k-community of G is empty, then ω(G ) < k + 2.

4. A k-community of G is also a (k + 1)-core of G .

Note that the converse is not true for properties 2 and 3.
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Upper bounds

UB suggested by k-core: 5; by k-community: 4
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Finding the upper bound

A simple binary search strategy for finding the least k that gives an
empty graph:

Step 0 Set ku = n − 2, k l = 0, k = n − 2

Step 1 If k-Comm(G) is empty, ku = k .
Else, k l = k.

Step 2 If ku − k l ≤ 1, set k = ku, STOP.
Else, set k = (ku + k l)/2, go to Step 1.

Algorithm 1

Worst case complexity of the algorithm: O(m2∆log(n)).
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Experiments with SNAP database

Network Type Example
Social Networks Epinions.com

Slashdot
Wikipedia votes

Communication EU Research Inst emails
Wikipedia communications

Citation Networks US Patents
Arxiv Citation Network

Web graphs Stanford
Google

Product Co-purchasing Amazon

Internet P2P Gnutella
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Upper bounds on SNAP graphs
Upper Bounds obtained on SNAP Graphs

Graph n m k-Core UB k-Comm UB
UB n’ UB n”

WikiTalk 2394385 4659565 132 700 52 237
cit-Patents 3774768 16518947 65 106 35 83
Email-EuAll 265214 364481 38 292 19 62
Cit-HepPh 34546 420877 31 40 24 36
Cit-HepTh 27770 352285 38 52 29 48
Slashdot0811 77360 469180 55 129 34 87
Slashdot0902 82168 504230 56 134 35 96
soc-Epinions1 75879 405740 68 486 32 61
Wiki-Vote 7115 100762 54 336 22 50
p2p-Gnutella31 62586 147892 7 1004 4 57
p2p-Gnutella04 10876 39994 8 365 4 12
p2p-Gnutella24 26518 65369 6 7480 4 41
p2p-Gnutella25 22687 54705 6 6091 4 25
p2p-Gnutella30 36682 88328 8 14 4 42
web-Stanford 281903 1992636 72 387 61 126
web-NotreDame 325729 1090108 156 1367 155 155
web-Google 875713 4322051 45 48 44 48
web-BerkStan 685230 6649470 202 392 201 392
Amazon0601 403394 2443408 11 32886 11 5361
Amazon0505 410236 2439437 11 32632 11 4878
Amazon0302 262111 899792 7 286 7 105
Amazon0312 400727 2349869 11 27046 11 4534

Comparison of the upper bounds obtained by a k-core scheme vs a
k-comm scheme.

Anurag Verma, Sergiy Butenko, Texas A&M University 14/ 21
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Comparison of the number of nodes in the residual graph after the
scale reduction.

Anurag Verma, Sergiy Butenko, Texas A&M University 14/ 21
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Finding a maximum clique

Finding a maximum clique in the residual graph is not enough!
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Lower and upper boundsLB and UB for SNAP Graphs

Graph n m LB UB Time(sec)

WikiTalk 2394385 4659565 26 52 1395.91
cit-Patents 3774768 1.7E+07 10 35 397.17
Email-EuAll 265214 364481 16 19 25.76
Cit-HepPh 34546 420877 18 24 11.65
Cit-HepTh 27770 352285 21 29 13.10
Slashdot0811 77360 469180 26 34 18.96
Slashdot0902 82168 504230 27 35 20.42
soc-Epinions1 75879 405740 23 32 19.65
Wiki-Vote 7115 100762 17 22 5.26
p2p-Gnutella31 62586 147892 4 4 2.39
p2p-Gnutella04 10876 39994 4 4 0.62
p2p-Gnutella24 26518 65369 4 4 1.12
p2p-Gnutella25 22687 54705 4 4 0.81
p2p-Gnutella30 36682 88328 4 4 1.39
web-Stanford 281903 1992636 61 61 500.48
web-NotreDame 325729 1090108 155 155 1939.41
web-Google 875713 4322051 44 44 160.09
web-BerkStan 685230 6649470 201 201 6111.66
Amazon0601 403394 2443408 11 11 55.68
Amazon0505 410236 2439437 11 11 53.83
Amazon0302 262111 899792 7 7 16.28
Amazon0312 400727 2349869 11 11 52.18

Lower bounds were found by finding the max clique of the residual graphs. Note that the max clique in the residual
graph may not be the max clique in the overall graph if LB < UB.

