
Chapter 1

Geometric optics

The main ideas of Hamiltonian mechanics originate in geometric optics.
Therefore, we first discuss fundamental principles of geometric optics, and
then formulate similar principles of Hamiltonian mechanics.

1.1 The least time principle of Fermat

We regard the propagation of light as a motion of some special kind of
particles — photons. What is the trajectory of a photon? It turns out that,
in most cases, the trajectory can be found using the following principle
stated by Fermat in 1650: the light chooses the trajectory between two given
points so that the time it takes to traverse it is the minimal possible.

The Fermat principle was preceded by experimental as well as theoretical
research on propagation of light. Ancient Greeks did a lot. Ptolemy broke
the classical Greek tradition of studying natural phenomena abstractly and
deductively and conducted a number of experiments. In particular, he com-
posed numerical tables showing the dependence of the angle of on refraction
on the angle of incidence. Hero of Alexandria formulated the least distance
principle, which is applicable to homogeneous isotropic media. According
to Hero’s principle, in such media, the light goes along straight lines. How-
ever, this principle did not explain the phenomenon of refraction. Fermat’s
principle provides an explanation for the refraction, and also for many other
optical effects.

For example, to construct lenses, it suffices to use Fermat’s principle
alone. At a dawn, when we see the Sun near the horizon, it is in fact behind
the horizon, i.e., the line connecting us (the observer) and the Sun intersects
the surface of the Earth. The fact that we still see the Sun is due to the
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bending of light rays. Rays bend in order to optimize their path through the
denser layers of the atmosphere, in which the speed of light is lower. The
ray bending is also responsible for the fact that the visible shape of the Sun
at the dawn is not round but rather oval.

One can sometimes see a mirage over a hot asphalt or a hot sand. The
rays seem to reflect from the hot air. In reality, this effect can be explained
using Fermat’s principle: it is optimal for the rays to bend and traverse a
significant distance through the hot air near the surface of the Earth, since
the speed of light is higher in the hot air than in the cold air.

We now try to formalize Fermat’s principle. Suppose that the speed of
light at a given point depends only on the point and on the direction, in
which the light goes (and not, say, on the position of the source of light and
not on its intensity) Thus the speed of light is completely determined by the
physical properties of the medium. The medium is said to be isotropic if the
speed of light depends only on the point, not on the direction (in order to
emphasize that we only talk about optical properties of the medium, we will
sometimes say “optically isotropic medium”). We now assume for simplicity
that the medium is isotropic. Then the speed of light is represented by a
function of a point.

In real life, light propagates in the three-dimensional space, but we will
assume that it propagates in the plane. Let v(x, y) be the speed of light in
a point with coordinates x and y. Then the light trajectory minimizes the
integral

(x1,y1)∫
(x0,y0)

ds

v(x, y)

This integral is computed along a curve connecting the points (x0, y0) and
(x1, y1) (these points are fixed) and is called the optical length of the curve.
The parameter s is the arc-length parameter on the curve (i.e., a parameter,
whose increment on any arc of the curve is equal to the length of the arc).
The integral can be thought of as the one-variable integral

L∫
0

ds

v(x(s), y(s))
,

where L is the total length of the curve, and x = x(s), y = y(s) is the
representation of the curve through the arc-length parameter s. Thus the
optical length is a function of the curve, and this function is defined on all
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sufficiently smooth curves with fixed endpoints. Fermat’s principle states
that a light ray is a curve, on which this function attains its minimum.

Fermat’s principle needs some corrections. For example, we need to
consider not only the paths, on which the traversing time is minimal but
also the paths representing critical points of the function of optical length.1

This modification is similar to considering, instead of the minima of a one-
variable function, the points, at which the derivative of the function vanishes.
The points of the minimum satisfy this condition, but not only them.

Consider a homogeneous and isotropic medium, i.e., a medium, in which
the speed of light depends neither on the point, nor on the direction. Then
the optical length of a curve is proportional to the usual Euclidean length.
Thus to minimize the time is the same as to minimize the length. We know
which curves in a Euclidean space minimize the length — these are straight
lines. Thus, in a homogeneous and isotropic medium, the light propagates
along straight line rays.

However, these rays may reflect in surfaces, which does not follow directly
from Fermat’s principle, if the latter is understood verbatim. Indeed, if a
light ray chooses between going along a straight line and reflecting, say, in
the surface of a lake, then, according to Fermat’s principle, it must choose
the former. In real life, both variants are chosen, although the latter is
chosen, that is to say, with a smaller weight depending on the reflecting
properties of the surface. Why this is happening is a difficult question,
which we will not discuss here. We would need to employ some quantum
mechanics for that.

Suppose that the ray has to reflect in a smooth surface. A particular
way of doing that is described by Fermat’s principle. For simplicity, we
consider a two-dimensional problem. A light ray emanates from a point A
and reflects in a line l. An observer located at a point B sees the reflected
light. What is the shape of the ray between the point A and the point B?

This is a mathematical problem:

1.1. Find the curve of the smallest length connecting the points A and B having at least
one point in common with l. We assume that A and B are on the same side of the line l
(otherwise the problem is obvious). See Figure 1.1.

This problem admits an elegant solution using the method of reflections,
which is sometimes studied in high-school geometry classes. However, this

1If paths are regarded as points of a functional space, then one can talk about critical
points of a functional defined on this space — points, at which the differential of the
functional equals zero. Values of the functional at its critical points are called critical
values. In the classical calculus of variations and theoretical mechanics, critical values are
called stationary values. We will also sometimes use this terminology.
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Figure 1.1: The curve of the smallest length connecting two given points
and having a point in common with a given line.

problem can also be solved by “brute force”. To this end, we observe that
the optimal curve (if such curve exists) must consist of two straight line
segments, one of which connects the point A with a point X on the line l,
and the other connects the point X with the point B. Thus, our problem
reduces to an optimization problem with one parameter. As a parameter,
we can take the coordinate of the point X on the line l. Let u denote this
coordinate. We will write X(u) instead of X, meaning the point on the
line l, whose coordinate is u. We of course assume that the coordinate u
is chosen so that the distance between the points X(u) and X(u′) equals
|u− u′|.
1.2. Compute the derivative with respect to u of the distance between the points A and
X(u) (express the answer through the angle between the line segment [A,X(u)] and the
line l).

Let α be the angle between the line segment [A,X(u)] and the line l. The
answer to the problem posed above is: ± cosα. See figure 1.1, in which some
clarifications are provided. The sign depends on which of the two angles is
taken as α. Now, in order to find the shortest reflected ray, we need to find
the minimum of the following single variable function:

f(u) = |AX(u)|+ |X(u)B|,

where |AX| denotes the Euclidean distance between the points A and X.
Equating the derivative of the function f to zero, we obtain that the angle
of incidence must be equal to the angle of reflection.

When passing from one medium to another, a ray is refracted. This
phenomenon is related with the fact that the speed of light changes on the



1.1. THE LEAST TIME PRINCIPLE OF FERMAT 5

A

l
X Y

P

Α

Figure 1.2: The derivative of the distance |AX(u)| with respect to u equals
cosα. Points X = X(u) and Y = X(u+∆u) are shown in the figure. The
difference |AY |−|AX| is approximately equal to |PY |, i.e., is approximately
equal to |XY | cosα = (∆u) cosα.

boundary between the two media. Suppose that one medium occupies the
upper half-plane, and the speed of light in this medium equals c1, and the
second medium occupies the lower half-plane, and the speed of light in this
medium equals c2. For example, we can think of having air above and water
below. Let l be the horizontal line separating the two media. As before, we
let X(u) stand for the point in the line l, whose coordinate is equal to u.

