Introduction

Context: network of interacting individuals that contribute to a total productive value of the network
Introduction

- **Context:** network of interacting individuals that contribute to a total productive value of the network
- **Problem:** how to share the value generated by the network
Introduction

- **Context:** network of interacting individuals that contribute to a total productive value of the network

- **Problem:** how to share the value generated by the network

Introduction

- **Context:** network of interacting individuals that contribute to a total productive value of the network
- **Problem:** how to share the value generated by the network
- Jackson & Wolinsky (1996) introduced network games (the value generated depends directly on the network structure) and showed that the Myerson value has a direct extension from communication games to network games
Introduction

- **Context:** network of interacting individuals that contribute to a total productive value of the network
- **Problem:** how to share the value generated by the network
- Jackson & Wolinsky (1996) introduced **network games** (the value generated depends directly on the network structure) and showed that the Myerson value has a direct extension from communication games to network games
- **Crucial feature most often ignored:** the network is not static, it evolves over time. So far, only a few exceptions, like Jackson (2005), Navarro (2013), Caulier et al. (2013)
$N = \{1, \ldots, n\}$ set of players (fixed), connected in a network
Networks (1/2)

- $N = \{1, \ldots, n\}$ set of players (fixed), connected in a network
- network $g = \text{undirected graph} = \text{set of links } ij$, with $i, j \in N$, $i \neq j$
Networks (1/2)

- $N = \{1, \ldots, n\}$ set of players (fixed), connected in a network
- *network* $g = \text{undirected graph} = \text{set of links } ij, \text{ with } i, j \in N, \ i \neq j$
- G: set of all possible networks on N: $G = \{g \mid g \subset g^N\}$
 where *complete network* g^N (set of all subsets of N)
Networks (1/2)

- $N = \{1, \ldots, n\}$ set of players (fixed), connected in a network

- **network** $g = \text{undirected graph} = \text{set of links } ij, \text{ with } i, j \in N, i \neq j$

- G: set of all possible networks on N: $G = \{g \mid g \subset g^N\}$ where **complete network** g^N (set of all subsets of N)

- $g + ij$: network obtained by adding ij to g
- $g - ij$: network obtained by deleting ij from g

$g' \subset g \iff \{ij \mid ij \in g'\} \subset \{ij \mid ij \in g\}$
Networks (1/2)

- $N = \{1, \ldots, n\}$ set of players (fixed), connected in a network
- network g = undirected graph = set of links ij, with $i, j \in N$, $i \neq j$
- G: set of all possible networks on N: $G = \{g \mid g \subset g^N\}$ where complete network g^N (set of all subsets of N)
- $g + ij$: network obtained by adding ij to g
- $g - ij$: network obtained by deleting ij from g
- $g' \subset g$ \iff $\{ij \mid ij \in g'\} \subset \{ij \mid ij \in g\}$
- $N(g) = \{i \mid \exists j \text{ s.t. } ij \in g\}$ set of players with at least one link
Networks (1/2)

- $N = \{1, \ldots, n\}$ set of players (fixed), connected in a network
- network g = undirected graph = set of links ij, with $i, j \in N$, $i \neq j$
- G: set of all possible networks on N: $G = \{g \mid g \subset g^N\}$
 - where complete network g^N (set of all subsets of N)
- $g + ij$: network obtained by adding ij to g
- $g - ij$: network obtained by deleting ij from g
- $g' \subset g \iff \{ij \mid ij \in g'\} \subset \{ij \mid ij \in g\}$
- $N(g) = \{i \mid \exists j \text{ s.t. } ij \in g\}$ set of players with at least one link
- $n(g) = |N(g)|$ number of players involved in g
Networks (1/2)