Most exact methods for max clique problem have been tested on graphs with less than 10k vertices, rendering

them unusable on the original graphs.

Anurag Verma, Sergiy Butenko, Texas A&M University 17/ 21
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Finding a maximum clique

1. Upper Bound Use Algorithm 1 on graph G to obtain an upper
bound and a residual graph G ′.

2. Lower Bound Use an exact algorithm to find the max clique
on the residual graph G ′ to get a LB lω.

3. Scale Reduction Find the lω-community of G .

4. Max Clique Use an exact algorithm to obtain the max clique
of lω-community of G .

Overall Algorithm
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Maximum clique on SNAP graphsMax Clique on SNAP Graphs

Graph n m UB nUB LB nLB ω Time(sec)
WikiTalk 2394385 4659565 52 237 26 1487 26 1668.07

cit-Patents 3774768 16518947 35 83 10 1324 11 522.98
Email-EuAll 265214 364481 19 62 16 139 16 42.65

Cit-HepPh 34546 420877 24 36 18 124 19 17.81
Cit-HepTh 27770 352285 29 48 21 177 23 19.78

Slashdot0811 77360 469180 34 87 26 156 26 31.15
Slashdot0902 82168 504230 35 96 27 157 27 36.56
soc-Epinions1 75879 405740 32 61 23 359 23 39.45

Wiki-Vote 7115 100762 22 50 17 379 17 9.03
p2p-Gnutella31 62586 147892 4 57 4 57 4 2.70
p2p-Gnutella04 10876 39994 4 12 4 12 4 0.67
p2p-Gnutella24 26518 65369 4 41 4 41 4 1.04
p2p-Gnutella25 22687 54705 4 25 4 25 4 0.87
p2p-Gnutella30 36682 88328 4 42 4 42 4 1.50

web-Stanford 281903 1992636 61 126 61 126 61 500.48
web-NotreDame 325729 1090108 155 155 155 155 155 1939.41

web-Google 875713 4322051 44 48 44 48 44 160.09
web-BerkStan 685230 6649470 201 392 201 392 201 6111.66
Amazon0601 403394 2443408 11 5361 11 5361 11 61.54
Amazon0505 410236 2439437 11 4878 11 4878 11 61.76
Amazon0302 262111 899792 7 105 7 105 7 17.54
Amazon0312 400727 2349869 11 4534 11 4534 11 58.65

Notation:
nUB is the number of nodes in the residual graph remaining when UB is found.
nLB is the number of nodes in the lω -community of G .

ω is the size of the maximum clique.

Anurag Verma, Sergiy Butenko, Texas A&M University 19/ 21
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Maximum clique on SNAP graphsMax Clique on SNAP Graphs
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Maximum clique on SNAP graphsMax Clique on SNAP Graphs
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Maximum clique on SNAP graphsMax Clique on SNAP Graphs
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Clustering

Partitioning a set of entities into ‘natural groups’ (clusters)
Page 1 of 1

2/20/2012file://C:\Documents and Settings\butenko\My Documents\presentations\Gainesville12-DIS...

Fortunato’s 2010 survey has over 2,300 citations according to
Google Scholar.
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k-Community clustering

I Introduced a general purpose clustering algorithm based on
clique relaxations.

I Do not aim to optimize any standard performance measure.

I Using k-community as a structure does well for a number of
clustering quality measures.

I Enhancements to the basic algorithm can be designed according
to requirements.

A. Verma and S. Butenko. Network clustering via clique relaxations: a
community-based approach. In: Graph Partitioning and Graph Clustering.
Ed. by D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. American
Mathematical Society, 2013, pp.125–136.
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DIMACS Challenge
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Unit disk graphs (UDGs)

A unit-disk graph (UDG) can be defined as the intersection graph of
closed disks of equal (e.g., unit) diameter.
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Unit disk graphs (UDGs)

A unit-disk graph (UDG) can be defined as the intersection graph of
closed disks of equal (e.g., unit) diameter.
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Unit disk graphs (UDGs)

Many of the classical optimization problems on graphs remain
NP-hard when restricted to UDGs

I maximum independent set

I minimum vertex cover

I graph coloring

I minimum dominating set

I minimum connected dominating set

The maximum clique problem is a notable exception.
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Maximum clique in UDGOptimization problems in unit-disk graphs B. Balasundaram and S. Butenko
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Figure 1: The region Rij is shaded.