Suppose that a light ray is attempting to reach a point B from a point
A, the latter point being in the air and the former point being in the water.
It is clear that the ray will first traverse the straight line segment connecting
A with some point of the line l, and then traverse some straight line segment
connecting this point with B. We arrive at the minimization problem for
the following function:

f(u) =
|AX(u)|

c1
+

|X(u)B|
c2

.

Equating the derivative of the function f to zero, we obtain the following
equation:

cosα1

c1
=

cosα2

c2
.

Let α1 be the angle between the line segment [A,X(u)] and the line l, and
let α2 be the angle between the line l and the line segment [X(u), B]. The
angles are chosen so that either both are acute or both are obtuse. We will
assume that the both angles are acute, see Fig. 1.1.
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Figure 1.3: Refracting light ray passing from a medium, in which the speed
of light equals c1, to the medium, in which the speed of light equals c2.

The thus obtained relation between cosα1 and cosα2 is called Snell’s
law. This law was obtained by Snell (Latin version: Snellius) in 1621.

The following heuristic argument allows to generalize Snell’s law to the
case of an isotropic medium, in which the speed of light (as a scalar-valued
function of a point) depends only on the y-coordinate. Let us first imagine
a medium consisting of a big number of horizontal layers. Each layer is
bounded by two parallel horizontal planes (more precisely, if we think about
a planar medium, by two horizontal lines). Suppose that each layer is ho-
mogeneous. Let ci denote the speed of light in the i-th layer. Then Snell’s
law implies that the value

cosαi

ci

is constant, i.e., does not depend on i. We now let the layers become thin-
ner and thinner. Every isotropic medium, in which the speed of light is a
smooth function v(y) of the coordinate y only, can be approximated by me-
dia consisting of finite but large number of thin horizontal layers. Passing
to the limit (here we allow a “physical” level of rigor and not justify the
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limit), we obtain that
cosα(t)

v(y(t))
= const

along every light ray (meaning that the value in the left-hand side does not
depend on t). Here t is any parameter on the light ray (for example, we can
impose that x(t) and y(t) are the coordinates of the photon at time t). The
angle α(t) is the angle between the light ray and the horizontal direction at
the point (x(t), y(t)). The obtained law is called generalized Snell’s law.

Generalized Snell’s law can be rewritten as a differential equation on the
trajectory. Set

κ =
cosα(t)

v(y(t))
.

This value does not depend on t by generalized Snell’s law. Suppose that
a light ray is the graph of some function y = y(x). Then we can take x
instead of t on the given light ray. The angle α(x), i.e., the slope of the light
ray (relative to the horizontal direction) is related to the derivative of the
function y(x). Namely, as we know, the derivative is equal to the tangent of
the slope. The tangent and the cosine are related by the following formula:

1 + tan2 α =
1

cos2 α
.

Thus we obtain the following differential equation on the light rays:

dy

dx
=

√
1− κ2v2(y)

κv(y)
.

The right-hand side of this equation depends only on y. Therefore, the
obtained equation is separable.

1.1.1 Willebrord Snellius (1580–1626)

Dutch mathematician, physicist and astronomer, professor of Leiden university. He devel-
oped a triangulation method for geodesic measurements, in particular, for the computing
the radius of the Earth. In 1621, he discovered the law of refraction of light. However,
as it turned out, this law had been previously known to the Persian mathematician and
physicist Ibn Sahl (the law of refraction appears in his treatise on the optical lenses dated
984).

1.1.2 Pierre de Fermat (1601–1665)

A councillor of the Toulouse parliament and an amateur mathematician. He is most fa-
mous for his mathematical inventions presented mainly in a private correspondence with
mathematicians. The author of fundamental notions and methods of analytic geometry,
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number theory, analysis and probability. Fermat stated the least time principle and de-
duced Snell’s law from it (1657). However, Fermat thought that the light propagates
with infinite speed, which resulted in a somewhat misleading formulation of the least time
principle.

1.1.3 Brachistochrone problem

One of the most interesting applications of generalized Snell’s law is to the brachistochrone
problem. Suppose that two points A and B are given, and the point B is located lower
than A but not on the same vertical line. Consider various curves connecting A with B.
Imagine a particle sliding along these curves without friction. A brachistochrone is a curve
such that the sliding time — the time it takes a particle to slide along this curve — is
the minimal possible. A sliding particle always starts in A and terminates in B; and the
initial velocity is always zero (we do not push the sliding particles).

The problem of finding a brachistochrone can be formally reduced to a problem in
geometric optics. Indeed, the sliding time along a curve is equal to the integral∫

ds

v
,

computed along this curve. If it happens so that the speed v of a sliding particle depends
only on the position of the particle and not on the curve, then the problem will reduce to
geometric optics.

The speed v can be found from the conservation of energy:

mv2

2
−mgy = 0.

(We let the y-axis be oriented downwards, so that the potential energy decreases with y,
and we have the minus sign. We also assume that the point A is at height y = 0, hence
the potential energy equals mgy. At the initial moment, the sliding particle is at height
0, and its speed vanishes, therefore, the total energy is equal to zero.) We obtain that

v =
√

2gy.

We see that, indeed, v depends only on a position but not on the curve. Moreover, v
depends only on the y-coordinate. Therefore, we can use generalized Snell’s law.

We have already established that Snell’s law can be rewritten as a separable ODE on
the light rays. Light rays can be found in the form of function graphs y = y(x). In our
case, the ODE takes the form

dy

dx
=

√
1− 2gκ2y

κ
√
2gy

.

Separating the variables and integrating, we obtain:∫ √
2gκ2ydy√
1− 2gκ2y

=

∫
dx.

In order to compute the integral in the left-hand side, it is convenient to make the following
change of variables:

2gκ2y = sin2 ϕ
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(the old variable is y, the new variable is ϕ; these variables are related by the equation
displayed above) Performing the integration, we obtain that

ϕ

2
− sin 2ϕ

4
= gκ2x+ C.

Replace 2ϕ with ϕ (this is just a reparameterization of a curve), x with 4gκ2x and y with
4gκ2y (this is a dilation, i.e., the change of the unit of length). We obtain:

x = ϕ− sinϕ+ const, y = 1− cosϕ.

It is easy to see that this equation describes a cycloid, i.e., the trajectory of a point
attached to the edge of a wheel that is rolling along a horizontal line without sliding. To
be more precise, we obtained the reflected (in the horizontal line) trajectory.

A cycloid is a periodic curve with countably many cusps. A brachistochrone is a part
of a cycloid extending from a cusp to a point strictly before the next cusp. Note that,
at the point A, the tangent line to the brachistochrone is vertical. This is in accordance
to intuitive understanding: at the initial moment, a sliding particle needs to accelerate as
fast as possible. On the other hand, this property of a brachistochrone makes it useless
for practical purposes (such as finding the optimal shape of a mountain tunnel etc.).

1.1.4 Problems

1.3. Deduce from Fermat’s principle that, under reflection in any smooth curve in the
plane (located in a homogeneous and isotropic medium), the angle of reflection equals the
angle of incidence.

1.4. All walls in a room are reflecting. A source of light is located at a single point of the
room. Is it possible to choose the shape of the room and the location of the source so that
to keep some places dark (not illuminated by the light of the source, not even multiply
reflected)?

1.5. Consider an isotropic medium occupying the upper half-plane y > 0, in which the
speed of light is given by the formula v(x, y) = y. Find the shape of light rays in this
medium.

1.6. Consider an isotropic medium occupying the interior of the unit disk, in which the
speed of light is given by the formula v(x, y) = 1 − x2 − y2. Find the shape of light rays
in this medium.