- $N = \{1, \ldots, n\}$ set of players (fixed), connected in a network
- network $g = \text{undirected graph} = \text{set of links } ij, \text{ with } i, j \in N, \ i \neq j$
- G: set of all possible networks on N: $G = \{g \mid g \subset g^N\}$ where complete network g^N (set of all subsets of N)
- $g + ij$: network obtained by adding ij to g
- $g - ij$: network obtained by deleting ij from g
- $g' \subset g \iff \{ij \mid ij \in g'\} \subset \{ij \mid ij \in g\}$
- $N(g) = \{i \mid \exists j \text{ s.t. } ij \in g\}$ set of players with at least one link
- $n(g) = |N(g)|$ number of players involved in g
- $L_i(g) = \{ij \mid \exists j \text{ s.t. } ij \in g\}$ set of links that i is involved in
Networks (1/2)

- $N = \{1, \ldots, n\}$ set of players (fixed), connected in a network
- *network* $g = \text{undirected graph} = \text{set of links } ij, \text{ with } i, j \in N, i \neq j$
- G: set of all possible networks on N: $G = \{g \mid g \subset g^N\}$
 where *complete network* g^N (set of all subsets of N)
- $g + ij$: network obtained by adding ij to g
- $g - ij$: network obtained by deleting ij from g
- $g' \subset g \iff \{ij \mid ij \in g'\} \subset \{ij \mid ij \in g\}$
- $N(g) = \{i \mid \exists j \text{ s.t. } ij \in g\}$ set of players with at least one link
- $n(g) = |N(g)|$ number of players involved in g
- $L_i(g) = \{ij \mid \exists j \text{ s.t. } ij \in g\}$ set of links that i is involved in
- $\ell_i(g) = |L_i(g)|$ degree of player i in g
- $\ell(g) = \frac{1}{2} \sum_i \ell_i(g)$ number of links in g
Given any $S \subset N$, let g^S be the complete network among the players in S.
Given any $S \subset N$, let g^S be the complete network among the players in S.

Given $S \subset N$ and g, let $g|_S$ be the network found deleting all links except those that are between players in S:

$$g|_S = \{ij \mid ij \in g \text{ and } i \in S, j \in S\}$$
Networks (2/2)

- Given any $S \subset N$, let g^S be the complete network among the players in S.
- Given $S \subset N$ and g, let $g|_S$ be the network found deleting all links except those that are between players in S:
 $$g|_S = \{ij \mid ij \in g \text{ and } i \in S, j \in S\}$$
- The components of a network are the distinct maximal connected subgraphs.
Given any $S \subset N$, let g^S be the complete network among the players in S.

Given $S \subset N$ and g, let $g|_S$ be the network found deleting all links except those that are between players in S:

$$g|_S = \{ij \mid ij \in g \text{ and } i \in S, \ j \in S\}$$

The components of a network are the distinct maximal connected subgraphs.

Let $C(g)$ be the set of components of g, $g = \bigcup_{g' \in C(g)} g'$
A network game is a pair \((N, \nu)\), where \(\nu : G \to \mathbb{R}\) is a value function.

\[V = \text{set of all possible value functions} \]
A network game is a pair \((N, v)\), where \(v : G \rightarrow \mathbb{R}\) is a value function

\(V = \text{set of all possible value functions}\)

A value function \(v\) is component additive if

\[v(g) = \sum_{g' \in C(g)} v(g') \text{ for all } g \in G \]
A network game is a pair \((N, v)\), where \(v : G \rightarrow \mathbb{R}\) is a value function.

\[V = \text{set of all possible value functions} \]

A value function \(v\) is component additive if

\[v(g) = \sum_{g' \in C(g)} v(g') \]

for all \(g \in G\).

\(v\) is monotonic if \(v(g) \leq v(g')\) whenever \(g \subseteq g'\).
A network game is a pair \((N, v)\), where \(v : G \to \mathbb{R}\) is a value function.

\[V = \text{set of all possible value functions} \]

- A value function \(v\) is component additive if
 \[v(g) = \sum_{g' \in C(g)} v(g') \]
 for all \(g \in G\).