restricted graph classes such as UDGs was
introduced recently in [55]. A robust al-
gorithm for solving a problem on UDGs
would accept only the graph G in standard
format (adjacency list or matrix) as an in-
put and solve the problem if it is indeed
a UDG, or report that G is not a UDG.
A polynomial time robust algorithm is pre-
sented in [55] for �nding a maximum clique
in UDGs (without the geometric represen-
tation) which returns a maximum clique or
reports that G is not a UDG. The existence
of a polynomial time robust algorithm for
the maximum clique problem on UDGs is
a surprising result given the NP-hardness of
UDG recognition. A key idea is an order-
ing L = e1, e2, . . . , em of edges of G (in-
put in standard format) referred to as a co-
bipartite neighborhood edge elimination or-
dering (CNEEO). Denote by GL(i) the sub-
graph of G with edge set {ei, ei+1, . . . , em}.
De�ne for each edge ei = (u, v) the set
NL(i) to be the set of vertices adjacent to
both u and v in GL(i). The authors de-
�ne an edge ordering L to be CNEEO if for
each ei, NL(i) induces a cobipartite (com-
plement of bipartite) graph in G. The au-
thors then prove that given G and a CNEEO
L, a maximum clique can be found in poly-

nomial time and describe a greedy algorithm
for determining a CNEEO L if it exists or
certifying that G has none in polynomial
time. Finally, the authors show that every
UDG admits a CNEEO there by complet-
ing the robust polynomial time algorithm for
maximum clique problem on UDGs (in fact
for the larger class of graphs that admit a
CNEEO).

4.2 Independent Sets
Contrary to maximum clique, the maximum
independent set (MIS) problem on UDGs
is known to be NP-hard, even when the
disk representation is given [18]. How-
ever, simple constant factor approximation
algorithms and PTASs have been developed
for this problem. Note that the strong NP-
hardness of the MIS problem precludes the
possibility of a FPTAS unless P=NP [30].

Given a graph G that does not contain
a (p + 1)-claw as an induced subgraph,
an O(n log n + m) algorithm is presented
in [37] to �nd an independent set of size at
least α(G)/p. A p-claw is a graph on p + 1
vertices Vp = {u0, u1, . . . , up} such that u0

is adjacent to all other vertices and Vp \{u0}
is an independent set. The algorithm pro-
ceeds by adding a vertex v ∈ V to I fol-
lowed by the removal of v and its neighbors
i.e., N [v] from the graph. This step is re-
peated until V is empty, and the resulting in-
dependent set I is maximal. Let I∗ denote
a MIS in G. Suppose for the sake of argu-
ment that we sequentially removed vertices
of N [v] from I∗ for each v removed from
I . In any step, if v removed from I is also
in I∗, the number of vertices in I∗ deleted
in that step is exactly one. If v ∈ I \ I∗,
the number of vertices removed from I∗ is
at most p since a MIS in N(v) has at most
p vertices. Since I is maximal, I∗ will be
empty when I is empty and α(G) = |I∗| ≤
|I ∩ I∗|+ p× |I \ I∗| ≤ p|I|. By geometry,
UDGs do not contain a 6-claw [45] and the
above algorithm is a 5-approximation for the
MIS problem on UDGs.

4

I Reduces to solving O(|V|2) instances of the maximum
independent set problem in bipartite graphs; O(|V|4.5) time.
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Distance-based clique relaxations

A k-clique is a subset of vertices C such that for every i , j ∈ C ,
d(i , j) ≤ k .

A k-club is a subset of vertices D such that diam(G [D]) ≤ k .

6

5 1

4 2

3

I {2,3,4} is a 1-club ... the
“regular” clique

I {1,2,4,5,6} is a 2-club

I {1,2,3,4,5} is a 2-clique but
NOT a 2-club

I maximality of a 2-club is harder
to test
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Circular triangles
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Domination for 2-cliques in a UDG

We call a subset S of nodes k-dominated in G if there is a subset
D ⊆ V of at most k nodes such that any u ∈ S \ D has a neighbor
v ∈ D.

Proposition

Any 2-clique in a UDG is 4-dominated.

Note: we do not require the elements in a dominating set to be
members of the 2-clique.
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Domination for 2-cliques in a UDG

Sketch of the proof. Let K be an arbitrary 2-clique in a UDG G
Case 1: There exist A, B, and C in K such that A ∩ B ∩ C = ∅

b c

a

Consider A, B, and C in K that yield a concave circular triangle
with the largest area. Then every other disk in K must overlap at
least one entire lens A ∩ B, A ∩ C, or B ∩ C; K is 3-dominated.
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Domination for 2-cliques in a UDG

Case 2: A ∩ B ∩ C 6= ∅ for any A, B, and C in K.