1.7. The plane is filled with homogeneous and isotropic medium. There is a mirror in the
plane, whose shape is the graph of a function f . It is known that the vertical flow of light
reaching the mirror from above is reflected so that all reflected rays meet at a common
point (called the focus of the mirror). Find all sufficiently smooth functions f with this
property.

1.8. There are two homogeneous and isotropic media in the plane. The common boundary
of the media has the shape of the graph of a function f . It is known that the vertical flow
of light propagating downwards is refracted so that the refracted rays meet at a common
point. Rewrite this condition as a differential equation on the function f . (The speed of
light in the upper medium equals c1, and the speed of light in the lower medium equals
c2). Assuming that f ′(0) = 0, find a parabola that gives the best approximation of f near
0.
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1.2 The Huygens principle

So far, we studied trajectories of individual photons. However, it is also
interesting to have a description of for the propagation of a light stop, con-
sisting of many photons. Usually, there are too many of them. So that it is
impossible to keep track of individual particles. However, we can keep track
of the shape of the light spot.

Suppose that the photons start emanating from a point source in all
possible directions. What will be the shape of the light spot after time t?
LetX(x0, t) denote the light spot (thought of as a subset of the plane), where
the point x0 is the location of the source. More precisely, X(x0, t) is the set
of all points, which light can reach in time 6 t. We do not assume now that
the medium is isotropic. It can be non-homogeneous and unisotropic.

The Huygens principle describes the evolution law of the shape of
X(x0, t). Mathematically, this principle can be stated as follows:

Theorem 1.1 (Huygens principle). For every splitting t = t1 + t2 of the
time interval t into a sum of two nonnegative time intervals,

X(x0, t) =
∪

x1∈X(x0,t1)

X(x1, t2)

We now try to translate the formula into plain English. Consider the
light spot in time t1. Into each point of this spot, we place an imaginary
source of light, and let all these sources illuminate the space for time t2. In
this way, we obtain many secondary light spots. To obtain the light spot
in time t, we need to take the union of all the secondary light spots. We
will prove the Huygens principle assuming that Fermat’s principle holds
verbatim, i.e., the light chooses only those trajectories which correspond to
the minimal time.

Observe that the right-hand side of the equality expressing the Huygens
principle includes the set X(x0, t1). Indeed, x1 must necessarily lie in the
light spot X(x1, t2).

Proof of the Huygens principle. Let x be taken from the left-hand side of
the Huygens principle, i.e., x ∈ X(x0, t). The light emanated from x0 can
reach the point x in time s 6 t. If s 6 t1, then the point x belongs to
the set X(x0, t1), which is, as we have seen, a subset of the right-hand side.
On the other hand, if s > t1, then s = t1 + s2, where s2 6 t2. Consider
the trajectory of a photon emanated from x0 and reaching x. In time t1,
the photon reaches some point x1 ∈ X(x0, t1), and then in time s2 6 t2, it
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reaches the point x, from which we deduce that x ∈ X(x1, t2). Therefore, x
lies in the right-hand side.

We now suppose that x lies in the right-hand side of the formula express-
ing the Huygens principle. This means that the point x can be reached by
a photon going first from x0 to some point x1 ∈ X(x0, t1), and then from
x1 to x ∈ X(x1, t2). We know that the time it takes to traverse the first
trajectory does not exceed t1, and the time it takes to traverse the second
trajectory does not exceed t2. The union of the two trajectories may fail to
be a genuine trajectory of a photon. However, this union is a curve such that
it takes time t or less to traverse it. This implies that a photon emanated
from x0 reaches the point x in time 6 t (by Fermat’s principle).

Example. Consider a homogeneous but unisotropic medium. In such a
medium all light spots obtained in time t differ by parallel translations only.
Therefore, there is a figure X(t) depending only on t such that

X(x0, t) = x0 +X(t)

for every point x0. Here x0 + X stands for the parallel translate of X by
the vector x0, i.e., the set of points x0 + x, x ∈ X. The Minkowski sum of
two sets A, B ⊂ Rn is defined as follows:

A+B = {a+ b | a ∈ A, b ∈ B}.

For example, if B is the ball of radius ε > 0 centered at the origin, then
A+B is the ε-neighborhood of the set A.

1.9. Let A be the union of two straight line segments in the plane

[(0, 0), (1, 0)] ∪ [(0, 0), (0, 1)].

Draw the sets A+A, A+A+A, A+A+A+A and compare them with 2A, 3A, 4A.

Let us resume our discussion of a homogeneous unisotroic medium. We
found out that such a medium is described by one function X(t), taking
values in subsets of Rn. The Huygens principle can be restated as the
following functional equation:

X(t1 + t2) = X(t1) +X(t2)

for all t1 and t2. It is interesting to find all solutions of this equation under
sufficiently general assumptions on the functionX(t). It is natural to impose
a kind of continuous dependence of X(t) on t. Observe that the function
t 7→ tA is a solution of our equation only if the set A is convex (prove!).



12 CHAPTER 1. GEOMETRIC OPTICS

Let us go back to the case of a general (i.e., non-homogeneous and
unisotropic) medium. Following Hamilton, define the function

W (x0,x) = inf{t | x ∈ X(x0, t)}.

If the point x has coordinates (x0, y0), and the point x has coordinates (x, y),
then the function W (x0,x) can be written as a function of four variables:
W (x0, y0, x, y). In other words, W (x0,x) is the minimal time it takes light
to go from x0 to x. If Fermat’s principle holds verbatim, then this is simply
the time, in which the light goes from x0 to x, and this time is automatically
minimal. In real life, this assertion is generally true only if the points x0 and
x are sufficiently close (and even in this case, it is not always true). Note
that the set X(x0, t) can be given by the inequality

W (x0,x) 6 t.

The surface Γt(x0) given by the equation W (x0,x) = t for a fixed t is called
a light front. The Huygens principle is often stated for light fronts rather
than for light spots. In this case, one has to speak about the envelope of
light fronts.

We now give this formulation for the plane. Suppose we are given a
family of curves Cλ in the plane depending on one parameter λ. For example,
such a family can be defined parametrically, if the curve Cλ is given by
x = x(t, λ), y = y(t, λ) in terms of a parameter t. Here t is a parameter on
the curve, and λ is a parameter indicating the choice of the curve Cλ among
all curves of our one-parameter family (thus, if we fix the curve, then the
parameter λ is also fixed). A curve C is called an envelope of the family
Cλ if it is tangent to all curves of the family, and every point of C is the
tangency point with some Cλ. We can now state the Huygens principle for
light fronts.

Theorem 1.2. Suppose that all light fronts in the plane filled with a given
medium are smooth and convex. Suppose also that any pair of points is
connected by a light ray. Fix a splitting t = t1 + t2 of a time interval t into
a sum of two nonnegative time intervals. Then the light front Γt(x0) is the
envelope of the “secondary” light fronts Γt2(x1) emanating from points x1

of the “primary” light front Γt1(x0).

Proof. Under the assumptions we have made, the light spot X(x0, t) is al-
ways the convex hull of Γt(x0). Let x1 be any point of the light front Γt1(x0).
Note that Γt2(x1) has a point in common with Γt(x0), namely, the point,
which the ray emanated from x0 and passing through x1 reaches in time
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Figure 1.4: This picture illustrates Theorem 1.2. The interior of the primary
light front is colored gray. The big circle in the picture is the envelope of all
secondary fronts.

t. It suffices now to use the following fact: if one smooth curve lies in the
convex hull of another smooth curve, and the two curves have a point in
common, then they are tangent at this point.