- \(v\) is monotonic if \(v(g) \leq v(g')\) whenever \(g \subseteq g'\).

- Monotonic cover of \(v\): \(\hat{v}(g) = \max_{g' \subseteq g} v(g')\)
A network game is a pair \((N, v)\), where \(v : G \to \mathbb{R}\) is a value function.

\(V\) is the set of all possible value functions.

A value function \(v\) is component additive if
\[
v(g) = \sum_{g' \in C(g)} v(g')
\]
for all \(g \in G\).

\(v\) is monotonic if \(v(g) \leq v(g')\) whenever \(g \subseteq g'\).

Monotonic cover of \(v\): \(\hat{v}(g) = \max_{g' \subseteq g} v(g')\).

Note that a value function is monotonic if and only if \(v = \hat{v}\).
A network game is a pair \((N, v)\), where \(v : G \rightarrow \mathbb{R}\) is a value function.

\[\mathcal{V} = \text{set of all possible value functions} \]

A value function \(v\) is component additive if

\[v(g) = \sum_{g' \in \mathcal{C}(g)} v(g') \text{ for all } g \in G \]

\(v\) is monotonic if

\[v(g) \leq v(g') \text{ whenever } g \subseteq g' \]

Monotonic cover of \(v\): \(\hat{v}(g) = \max_{g' \subseteq g} v(g')\)

Note that a value function is monotonic if and only if \(v = \hat{v}\).

The unanimity game (basic value function) (form a basis of \(\mathcal{V}\))

\[v_g(g') = \begin{cases} 1, & \text{if } g' \supseteq g \\ 0, & \text{otherwise} \end{cases} \]

Note that any \(v\) can be written as a linear combination of basic value functions \(v_g\) in a unique way (form a basis of \(\mathcal{V}\)).
A network g is \textit{efficient} relative to ν if it maximizes ν, i.e.,
$\nu(g) \geq \nu(g')$ for all $g' \in G$.
A network g is **efficient** relative to v if it maximizes v, i.e.,

$$v(g) \geq v(g') \text{ for all } g' \in G.$$

Allocation rule for (N, v): how the value generated by g is distributed among players.

An allocation rule is a function $Y : G \times V \to \mathbb{R}^n$ such that

$$\sum_i Y_i(g, v) = v(g) \text{ for all } v \in V \text{ and } g \in G$$
An allocation rule Y is *component balanced* if for any component additive ν, $g \in G$ and $g' \in C(g)$

$$\sum_{i \in N(g')} Y_i(g, \nu) = \nu(g')$$

Component balance requires that if a value function is component additive, then the value generated by any component be allocated to the players among that component.
Component balance and equal bargaining power

- An allocation rule Y is \textit{component balanced} if for any component additive v, $g \in G$ and $g' \in C(g)$

$$
\sum_{i \in N(g')} Y_i(g, v) = v(g')
$$

Component balance requires that if a value function is component additive, then the value generated by any component be allocated to the players among that component.

- An allocation rule satisfies \textit{equal bargaining power} if for any component additive v and $g \in G$,

$$
Y_i(g, v) - Y_i(g - ij, v) = Y_j(g, v) - Y_j(g - ij, v)
$$
Component balance and equal bargaining power

- An allocation rule Y is \textit{component balanced} if for any component additive v, $g \in G$ and $g' \in C(g)$

\[\sum_{i \in N(g')} Y_i(g, v) = v(g') \]

Component balance requires that if a value function is component additive, then the value generated by any component be allocated to the players among that component.