We use Helly’s theorem in two dimensions: if F is a finite family of
at least 3 convex sets on the 2-dimensional plane and every 3
members of F have a common point, then there is a point common
to all members of F .

I By Helly’s theorem there exists a set of points S in R that are
common for all members of K.

I Clearly, if there is a node of G in S , the 2-clique is 1-dominated.

I Assume that S contains no nodes of G.
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Domination for 2-cliques in a UDG

border circles

S

4

S

S ′′

S ′

2



94/163

Domination for 2-cliques in a UDG

S

S ′′

S ′

2

Consider an arbitrary pair of border disks A and B
in K corresponding to non-consecutive pieces of the
border of S .

Since A,B ∈ K, there must be a node p of G in
A ∩ B \ S .

I If S ′, S ′′ both contain the graph’s nodes, p′ and
p′′, respectively, then the 2-clique is
2-dominated by p′ and p′′.

I If only one of S ′,S ′′ contains nodes of G, then
we can find three border disks A,B and C such
that A ∩ B ∩ C contains no nodes of G.
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Domination for 2-cliques in a UDG

a

b

c
d

v1

v2

v3

1
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2-Clique that is not 2-dominated

a
b

c

a1 a2

b1

b2

c2

c1

x2

x1
x

yy1y2 z
z1z2

1
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Domination for 2-clubs in a UDG

Corollary

Any 2-club in a UDG is 3-dominated.

This fact can potentially be used in designing exact algorithms for
the maximum 2-club problem as follows.

I Instead of solving the problem for the original graph, we can
solve it for induced subgraphs of all subsets of 3 vertices
together with their neighbors.

I This may help solving instances where all such subgraphs are
substantially smaller than the original graph.
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A 1
2-approximation algorithm for the

maximum 2-clique problem in a UDG

Proposition

There exists a 1
2 -approx. algorithm for the maximum 2-clique

problem in a UDG G = (V, E) that runs in O(|V|4.5) time.

I For a pair {v1, v2} of nodes, G′(v1, v2), which is the subgraph
of G2 induced by NG [v1] ∪ NG [v2], is a co-bipartite graph.

I We can identify the largest 2-clique K′ dominated by 2
elements in G in O(|V|4.5) time.

I All 2-cliques are 4-dominated ⇒ at least half of the nodes of a
maximum 2-clique K∗ in G must be dominated by 2 nodes.

I By weak heredity of 2-cliques, |K′| ≥ 1
2 |K∗|.
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The maximum 2-clique problem

in a uniform random UDG

I In a sample set of experiments, we generated 3,500 uniform
random UDGs of 50 nodes and 100 random UDGs of 100 nodes
for each density in the range from .05 to 1 in increments of .05.

I In all 70,000 experiments with 50-node instances and all 2,000
experiments with 100-node instances, the size of the maximum
2-clique and the 2-clique found by the proposed approximation
algorithm matched.
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Minimum dominating set problem

in graphs of diameter two

I Since all 2-clubs are 3-dominated, the minimum dominating set
problem is polynomially solvable in UDGs of diameter two.

I In contrast, we show by reduction from Vertex Cover that
Dominating Set is NP-complete when restricted to (general)
graphs of diameter two.
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Conclusion

I We provide a 1
2 -approximation algorithm for the maximum

2-clique problem in UDGs.

I The performance of the algorithm was explored in the context
of uniform random UDGs.

I We have established that any diameter-two UDG has a
dominating set of size at most 3, implying that the minimum
dominating set problem is polynomially solvable in
diameter-two UDGs.
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Open questions

I What is the computational complexity of the maximum s-clique
and s-club problems in UDGs? Is an efficient exact algorithm
possible?

I Can one construct an example of a 2-clique that is not
3-dominated, or are all 2-cliques 3-dominated rather than
4-dominated, in which case the proposed algorithm becomes
2
3 -approximate?

I While the concepts of 2-cliques and 2-clubs are closely related,
the proposed method does not directly extend to the maximum
2-club problem. Can one design an approximation algorithm for
the maximum 2-club problem with a similar approximation
ratio?
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Hub-and-spoke model

I The hub-and-spoke structure provides passengers a convenient
access (through hub cities) to a large number of destinations
that could not possibly support point to point service.