The indicatrix I(x0) (of a given medium) at a point x0 is defined as
the surface formed by the tips of all vectors v that are velocity vectors of
photons passing through x0 in all possible directions. In each direction,
there goes one such vector. For example, if the medium is isotropic, then
the indicatrix is a ball. In general, we will assume that the indicatrices are
smooth surfaces. An indicatrix can be thought of as a shape of infinitesimal
light front. Namely, under some natural assumptions,

I(x0) = lim
t→0

1

t
(Γt(x0)− x0) .

The set Γt(x0)− x0 is the light front translated so that the center coincides
with the origin. What the limit of a family of sets means should of course
be specified. However, we will give neither the precise statement of the
result nor the precise assumptions, under which it holds. This is sufficiently
cumbersome, and we are anyway discussing informal motivations only at
this point. We confine ourselves with the remark that every point in the
left-hand side can be obtained as the limit of some points from the right-
hand side. Indeed, every element of the indicatrix is the velocity vector v of
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some ray. In time t, this ray reaches a certain point x(t) ∈ Γt(x0). By the
definition of the velocity, we have

v = lim
t→0

x(t)− x0

t
.

Theorem 1.3. Consider a ray emanating from the point x0 and passing
through the point x. Consider also the front Γ = {y ∈ R2 | W (x0,y) = t},
containing the point x. Let v be the velocity vector of light at the point x
tangent to the given ray. Then the tangent line of the indicatrix I(x) at the
point v ∈ I(x) is parallel to that of the front at the point x.

We will only give a heuristic argument convincing that this must be true
for the majority of good (in the optical sense) media. Consider a very small
time interval ∆t. The front Γ∆t(x) is approximated by (∆t)I(x) + x. We
know from Theorem 1.2 that the tangent line of the front Γ∆t(x) at a point
of the ray passing through x with the velocity v coincides with the tangent
line to Γt+∆t(x0) at the same point (recall that the point x0 is the source
of the front Γ = Γt(x0)). As ∆t→ 0, the first tangent line converges to the
tangent line of the indicatrix I(x) at the point v, and the second tangent
line converges to the tangent line of Γ at the point x. We will not give a
formal proof of the theorem (to this end, we would first need to make the
statement more precise), however, the theorem should be intuitively clear
(if it is not clear yet, try to draw pictures).

Theorem 1.4. Suppose that the plane is filled with an isotropic medium, in
which the speed of light is given by a function v(x, y). Then the velocity of
a light particle emanated from a point (x0, y0) at a point (x, y) equals

v = v(x, y)2
(
∂W

∂x
,
∂W

∂y

)
,

where W =W (x0, y0, x, y) (the derivatives are taken for fixed x0 and y0).

For example, if v(x, y) = 1 at all points (x, y), thenW (x0, y0, x, y) equals
to the length of the line interval connecting the points (x0, y0) and (x, y),
i.e.,

W (x0, y0, x, y) =
√

(x− x0)2 + (y − y0)2.

Set f(x, y) = W (0, 0, x, y). It is clear that the gradient of the function f
is directed radially and has length 1. This corresponds to the fact that the
light emanated from the origin propagates along straight lines with constant
speed.
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Proof of Theorem 1.4. Observe that the vector with coordinates
∂W
∂x (x0, y0, x, y) and ∂W

∂y (x0, y0, x, y) is perpendicular to the light front
at the point (x, y) (we mean the front emanated from the point (x0, y0) and
containing the point (x, y)). This is a consequence of the following general
statement: the vector (∂f∂x ,

∂f
∂y ) is perpendicular to a level curve of f .

Let v be the velocity vector of light at the point (x, y), directed along
the ray emanating from (x0, y0). Since the medium is isotropic, all its indi-
catrices are round disks. In particular, the tangent line of the indicatrix at a
point v is perpendicular to the vector v. By Theorem 1.3, the tangent line
of the front at the point (x, y) is parallel to the tangent line to the indicatrix
at the point v, i.e., is perpendicular to the vector v. Thus the vector v is
perpendicular to the light front. As we have already seen, the vector with
coordinates ∂W

∂x (x0, y0, x, y) and
∂W
∂y (x0, y0, x, y) is also perpendicular to the

light front. Therefore, these two vectors are proportional.
It remains to find the coefficient of proportionality. To this end, it suf-

fices to compute the length of the vector with coordinates ∂W
∂x (x0, y0, x, y)

∂W
∂y (x0, y0, x, y). This is the gradient of the function W , equal to the time
it takes light to reach the point (x, y) from the point (x0, y0). Thus the
length of the gradient is approximated by ∆t/∆s, where ∆s is the length of
a small arc of a ray, and ∆t is the time it takes the photon to traverse this
arc (we already know that the gradient of the function W is directed along
along the ray emanating from the point (x, y) — we use this fact here). On
the other hand, the speed of light at the point (x, y) is approximated by
∆s/∆t. We can deduce from here that the length of the vector (∂W∂x ,

∂W
∂y )

equals 1/v(x, y), where v(x, y) is the speed of light at the point (x, y).
The length of the vector v equals v(x, y). Thus the coefficient of propor-

tionality equals v(x, y)2.

It follows from the proof given above that the function W satisfies the
following partial differential equation (called the eikonal equation):(

∂W

∂x

)2

+

(
∂W

∂y

)2

=
1

v(x, y)2
.

Indeed, in the left-hand side, we have the length squared of the gradient
of W (the latter is viewed as a function of x and y, with fixed x0 and y0).
However, we have already found out that the length of the gradient equals
1/v(x, y).
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Chapter 2

Action functions and
Hamiltonians

2.1 The least action principle

A motion of any mechanical system is described by a variational principle
somewhat similar to Fermat’s principle. This variational principle is called
the least action principle and is often attributed to Hamilton (although the
principle was known earlier to Lagrange). A position of a mechanical system
can be associated with a point of a configuration space. We will now assume
that the configuration space coincides with Rn. Note that the case n > 3
is physically meaningful, since the mechanical system may comprise several
points. A motion of the system corresponds to a motion of a point in the
configuration space, i.e., to a smooth path γ : [t0, t1] → Rn. Suppose that
the initial and the terminal moments t0 and t1, respectively, are fixed. The
least action principle states that the trajectory γ of the mechanical system
is such that the integral ∫ t1

t0

L(γ(t), γ̇(t)) dt

along this trajectory, called the action functional, is minimal. When looking
for a minimum, we only compare smooth paths with fixed t0, t1, and with
fixed q(0) = γ(t0), q(1) = γ(t1). Here L is some function on Rn × Rn called
a Lagrange function (or a Lagrangian).

The least action principle needs some corrections similar to those neces-
sary for Fermat’s principle. In particular, we should impose not the minimal
value of the action functional but rather a stationary value.

17
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A significant difference of the least action principle from Fermat’s princi-
ple is the fact that the minimization happens with fixed initial and terminal
moments of time. However, one can get rid of the time parameter and state a
variational principle, similar to Fermat’s principle, that would just describe
the shape of a trajectory in the configuration space. After the trajectory
has been found, the parameterization is recovered from the conservation of
energy.

The arguments of a Lagrange function will be denoted by q ∈ Rn and
q̇ ∈ Rn. The argument q has the meaning of a position (or the tuple of
coordinates describing the position), and q̇ has the meaning of a velocity.
We need to stress however that q̇ is to be understood as an independent set
of variables rather than a velocity vector of a particular trajectory.

Theorem 2.1 (Euler–Lagrange equations). Consider a sufficiently smooth
path γ : [t0, t1] → Rn minimizing the action functional (we are currently not
discussing the question of existence of such a path). Then

d

dt

∂L

∂q̇

(
γ(t),

d

dt
γ(t)

)
=
∂L

∂q

(
γ(t),

d

dt
γ(t)

)
.