- An allocation rule satisfies \textit{equal bargaining power} if for any component additive v and $g \in G$,

\[Y_i(g, v) - Y_i(g - ij, v) = Y_j(g, v) - Y_j(g - ij, v) \]

- Equal bargaining power does not require that players split the marginal value of a link. It just requires that they equally benefit or suffer from its addition. It is possible that

\[Y_i(g, v) - Y_i(g - ij, v) + Y_j(g, v) - Y_j(g - ij, v) \neq v(g) - v(g - ij) \]
Myerson (1977) developed a variation of the Shapley value for communication games. The Myerson value also has a corresponding allocation rule in the context of network games:

$$Y_i^{MV}(g, \nu) = \sum_{S \subseteq \mathcal{N} \backslash i} (\nu(g|_{S \cup i}) - \nu(g|_S)) \left(\frac{|S|!(n - |S| - 1)!}{n!} \right)$$
The Myerson value

- Myerson (1977) developed a variation of the Shapley value for communication games. The Myerson value also has a corresponding allocation rule in the context of network games:

\[Y_{i}^{MV}(g, v) = \sum_{S \subseteq N \setminus i} (v(g|S \cup i) - v(g|S)) \left(\frac{|S|!(n-|S|-1)!}{n!} \right) \]

- Characterization of \(Y^{MV}(g, v) \) (Jackson & Wolinsky, 1996): \(Y \) satisfies component balance and equal bargaining power if and only if \(Y(g, v) = Y_{i}^{MV}(g, v) \) for all \(g \in G \) and any component additive \(v \).
The Myerson value

- Myerson (1977) developed a variation of the Shapley value for communication games. The Myerson value also has a corresponding allocation rule in the context of network games:

\[
Y_i^{MV}(g, v) = \sum_{S \subseteq N \setminus i} (v(g|S \cup i) - v(g|S)) \left(\frac{|S|!(n - |S| - 1)!}{n!} \right)
\]

- Characterization of \(Y^{MV}(g, v) \) (Jackson & Wolinsky, 1996): \(Y \) satisfies component balance and equal bargaining power if and only if \(Y(g, v) = Y^{MV}(g, v) \) for all \(g \in G \) and any component additive \(v \).

- Insensitivity of the Myerson value to alternative networks: 3-person society, two different value functions, \(v(12) = v(23) = v(12, 23) = 1, v(g) = 0 \) for all other networks, \(v'(g) = 1 \) for all \(g \neq g^\emptyset \). While player 2’s criticality is quite different under the two value functions, we have \(Y^{MV}(\{12, 23\}, v) = Y^{MV}(\{12, 23\}, v') = (\frac{1}{6}, \frac{2}{3}, \frac{1}{6}) \).
The egalitarian allocation rule Y^e is defined by

$$Y^e_i(g, v) = \frac{v(g)}{n}$$
Egalitarian allocation rules

- The *egalitarian allocation rule* Y^e is defined by

$$Y_i^e(g, v) = \frac{v(g)}{n}$$

- If payoffs are given by Y^e, then any efficient g is PS.
Egalitarian allocation rules

- The *egalitarian allocation rule* Y^e is defined by
 \[Y^e_i(g, v) = \frac{v(g)}{n} \]

- If payoffs are given by Y^e, then any efficient g is PS.
- Y^e fails to satisfy component balance in component additive settings in which not all components generate the same value.
Egalitarian allocation rules

- The egalitarian allocation rule Y^e is defined by
 $$Y^e_i(g, v) = \frac{v(g)}{n}$$

- If payoffs are given by Y^e, then any efficient g is PS.

- Y^e fails to satisfy component balance in component additive settings in which not all components generate the same value.

- The component-wise egalitarian allocation rule Y^{ce} is defined as follows for component additive v and any g:
 $$Y^{ce}_i(g, v) = \begin{cases} \frac{v(h)}{|N(h)|}, & \text{if there exists } h \in C(g) \text{ such that } i \in h \\ 0, & \text{otherwise} \end{cases}$$
Egalitarian allocation rules

- The *egalitarian allocation rule* Y^e is defined by
 \[Y^e_i(g, v) = \frac{v(g)}{n} \]

- If payoffs are given by Y^e, then any efficient g is PS.
- Y^e fails to satisfy component balance in component additive settings in which not all components generate the same value.