I The wide range of services facilitated by the hub-and-spoke
structure attracts a larger number of customers.

I The hub-and-spoke structure provides a 2-hop connectivity with
the minimum possible total number of connections.
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Disadvantages of hub-and-spoke

I Poor reliability: Removing just one hub node may completely
disconnect the network.

I A high volume of passenger flows at hub airports creates
inefficiencies (e.g., gate security check)

I Environmental concerns: An excessive number of flights results
in airside and landside congestion, aircraft noise and emissions.
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Hub-and-spoke network (Continental)
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Point-to-point network (Southwest )
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Need for restructuring

I Prediction: The advantages of the point-to-point operation will
lead major airlines to reexamine their favorability towards the
hub-and-spoke model and design more balanced connectivity
structures.

I Hansson et al., 2002:

“The airline business model - essentially designed to
make anyone from anywhere to everywhere,
seamlessly - was a great innovation, but is no longer
economically sustainable in its current form.”
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Some issues to address

I The Southwest model proved effective for a small or medium
size network, but would it work as well for larger carriers?

I Which connectivity properties of an airline network have the
highest impact on quality and reliability of service provided by
the airline?

I What are the minimum changes that need to be made to a
current network in order to improve these connectivity
properties?

I How to develop a network structure that will combine
advantages of both hub-and-spoke and point-to-point
approaches?
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Desirable properties

(a) An airline network should have a low diameter in order to
provide a fast and easy access between cities in the network.

(b) The total number of connections in the network should be
considerably smaller than the maximum possible number of
connections.

(c) An airline network should not contain a large group of nodes
any two of which are distance > 2 or > 3 from each other.

(d) Removing one or several nodes or arcs from the network should
not lead to a large increase in the network’s diameter.
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Airline networks data

We used Bureau of Transportation Statistics data for July 2005
(including distances and passenger quantities). Flights with less
than 100 passengers for the month were not considered.

Table : Characteristics of the airline networks

AA WN DL CO NW UA US ST All

|V | 90 63 104 73 113 80 63 140 162
|E | 331 793 330 156 317 258 282 760 1944

E.D. 0.08 0.41 0.06 0.06 0.05 0.08 0.14 0.08 0.15
ω2 77 57 100 64 91 67 61 102 103
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Degree distributions

Northwest Airlines
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Degree distributions

Southwest Airlines
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Maximum s-plex sizes

Table : Maximum s-plex sizes for the major airline networks

s AA WN DL CO NW UA US ST All

1 7 14 7 5 7 7 7 11 20
2 9 18 9 6 8 9 8 12 25
3 10 20 10 7 9 10 10 15 28
4 11 22 11 8 10 11 11 17 30
5 12 23 12 9 11 11 12 19 32
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k-Core based routing

I For a graph G = (V ,E ), a subset S of vertices is called a
k-core if the minimum degree of a vertex in G (S) is k .

I To design a k-core based routing system, we first consider a
complete graph with vertices corresponding to airports. We
assign a weight wij to each edge (i , j) as follows:

wij = dij/pij ,

where dij is the distance between i and j and pij is the number
of passengers travelling between i and j during a certain time
period (month).
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k-Core based routing

I We solve the following problem:

min

|V |∑

i=1

|V |∑

j=1

wijxij

subject to
|V |∑

j=1

xij ≥ k , ∀i ∈ V ;

xij ∈ {0, 1}, i , j = 1, . . . , |V |.
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A 10-core network for 20 airports
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A 10-core network for 20 airports

Airport Connections Airport Connections

IAH 10 ORD 14
IND 10 PHL 10
LAS 10 CLT 10
LAX 10 DCA 10
LGA 10 DEN 10
MCO 10 DFW 11
MEM 10 DTW 10
MIA 10 ATL 13
MSP 10 SEA 10
MSY 10 SFO 10

Total number of edges - 104.
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Skyteam subnetwork
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Skyteam subnetwork

Airport Connections Airport Connections

IAH 18 ORD 8
IND 12 PHL 5
LAS 10 CLT 3
LAX 12 DCA 12
LGA 14 DEN 10
MCO 13 DFW 10
MEM 18 DTW 19
MIA 9 ATL 19
MSP 19 SEA 10
MSY 10 SFO 9

Total number of edges - 120.
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Comparison

I We compare some of the major airline networks (restricted to
the 20 airports) using the following measure:

pd =
∑

(i ,j)∈E
dG
ij pij ,

where dG
ij is the length of the shortest path between i and j in

G .