If q is just a number, i.e., if n = 1, then ∂L
∂q is the usual partial derivative

of the function L with respect to q. If q is a tuple of coordinates (q1, . . . , qn),
then the expression ∂L

∂q should be understood as the tuple of partial deriva-

tives ( ∂L
∂q1
, . . . , ∂L

∂qn
), or, better yet, as the differential of the function L re-

stricted to some fixed values of q̇ (if q and q̇ are fixed, then this is a linear
functional on the space Rn). The left-hand side of the equation displayed in
the theorem is obtained as follows. We first differentiate the function L(q, q̇)
by q̇, then substitute γ(t) for q and d

dtγ(t) for q̇, and, finally, differentiate
the expression thus obtained by t (note that the obtained expression is a
function of t only).

Proof. Consider a one-parameter family of paths (=parameterized curves)
connecting the points q(0), q(1) and parameterized by the interval [t0, t1]. We
will write t 7→ γ(t, s) to denote the path labeled by s. Thus, t is a parameter
along the path (having the meaning of time) and s is a parameter labeling
the path itself (thus, variation of this parameter corresponds to a variation
of the path).

Suppose that the function γ(t, s) is a sufficiently many times differen-
tiable function of two variables. The differentiation by t will be written as
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a dot, and the differentiation by s as the symbol δ. We have

0 = δ

∫ t1

t0

L(γ(t, s), γ̇(t, s)) dt =

∫ t1

t0

(
∂L

∂q
δγ +

∂L

∂q̇
δγ̇

)
dt =

=

∫ t1

t0

(
∂L

∂q
δγ −

(
d

dt

∂L

∂q̇

)
δγ

)
dt+

∂L

∂q̇
· δγ

∣∣t1
t0

=

=

∫ t1

t0

(
∂L

∂q
−

(
d

dt

∂L

∂q̇

))
δγ dt.

The first equality holds for a parameter s, for which the action functional
takes the minimal value on the path t 7→ γ(t, s) (we may assume, e.g., that
this minimal value is attained at s = 0). This equality follows from the fact
that the derivative of a differentiable function at a point of a minimum must
vanish. The second equality is a differentiation under the integral sign. The
product ∂L

∂q δq means the value of the linear functional ∂L
∂q at the vector δq.

In coordinates, this value can be written as

∂L

∂q
δq =

n∑
i=1

∂L

∂qi
δqi.

The third equality is the integration by parts. In the fourth equality, we use
that γ(s, t0) = q(0) does not depend on s, and that γ(s, t1) = q(1) does not
depend on s, hence, δγ = 0 for t = t0 and for t = t1.

Observe finally that if t 7→ γ(t) is a sufficiently smooth path minimizing
the action functional, and t 7→ α(t) is any sufficiently smooth mapping of
[t0, t1] to Rn such that α(t0) = α(t1) = 0, then the family of paths

γ(t, s) = γ(t) + sα(t),

is such that δγ = α for s = 0. Thus we have proved that the integral∫ t1

t0

(
∂L

∂q
−

(
d

dt

∂L

∂q̇

))
αdt

vanishes for any sufficiently smooth mapping α : [t0, t1] → Rn taking zero
values at the endpoints of [t0, t1]. It follows that the integrand vanishes
identically, i.e.,

∂L

∂q
− d

dt

∂L

∂q̇
= 0,

if, instead of q and q̇ (even before differentiating by t!) we substitute γ(t)
and γ̇(t).
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In the proof of the theorem, we have used the following lemma:

Lemma 2.2. Let F : [t0, t1] → Rn∗ be a continuous mapping. If, for any
sufficiently smooth mapping α : [t0, t1] → Rn such that α(t0) = α(t1) = 0,
we have ∫ t1

t0

F (t)α(t)dt = 0,

then F is identically equal to zero. Here F (t)α(t) is the value of the canonical
pairing between the co-vector F (t) and the vector α(t).

A proof of the lemma is not hard, and is left to the reader.
Let γ : [t0, t1] → Rn be a smooth path minimizing the action functional

among all paths satisfying γ(t0) = q(0), γ(t1) = q(1). We will call such a path
optimal. The least action principle in the (uncorrected) form it was stated
above states that a mechanical system always moves along an optimal path.
In reality, this is not always so. A genuine trajectory (sometimes abbreviated
as trajectory) is a path satisfying the Euler–Lagrange equations. Because of
corrections to the least action principle, mechanical systems can move along
genuine trajectories that are not optimal paths. The corrected least action
principle can be stated as follows: a motion of a mechanical system satisfies
the Euler–Lagrange equations, i.e., it is a genuine trajectory.

Example. Suppose that the Lagrangian of a mechanical system does not
depend on coordinates, i.e., depends on the velocities only (this is similar
to studying optical properties of a homogeneous unisotropic medium) In
this case, the Lagrangian has the form T (q̇). We assume that the mapping
∂T
∂q̇ : Rn → Rn (i.e., the first differential of the function T ; formally speaking,
this is a mapping of the space Rn to the dual space Rn∗) is invertible. The
Euler–Lagrange equations take the form

d

dt

∂T

∂q̇
= 0.

This means that ∂T
∂q̇ is constant along trajectories, i.e., for every trajectory

γ, we have ∂T
∂q̇ (γ̇(t)) = const. This and the invertibility of the mapping ∂T

∂q̇
implies that γ̇(t) does not depend on t, i.e., the genuine motion is uniform
and rectilinear.

Example. Let now L(q, q̇) be a quadratic form of q̇ ∈ Rn, whose coefficients
may depend on q ∈ Rn (sufficiently smoothly). By the Euler theorem on
homogeneous functions,

q̇ · ∂L
∂q̇

=
n∑

i=1

q̇i
∂L

∂q̇i
= 2L.
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For q and q̇, we substitute q(t) and q̇(t) — the position and the velocity at
time t of a point moving along a genuine trajectory. Now differentiate both
sides by t:

q̈(t) · ∂L
∂q̇

+ q̇(t) · d
dt

∂L

∂q̇
=
∂L

∂q
· q̇(t) + ∂L

∂q̇
· q̈(t) + dL

dt
.

We did the following trick here: it was 2L in the RHS, we differentiated
one L according to the chain rule, and kept the derivative of the other L
as is. Using the Euler–Lagrange equations and killing similar terms in the
RHS and the LHS, we obtain that d

dtL = 0. This mean that the quantity
L(q(t), q̇(t)) is constant along trajectories, i.e., does not depend on time.
By definition, this means that the function L(q, q̇) is a first integral of the
Euler–Lagrange equations, or, to put it differently, the first integral of the
motion with the Lagrangian L.

We may view L(q, q̇) as the energy of a free particle with velocity q̇ in
a curved space. The fact that the energy depends on q has to do with the
space being curved. An important fact, however, is that the kinetic energy
depends quadratically on the velocity.

A free motion is characterized by the absence of the potential energy. In
a flat (Euclidean) space, the kinetic energy of a particle has the form

L(q, q̇) =
m|q̇|2

2
,

where m > 0 is the mass of a particle. We may assume without loss of
generality that the mass is equal to one. The number |q̇| is the speed —
the absolute value of the velocity measured with respect to the Euclidean
metric.