- The *component-wise egalitarian allocation rule* Y^{ce} is defined as follows for component additive v and any g:
 \[Y^{ce}_i(g, v) = \begin{cases} \frac{v(h)}{|N(h)|}, & \text{if there exists } h \in C(g) \text{ such that } i \in h \\ 0, & \text{otherwise} \end{cases} \]

- For a value function v that is not component additive, $Y^{ce}(g, v) = Y^e(g, v)$ for all g.
Egalitarian allocation rules

- The *egalitarian allocation rule* \(Y^e \) is defined by
 \[
 Y^e_i(g, v) = \frac{v(g)}{n}
 \]

- If payoffs are given by \(Y^e \), then any efficient \(g \) is PS.

- \(Y^e \) fails to satisfy component balance in component additive settings in which not all components generate the same value.

- The *component-wise egalitarian allocation rule* \(Y^{ce} \) is defined as follows for component additive \(v \) and any \(g \):
 \[
 Y^{ce}_i(g, v) = \begin{cases}
 \frac{v(h)}{|N(h)|}, & \text{if there exists } h \in C(g) \text{ such that } i \in h \\
 0, & \text{otherwise}
 \end{cases}
 \]

- For a value function \(v \) that is not component additive, \(Y^{ce}(g, v) = Y^e(g, v) \) for all \(g \).

- \(Y^{ce} \) splits the value of a component network equally among all members of that component, but makes no transfers across components. \(Y^{ce} \) respects component balance.
Flexible-network rules (Jackson, 2005)

- The idea that the allocation of value is taking place with the perspective that the network is something that can be varied and inefficient networks should not be formed.
The idea that the allocation of value is taking place with the perspective that the network is something that can be varied and inefficient networks should not be formed.

An allocation rule \(Y \) is a flexible network rule if \(Y(g, v) = Y(g^N, \hat{v}) \) for all \(v \) and efficient \(g \) (relative to \(v \)).
The idea that the allocation of value is taking place with the perspective that the network is something that can be varied and inefficient networks should not be formed.

An allocation rule Y is a *flexible network rule* if $Y(g, v) = Y(g^N, \hat{v})$ for all v and efficient g (relative to v).

The *player-based flexible network allocation rule*

$$Y^P_{B\!F\!N}_i(g, v) = \frac{v(g)}{\hat{v}(g^N)} \sum_{S \subset N \setminus i} (\hat{v}(g^{S \cup i}) - \hat{v}(g)) \left(\frac{|S|!(n - |S| - 1)!}{n!} \right)$$
Flexible-network rules (Jackson, 2005)

- The idea that the allocation of value is taking place with the perspective that the network is something that can be varied and inefficient networks should not be formed.

- An allocation rule \(Y \) is a flexible network rule if

\[
Y(g, v) = Y(g^N, \hat{v}) \text{ for all } v \text{ and efficient } g \text{ (relative to } v).
\]

- The player-based flexible network allocation rule

\[
Y_{i}^{PBFN}(g, v) = \frac{v(g)}{\hat{v}(g^N)} \sum_{S \subseteq N \setminus i} (\hat{v}(g^{S \cup i}) - \hat{v}(g)) \left(\frac{|S|!(n - |S| - 1)!}{n!} \right)
\]

- The link-based flexible network allocation rule

\[
Y_{i}^{LBFN}(g, v) = \frac{v(g)}{\hat{v}(g^N)} \sum_{j \neq i} \sum_{g' \subseteq g^N - ij} \left[\frac{1}{2} (\hat{v}(g' + ij) - \hat{v}(g')) \left(\frac{\ell(g')!(\ell(g^N) - \ell(g') - 1)!}{\ell(g^N)!} \right) \right]
\]

where \(\ell(g) = \frac{1}{2} \sum_{i} \ell_i(g) \), and \(\ell_i(g) \) is the degree of \(i \) in \(g \)