I We denote by pd∗ the minimum possible value for pd , which is
achieved if the network is a complete point-to-point network.
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Comparison

Airline Connections pd/pd∗

AA 75 1.19
DL 35 1.61
NW 77 1.30
UA 62 4.58
US 49 1.75
CO 23 8.39
ST 120 1.15
10-core 104 1.02
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American Airlines subnetwork
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United Airlines subnetwork
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Continental Airlines subnetwork
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Basics of the complexity theory

� Given a combinatorial optimization problem, a natural question
is:

is this problem “easy” or “hard”?

� How do we distinguish between “easy” and “hard” problems?
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“Easy” problems

� By easy or tractable problems we mean the problems that can
be solved in time polynomial with respect to their size.

� We also call such problems polynomially solvable and denote
the class of polynomially solvable problems by P.

� Sorting
� Minimum weight spanning tree
� Linear programming
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Defining “hard” problems

� How do we define “hard” problems?

� How about defining hard problems as all problems that are not
easy, i.e., not in P?

� Then some of the problems in such a class could be TOO hard
– we cannot even hope to be able to solve them.

� We want to define a class of hard problems that we may be
able to solve, if we are lucky (say, we may be able to guess the
solution and check that it is indeed correct).
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Three versions of optimization problems

Consider a problem

min f (x) subject to x ∈ X .

I Optimization version: find x from X that maximizes f (x);
Answer: x∗ maximizes f (x)

I Evaluation version: find the largest possible f (x);
Answer: the largest possible value for f (x) is f ∗

I Recognition version: Given f ∗, does there exist an x such that
f (x) ≥ f ∗?
Answer: “yes” or “no”
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Recognition problems

� Recognition problems can still be undecidable.

Halting problem: Given a computer program with its
input, will it ever halt?

� On the other hand, if we pick a random feasible solution and it
happens to give “yes” answer, then we solved the problem in
polynomial time.

Max clique: Randomly pick a solution (a clique). If its
size is ≥ s (which we can verify in polynomial time),
then obviously the answer is “yes”. This clique can be
viewed as a certificate proving that this is indeed a yes
instance of max clique.
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Class NP

� We only consider problems for which any yes instance there
exists a concise (polynomial-size) certificate that can be verified
in polynomial time.

� We call this class of problems nondeterministic polynomial and
denote it by NP.
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P vs NP

� Note that any problem from P is also in NP (i.e., P ⊆ NP),
so there are easy problems in NP.

� So, are there “hard” problems in NP, and if there are, how do
we define them?

� We don’t know if P = NP, but “most” people believe that
P 6= NP.

� An “easy” way to make $1,000,000!
http://www.claymath.org/millennium/P vs NP/

� We can call a problem hard if the fact that we can solve this
problem would mean that we can solve any other problem in
comparable amount of time.
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Polynomial reducibility

� Reduce π1 to π2: if we can solve π2 fast, then we can solve π1

fast, given that the reduction is “easy”.

� Polynomial reduction from π1 to π2 requires existence of
polynomial-time algorithms

1. A1 converts an input for π1 into an input for π2;
2. A2 converts an output for π2 into output for π1.

� Transitivity: If π1 is polynomially reducible to π2 and π2 is
polynomially reducible to π3 then π1 is polynomially reducible
to π3.
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NP-complete problems

� A problem π is called NP-complete if

1. π ∈ NP;
2. Any problem from NP can be reduced to π in polynomial time.

� A problem π is called NP-hard if any problem from NP can be
reduced to π in polynomial time. (no π ∈ NP requirement)

� Due to transitivity of polynomial reducibility, in order to show
that a problem π is NP-complete, it is sufficient to show that

1. π ∈ NP;
2. There is an NP-complete problem π′ that can be reduced to π

in polynomial time.

To use this observation, we need to know at least one
NP-complete problem...
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Satisfiability (SAT) problem

I A Boolean variable x is a variable that can assume only the values
true and false.

I Boolean variables can be combined to form Boolean formulas using
the following logical operations:

1. Logical AND (∧ or ·) -conjunction
2. Logical OR (∨ or +) - disjunction
3. Logical NOT (x̄)

I A clause is Cj =
kj∨

p=1
yjp , where a literal yjp is xr or x̄r for some r .