We now assume that, for every q ∈ Rn, the quadratic form q̇ 7→ L(q, q̇)
has the following property: L(q, q̇) > 0 for all nonzero vectors q̇. Then
L(q, q̇) is the modulus squared of the vector q̇ with respect to some Eu-
clidean metric. However, this metric depends on the point q. Such metrics
(Euclidean metrics depending on a point) are called Riemannian metrics.
Thus, our Lagrangian function is a Riemannian metric. In the sense of this
metric, the square of the length of the vector q̇ at the point q is equal to
L(q, q̇). It is not hard to compute the length of the curve γ : [t0, t1] → Rn

with respect to the metric L:

Len(γ) =

t1∫
t0

√
L(γ(t), γ̇(t)) dt.
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Thus the length of a curve also has the form of an action functional, however,
this action corresponds not to the Lagrangian L but rather to the Lagrangian√
L. Optimal paths for the Lagrangian

√
L are called shortest paths. These

are the paths of the least length among all paths connecting the given pair
of points (the endpoints of a shortest path).

Observe that the length of a curve does not depend on its parameter-
ization. In particular, if γ : [t0, t1] → Rn is a shortest path, then so is
any path obtained from γ by re-parameterization, i.e., every path of the
form γ̃ : [s0, s1] → Rn, where γ̃(s) = γ(h(s)) for some homeomorphism
h : [s0, s1] → [t0, t1]. However, a shortest path γ carries a natural pa-
rameter, in which the speed is constant, i.e, L(γ(t), γ̇(t)) does not depend
on t. Genuine trajectories of the Lagrangian L are called geodesics of the
Riemannian metric L.

Theorem 2.3. Let L be a Riemannian metric. The geodesics of the metric
L are also trajectories of the Lagrangian

√
L. Conversely, if a trajectory

of the Lagrangian
√
L (e.g., a shortest path) has the property that L =

const along these trajectories, then this trajectory is also a geodesic of the
Riemannian metric L.

Proof. We have:

∂
√
L

∂q
=

1

2
√
L

∂L

∂q
,

∂
√
L

∂q̇
=

1

2
√
L

∂L

∂q̇
,

Consider a geodesic of the Riemannian metric L, i.e. a trajectory of L.
As we know, L restricted to this trajectory does not depend on time. We
need to verify that the considered trajectory satisfied the Euler–Lagrange

equations for the Lagrangian
√
L, i.e., we have d

dt
∂
√
L

∂q̇ = ∂
√
L

∂q . The LHS

equals 1
2
√
L

d
dt

∂L
∂q̇ , since L = const with respect to t. The RHS equals 1

2
√
L

∂L
∂q .

Thus the Euler–Lagrange equations for the Lagrangian
√
L follow from those

for the Lagrangian L.

The proof of the converse statement is similar.

Thus, every shortest path admits a re-parameterization, in which it be-
comes a geodesic. However, not every geodesic is a shortest path. For
example, geodesics in the sphere are arcs of great circles (i.e., circles ob-
tained as sections of the sphere by planes through the center). However, an
arc of a great circle is a shortest path only if its length is less than the half
the length of the circle.
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2.1.1 Problems

2.1. Write down a system of differential equations in polar coordinates satisfied by any
straight line. More precisely, let x(t), y(t) be the affine coordinates of a point in a line,
i.e., x(t) = a + bt, y(t) = c + dt for some constants a, b, c, d ∈ R, such that b2 + d2 ̸= 0.
Let r(t), ϕ(t) denote the corresponding polar coordinates. Find differential equations on
the functions r(t), ϕ(t).

2.2. Find the trajectories of the Lagrangian

L(x, y, ẋ, ẏ) =
(ẋ)2 + (ẏ)2

2
+ y.

2.3. Consider the Lagrangian defined in the upper half-plane by the formula

L(x, y, ẋ, ẏ) =
(ẋ)2 + (ẏ)2

y2

Prove that the trajectories of this Lagrangian are half-circles centered at the horizontal
line y = 0.

2.4. Prove that the trajectories of the Lagrangian

L(x, y, ẋ, ẏ) = ẋ2 + ẏ2 +
1√

x2 + y2

are subsets of degree two algebraic curves.

2.5. A particle slides on the surface of the sphere with no friction and no external forces.
Find its Lagrangian in the spherical coordinates.

2.6. Write down (differential) equations for geodesics on the paraboloid of revolution
z = x2 + y2.

2.7. Prove that, for any positive R and a, the geodesics of the Riemannian metric

L(x, y, ẋ, ẏ) = R2 (a
2 + x2)ẏ2 + 2xyẋẏ + (a2 + y2)ẋ2

(a2 + x2 + y2)2

are intervals of straight lines.

2.8. A minimal surface of revolution. Consider all surfaces of revolution, whose axis
coincides with the z-axis, and whose boundary coincides with the union of two circles
centered at the z-axis. It follows automatically from this requirement that the bounding
circles lie on the planes perpendicular to the z-axis. Suppose that, among all such surfaces,
one can find a surface of the smallest area. Find this surface.

2.2 Legendre transform and Hamiltonians

First consider a sufficiently many times differentiable function f : R → R
of one real variable. The graph of f can be recovered from the set of all
tangent lines to the graph. The idea of the Legendgre transform is passing
from f to the family of all tangent lines to the graph of f . Suppose that f is
strictly convex, i.e., the derivative f ′ is strictly increasing. Then, for every
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p ∈ R, there is a unique tangent line of the graph of f , whose slope is equal
to p. We can write the equation of this tangent line as y = px− g(p). Here
g(p) is just a constant coefficient, for every fixed p. However, this coefficient
depends on p. Thus the function p 7→ g(p) defines a family of lines in the
plane such that no line of this family is vertical (in our particular case, we
obtain the family of all tangent lines of the graph of f). The g is called the
Legengre transform of the function f , and is often denoted by f̂ . The term
“Legendre transform” may also refer to the passage from the function f to
the function f̂ .

The Legendre transform is a particular case of a more general construc-
tion that associates, say, a curve in the plane, with the family of all tangent
lines of this curve. This construction is very useful in algebraic geometry
(as well as in some branches of mathematical physics), and is called the
projective duality.

People often use a different definition of the Legendre transform, which
we are about to give. Observe that the graph of f lies always above any
tangent line of it. This fact can be rewritten as the inequality f(x) >
px − f̂(p), in which the equality is attained at a unique point x(p) — the
point of tangency. An equivalent inequality is the following:

f̂(p) > px− f(x).

In this inequality, the equality is also attained at a unique point x(p). There-
fore, the function f̂(p) can be also defined by the following formula:

f̂(p) = min(px− f(x)).

Let us compute the derivative of the Legendre transform:

d

dp
f̂(p) =

d

dp
(px(p)− f(x(p))) = x(p) + p

dx(p)

dp
− f ′(x(p))

dx(p)

dp

Note however that f ′(x(p)) = p (the derivative of a function coincides with
the slope of the corresponding tangent line). Therefore, the computation
performed above shows that d

dp f̂(p) = x(p), i.e., the derivative of the Leg-
endre transform of f at a point p coincides with the x-coordinate of the
tangency point of the graph of the function f and its tangent line, whose
slope equals p.

The Legendre transform is also defined for functions of many variables.
Consider an open convex subset U ⊆ Rn and a sufficiently smooth function
f : U → R. We say that the function f is strictly convex if for any two points
a, b ∈ Rn the entire line segment with endpoints (a, f(a)) and (b, f(b)) lies
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above the graph of f , except for the endpoints. The first differential dxf of
the function f at a point x ∈ Rn is a linear functional on Rn, i.e., an element
of the space Rn∗. Let Û ⊆ Rn∗ denote the set of all linear functionals of
the form dxf , where x ∈ U . For every element p ∈ Û , there exists a unique
tangent hyperplane of the graph of f , given by y = p · x − g(p). In this
formula, the product p · x means the value of the linear functional p at the
vector x. In coordinates, if x = (x1, . . . , xn) and p = (p1, . . . , pn), then
p · x = p1x1 + · · · + pnxn. The function g : Û → R is called the Legendre
transform of f and is often denoted by f̂ . An equivalent definition of the
Legendre transform is that

f̂(p) = min (p · x− f(x)) .