I Conjunctive normal form (CNF):F =
m∧
j=1

Cj , where Cj is a clause.
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Satisfiability problem

I A CNF F is called satisfiable if there is an assignment of
variables such that F = 1 (TRUE ).

I Satisfiability (SAT) problem: Given m clauses C1, . . . ,Cm

involving the variables x1, . . . , xn, is the CNF

F =
m∧

j=1

Cj ,

satisfiable?

Theorem (Cook, 1971)

SAT is NP-complete.
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“Best” approximation algorithms and

heuristics

� For some problems there are hardness of approximation results
stating that the problem is hard to approximate within a certain
factor.

� For example, the k-center problem is hard to approximate
within a factor better than 2.

� Then any polynomial-time algorithm approximating the
k-center problem within the factor of 2 can be considered the
“best” approximation algorithm for this problem.
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“Best” approximation algorithms and

heuristics

� However, some problems are even harder to approximate. For
example, the maximum clique is hard to approximate within a
factor n1−ε for any positive ε.

� In this case, by the “best” heuristic we could mean a heuristic
that cannot be provably outperformed by any other
polynomial-time algorithm (unless P = NP).



139/163

Recognizing the gap between k-club and

l -club numbers

Theorem

Let positive integer constants k and l, l < k be given. The problem
of checking whether ω̄l(G ) = ω̄k(G ) is NP-hard.

Note that
ω(G ) ≤ ∆(G ) + 1 ≤ ω̄k(G )

and observe that we can easily check whether ω(G ) = ∆(G ) + 1.

Hence, it is NP-hard to check whether ω̄k(G ) = ∆(G ) + 1.
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“Best” heuristics for k-club/clique

Corollary

Let k be a fixed integer, k ≥ 2. Unless P = NP, there cannot be a
polynomial time algorithm that finds a k-club of size greater than
∆(G ) + 1 whenever such a k-club exists in the graph.
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Protein Interaction Networks
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A max 2-club/clique of S. Cerevisiae.
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A max 2-club/clique of H. Pylori.
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A max 3-clique/club of S. Cerevisiae
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Upper bound on the quasi-clique number

Proposition

The γ-clique number ωγ(G ) of a graph G with n vertices and m
edges satisfies the following inequality:

ωγ(G ) ≤ γ +
√
γ2 + 8γm

2γ
. (1)

Moreover, if a graph G is connected then

ωγ(G ) ≤ γ + 2 +
√

(γ + 2)2 + 8(m − n)γ

2γ
. (2)
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Relation between ωγ(G ) and ω(G )

Proposition

The γ-clique number ωγ(G ) and the clique number ω(G ) of graph
G satisfy the following inequalities:

ω(G )− 1

ω(G )
≤ ωγ(G )− 1

ωγ(G )
≤ 1

γ

ω(G )− 1

ω(G )
. (3)

Corollary

If γ > 1− 1
ω(G) then

ωγ(G ) ≤ ω(G )γ

1− ω(G ) + ω(G )γ
. (4)
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Relation between ωγ(G ) and ω(G )

Table : The value of upper bound (4) on γ-clique number with
γ = 0.95, 0.9, 0.85 for graphs with small clique number.

ω(G ) 1− 1
ω(G) 0.95 0.9 0.85

3 0.667 3.35 3.86 4.64
4 0.75 4.75 6 8.5
5 0.8 6.33 9 17
6 0.83 8.14 13.5 51
7 0.86 10.23 21 –
8 0.88 12.67 36 –
9 0.89 15.55 81 –

10 0.9 19 – –
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Probabilistic method

I A feasible solution of a discrete optimization problem (P)
usually consists of a finite set of elements (e.g., vertices or
edges of a graph) satisfying some property, and the objective is
often to maximize/minimize the size of this set.

I Let f ∗(P) denote the optimal objective value of (P).

I In probabilistic method, with each such element i we associate
its probability xi of being included (randomly and
independently) in some feasible (optimal) solution.
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Probabilistic method

I If we compute the expected size fe(x) of the set of picked
elements forming a feasible solution of (P), then we have

f ∗(P) ≤ fe(x)⇒ f ∗(P) ≤ min
x∈[0,1]n

fe(x).

I If on the other hand we can find x∗ ∈ [0, 1]n such that
fe(x∗) = f ∗(P), and the corresponding feasible solution S(x∗)
of problem (P) has size f ∗(P), then we have

f ∗(P) = fe(x∗) ≥ min
x∈[0,1]n

fe(x).
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Probabilistic method

I So, we obtain a formulation of (P) as a problem of minimizing
a continuous function over the unit hypercube [0, 1]n:

f ∗(P) = min
x∈[0,1]n

fe(x).

I Next we illustrate this approach on the maximum independent
set problem and the minimum dominating set problem.
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Independence number

I Pick, randomly and independently, each vertex i of V with
probability xi .

I Let I be the set of picked vertices with no picked neighbors.

I Pr(i ∈ I ) = xi
∏

j∈N(i)

(1− xj).

I Then the expected size of I is

E (|I |) = f (x) =
n∑

i=1

xi
∏

j∈N(i)

(1− xj).
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Independence number

I Note that I is an independent set, thus,

α(G ) ≥ max
x∈[0,1]n

f (x) = max
x∈[0,1]n

n∑

i=1

xi
∏

j∈N(i)

(1− xj).

I On the other hand, for the characteristic vector x∗ of a
maximum independent set we have f (x∗) = α(G ), so
α(G ) ≤ max

x∈[0,1]n
f (x), therefore α(G ) = max

x∈[0,1]n
f (x).
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Domination number

I Pick, randomly and independently, each vertex i of V with
probability xi .

I Let X be the random set of all vertices picked and let Y be the
random set of vertices that do not have any neighbor in X .

I The expected value of |X | is
∑
i∈V

xi .

∀i ∈ V , Pr(i ∈ Y ) = Pr(i and its neighbors are not in X )
=

∏
j∈N[i ]

(1− xj).

I E (|Y |) =
∑
i∈V

Pr(i ∈ Y ) =
∑
i∈V

∏
j∈N[i ]

(1− xj).
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Domination number

I E (|X |) =
∑
i∈V

xi , E (|Y |) =
∑
i∈V

∏
j∈N[i ]

(1− xj), so

E (|X |+ |Y |) = f (x) =
∑
i∈V

(
xi +

∏
j∈N[i ]

(1− xj)

)

I Note that X ∪ Y is a dominating set, thus,

γ(G ) ≤ min
x∈[0,1]n

f (x) = min
x∈[0,1]n

∑

i∈V


xi +

∏

j∈N[i ]

(1− xj)




On the other hand, for the characteristic vector x∗ of a minimum
dominating set we have f (x∗) = γ(G ), so γ(G ) ≥ min

x∈[0,1]n
f (x),

therefore γ(G ) = min
x∈[0,1]n

f (x).
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Math programming formulations

I Consider a simple undirected graph G = (V ,E ) with n vertices

I Let A = [aij ]
n
i ,j=1 be the adjacency matrix of G

I Let x = (x1, . . . , xn) be a 0-1 vector with xi = 1 if node i
belongs to Gs , and xi = 0 otherwise.
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Math programming formulations

I GS is a γ-clique if it has at least γ|GS |(|GS | − 1)/2 edges

I We have: |GS | =
n∑

i=1
xi

I This number of edges can be expressed in terms of vector x as:

1
2γ

n∑
i=1

xi

(
n∑

i=1
xi − 1

)
= 1

2γ

(
n∑

i ,j=1
xixj −

n∑
i=1

xi

)

= 1
2γ

(
n∑

i ,j=1;i 6=j

xixj +
n∑

i=1
x2
i −

n∑
i=1

xi

)
= 1

2γ
n∑

i ,j=1;i 6=j

xixj

I The number of edges in GS is 1
2

n∑
i ,j=1

aijxixj
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Math programming formulations

We obtain the following 0-1 problem with one quadratic constraint:

max
n∑

i=1

xi

subject to:
n∑

i ,j=1

aijxixj ≥ γ
n∑

i ,j=1;i 6=j

xixj
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Math programming formulations

Define wij = xixj . The constraint wij = xixj is equivalent to

wij ≤ xi ,wij ≤ xj ,wij ≥ xi + xj − 1 .

Linearized formulation: max
n∑

i=1
xi

subjectto :
n∑

i ,j=1

aijwij ≥ γ
n∑

i ,j=1;i 6=j

wij

wij ≤ xi ,wij ≤ xj ,wij ≥ xi + xj − 1 .

wij , xi ∈ {0, 1}, ∀i < j = 1, . . . , n

O(n2) 0-1 variables, O(n2) constraints
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“The whole is more than the sum of its parts.”
–Aristotle (384-322 BC)

Thank you!
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