The minimum is attained at a unique point x(p). Thus we have

f̂(p) = p · x(p)− f(x(p)).

Moreover, similarly to the case of one-variable functions, we obtain that the
first differential of the function f̂ at a point p ∈ Rn∗ coincides with the
vector x(p) (under the natural identification of the dual space of Rn∗ with
the space Rn).

Now consider the Lagrangian L(q, q̇) of some mechanical system. Sup-
pose that, for any fixed q, this function is a strongly convex function of q̇.
We let H(q, p) denote the Legendre transform of this function (as a function
of q̇ with q fixed). The function H(q, p) is called the Hamiltonian function,
or a Hamiltonian. By definition of the Legendre transform, the Hamiltonian
is given by the formula

H(p, q) = p · q̇ − L(q, q̇),

in which q̇ is expressed through p by the formula p = ∂L
∂q̇ (due to strict

convexity, this equation is always solvable for q̇). The Hamiltonian is defined
on some open subset of Rn∗×Rn. We will often assume that this open subset
is the whole of Rn∗ × Rn.

The space Rn∗ × Rn is called the phase space. Consider a genuine tra-
jectory q(t) in the configuration space Rn. It defines a phase trajectory
(p(t), q(t)) in the phase space, where p(t) is defined as ∂L

∂q̇ (q(t), q̇(t)). The
vector p(t) is called the momentum of the system at time t.

Theorem 2.4 (Hamilton’s equations). Let q(t), p(t) be the position and the
momentum of a system at time t (we of course assume that the system is
moving along a genuine trajectory). Then

q̇(t) =
∂H

∂p
(p(t), q(t)), ṗ(t) = −∂H

∂q
(p(t), q(t)).
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Proof. The first equality follows from the formula for the first differential
of a Legendre transform. Note that this equality does not make use of the
Euler–Lagrange equations. It can be ultimately reduced to the definition of
the momentum.

Consider the equality

H(p, q) = p · q̇(p, q)− L(q, q̇(p, q)),

in which q̇(p, q) is found from the formula p = ∂L
∂q̇ (q, q̇(p, q)), or, more ex-

plicitly, from the formula q̇(p, q) = ∂H
∂p (q, p). Differentiate this equality by

q:
∂H

∂q
= p · ∂q̇(p, q)

∂q
− ∂L

∂q
(q, q̇(p, q))− ∂L

∂q̇
(q, q̇(p, q)) · ∂q̇(p, q)

∂q
.

The first and the last terms in the RHS cancel each other, therefore,

∂H

∂q
= −∂L

∂q
(q, q̇(p, q)).

Now use the Euler–Lagrange equations:

−∂L
∂q

(q(t), q̇(p(t))) = −∂L
∂q

(q(t), q̇(t)) = − d

dt
p(t).

We need to recall here that p(t) = ∂L
∂q̇ (q(t), q̇(t)).

The system of Hamilton’s equations is sometimes called the system of
canonical equations.

Theorem 2.5 (Conservation of Energy). Let q(t) and p(t) be the position
and the momentum of the system at time t. Then H(p(t), q(t)) does not
depend on t (in other words, the mechanical energy is conserved).

Proof. Indeed, differentiate H(p(t), q(t)) by t:

d

dt
H(p(t), q(t)) =

∂H

∂q
q̇ +

∂H

∂p
ṗ =

=
∂H

∂q

(
∂H

∂p

)
+
∂H

∂p

(
−∂H
∂q

)
= 0.

In the second equality, we used Hamilton’s canonical equations.
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One can consider Hamiltonians depending explicitly on time. For such
Hamiltonians, the conservation of energy fails. It is replaced with the law
d
dtH(p(t), q(t), t) = ∂H

∂t (p(t), q(t), t). In the right-hand side, the differentia-
tion is performed only by the third argument t.

In most mechanical problems, the Lagrangian has the form

L(q, q̇) = Tq(q̇)− U(q),

where Tq(q̇) is a positive definite quadratic form of q̇, whose coefficients
depend smoothly on q (i.e., a Riemannian metric on the configuration space),
and the function U(q) does not depend on q̇, i.e., is simply a function on
the configuration space. The physical meaning of the functions Tq(q̇) and
U(q) is that the first function represents the kinetic energy of the system,
and the second function represents the potential energy. The corresponding
Hamiltonian has the form

H(q, p) = Tq(q̇(p)) + U(q).

2.2.1 Problems

2.9. Find the Legendre transforms of the following functions:

(a) f(x) = ex

(b) f(x) = xα

α

Answer :
(a) f̂(p) = p(log p− 1).

(b) f̂(p) = pβ

β
, 1

α
+ 1

β
= 1.

2.10. Find the Legendre transform of the function

f(x, y) = x4 + y4.

2.11. Let f : Rn → R be a twice differentiable strictly convex function. Prove that the
differentials of the function f at different points of the space Rn cannot be the same.

2.12. Let f : Rn → R be a smooth function, whose second differential d2xf is positive
definite for every point x ∈ Rn. Verify that, in this case, d2yf̂ > 0 for all y ∈ Rn∗.

2.13. Let U ⊂ Rn be an open convex set, and let f : U → R be a strictly convex function.
Recall that Û denotes the domain of the function f̂ . Prove that for every x ∈ Rn and
every p ∈ Û , we have

f(x) + f̂(p) > p · x.

This inequality is called the Young inequality. Setting f(x) = xα/α, where α > 1, we
obtain the classical Young inequality (we use the already performed computation of the
Legendre transform for f):

xα

α
+
pβ

β
> p · x, 1

α
+

1

β
= 1.
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2.14. Suppose that the Legendre transform f̂ of a strictly convex sufficiently many times
differentiable function f is defined on the whole of Rn. Prove that the function f̂ is also
strictly convex, and the Legendre transform of the function f̂ coincides with f .

2.15. Let U ⊂ Rn be an open subset such that λU ⊆ U for every λ > 0. The function
f : U → R is said to be positively homogeneous of degree k if

f(λx1, λx2, . . . , λxn) = λkf(x1, . . . , xn)

for every point (x1, . . . , xn) ∈ Rn and every number λ > 0. Prove Euler’s theorem on
homogeneous functions: if f is a differentiable positively homogeneous function of degree
k, then

∂f

∂x
· x =

n∑
i=1

xi
∂f

∂xi
= kf.

Euler’s theorem on homogeneous functions implies the following.

2.16. Suppose that the Lagrangian of a mechanical system has the form

L(q, q̇) = Tq(q̇)− U(q),

where Tq is a quadratic form of q̇, whose coefficients may depend (smoothly) on q, and
U is a smooth function of q. (Almost all Lagrangians appearing in classical mechanics
have this particular form). Then the corresponding Hamiltonian equals T +U , where the
quadratic form T is expressed in terms of the momenta p rather than velocities q̇.

2.17. Set q = (q1, . . . , qn) and p = (p1, . . . , pn). A coordinate q1 is said to be cyclic for a
Hamiltonian H(q, p) if H does not depend explicitly on q1, i.e. it is a function of q2, . . . , qn,
p1, . . . , pn. Prove that if q1 is a cyclic coordinate, then the corresponding momentum p1
is conserved (i.e., does not change in time along every particular trajectory).

2.18. Consider a smooth function u(x, y) satisfying the soap film equation

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0.

Suppose that u admits a Legendre transform û. Find a PDE on the function û.

2.3 Action functions and Hamilton–Jacobi equa-
tions

Consider the action function

S(q(0), t0, q(1), t1) = inf
γ

∫ t1

t0

L(γ(t), γ̇(t)) dt.

The infimum in the RHS is taken over all paths γ : [t0, t1] → Rn, such that
γ(t0) = q(0), γ(t1) = q(1). If the path γ is optimal, then the action function
coincides with the action functional evaluated at this particular path γ. In
the sequel, when considering the action function, we will always assume than
an optimal path exists. Under the similarity between classical mechanics and
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geometric optics, the action function corresponds to the function W (x,y)
introduced above. Let us stress the difference between the action function
and the action functional: in contrast to the action functional, the action
function is a function of q(0), q(1) and t only; there is no dependence on a
path γ.

Consider the action S(q(0), t0, q, t1) as a function of q, i.e., fix all other
arguments of this function. Let us find the differential of this function. We
will use a remarkable argument borrowed from [?]. Let t 7→ γ(t, q) be an
optimal path passing through q(0) at time t0 and through q at time t1. By
definition, the action function equals

S(q(0), t0, q, t1) =

∫ t1

t0

L(γ(t, q), γ̇(t, q))dt,

where, as usual, the dot means the t-derivative. Set q = q(1) + sa for some
vector a, and differentiate the identity displayed above by s for s = 0.
The s-derivative, as before, will be written as δ. When deriving the Euler–
Lagrange equations, we have already performed this differentiation using
the integration by parts. We now only recall the end result:

δS =

∫ t1

t0

δγ

(
∂L

∂q
− d

dt

∂L

∂q̇

)
dt+

∂L

∂q̇
· δγ

∣∣∣∣t1
t0

.

Note that the first term in the RHS vanishes due to the Euler–Lagrange
equations. The second term is equal to p(q(1)) · a. Recall that we view S as
a function of q. The directional derivative of this function along the vector a
at the point q(1) equals p(q(1)) · a. Therefore, the differential of the function
S with respect to q equals p(q):

∂S

∂q
= p(q).

We now consider the function S(q(0), t0, q, t) as a function of q and
t. Since q(0) and t0 are fixed, we will simply write S(q, t) instead of
S(q(0), t0, q, t). In contrast to the arguments presented above, we now fix

the terminal time t. In order to compute the partial derivative ∂S
∂t , we em-

ploy the following argument, also borrowed from [?]. Consider a genuine
trajectory τ 7→ γ(τ) passing at time τ = t through the point q. Differentiate
the expression S(γ(τ), τ) by τ at the point τ = t. On the one hand, by
definition of the action integral, the derivative of this expression is equal to
the value L(q, γ̇(τ)) of the Lagrangian. On the other hand, by the chain
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rule,

L(q, γ̇(τ)) =
d

dτ
S(γ(τ), τ) =

∂S

∂q
(q, t)γ̇(t) +

∂S

∂t
(q, t)

∣∣∣∣
t=τ

.

Besides, we already know that the derivative ∂S
∂q (q, t) equals the momentum

p(t) of the system at time t. Thus, we have

∂S

∂t
(q, t)

∣∣∣∣
t=τ

= L(q, γ̇(t))− p(t) · γ̇(t)|t=τ = −H(q, p(τ)).

The formulas
∂S

∂q
= p,

∂S

∂t
= −H

can be regarded as an alternative definition of the momentum and the Hamil-
tonian (this is how Hamilton came up to the notion of a Hamiltonian). This
definition is perhaps more natural from the geometric and mechanical view-
points. However, for technical reasons, it is more convenient to work with
the definition of a Hamiltonian through the Legendre transform.

The minus sign in the definition of the Hamiltonian ∂S
∂t = −H initiated

a notational dispute between the physicists and the mathematicians in the
19th century. Physicists insisted. The reason for the negative sign is that the
Hamiltonian measures the mechanical energy, and, for example, as you raise
a stone, its energy increases rather than decreases. There was another nota-
tional dispute, in which, on the other hand, mathematicians were successful.
Mathematicians used the letter q (from Latin qualitas) for the position, and
the letter p (from Latin potentia) for the momentum. The physicists were
doing the opposite: denoted the coordinates by p, and the momenta by q.
Nowadays, the notation of the mathematicians are commonly accepted. Let
us stress again that, in physical problems, H(q, p) is the mechanical energy
expressed through the coordinates and the momenta.

The formulas ∂S
∂q = p, ∂S

∂t = −H imply the following PDE on the action
function, which is called the Hamilton–Jacobi equation:

∂S

∂t
+H

(
q,
∂S

∂q

)
= 0.

The Hamilton–Jacobi equation is an analog of the eikonal equation∣∣∣∣∂W∂x (x(0),x)

∣∣∣∣ = 1

v(x)

for an optically isotropic medium.
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Suppose that the action function S(q(0), t0, q(1), t1) is known. How to
find the trajectories? This problem was solved by Hamilton, who used the
optical analogy. Note that the derivatives of the action function by q(0) and
t0 can be computed by the formulas

∂S

∂q(0)
= −p(0),

∂S

∂t0
= H(q(0), p(0)),

in which p(0) is the momentum of the particle (system) at time t0 provided
that the motion of the particle originates in q(0) at time t0 and terminates in
q(1) at time t1. Observe that the values of these derivatives depend only on
q(0), t0 and on the trajectory originating at time t0 in q(0). However, they are
independent of the point q(1) of this trajectory and of the time t1, at which
the system passes through q(1). Thus the shape and the parameterization
of trajectories can be found from the equations

∂S

∂q(0)
= const,

∂S

∂t0
= const.

This is the content of Hamilton’s method of finding the trajectories. As we
will see later, in order to find the trajectories, it is not necessary to know
the action function, it suffices only to know sufficiently many sufficiently
independent solutions of the Hamilton–Jacobi equation.

2.3.1 Problems

2.19. Set L(q, q̇) = Tq(q̇) − U(q), where Tq(q̇) is a Riemannian metric, and U(q) is a
smooth function. Find the corresponding Hamiltonian.

2.20. Suppose that the Lagrangian L = T (q̇) is a non-degenerate quadratic form of q̇
(whose coefficients do not depend on q). Find the action function.

2.21. Prove that all trajectories of the Hamiltonian system in R2 with the Hamiltonian
H(p, q) = p4 + eq are periodic, i.e., for every trajectory, there exists a number T > 0 such
that q(t+ T ) = q(t) and p(t+ T ) = p(t) for all t ∈ R.

2.22. Is it true that every trajectory of every Hamiltonian system in R2 is periodic?
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Chapter 3

Basics of symplectic
geometry

3.1 Smooth manifolds and vector fields: a re-
minder

Prior to discussing symplectic geometry, we need to recall smooth manifolds
and differential forms. We assume that the readers have seen these notions
earlier. Here, we only give a brief reminder.

A smooth manifold of dimension n is a set M , equipped with a space
of functions C∞(M) (called smooth functions on M) with the following
properties:

1. for every point a ∈ M , there exists a subset U ⊆ M containing the
point a and a tuple of functions x1, . . . , xn ∈ C∞(M), such that the
mapping

φ : U → Rn, φ(q) = (x1(q), . . . , xn(q)),

called a local coordinate chart, is injective, the subset φ(U) ⊆ Rn being
open. The set U is called a coordinate neighborhood of the point a,
and the functions x1, . . . , xn are called local coordinates near a. We
impose that the restriction of every function f ∈ C∞(M) to U have
the form F ◦ φ, where F : φ(U) → R is a smooth (sufficiently many
times differentiable) function.

2. If a manifold M is covered by coordinate neighborhoods, and the re-
striction of some function f :M → R to each coordinate neighborhood
is a smooth function of the local coordinates, then f ∈ C∞(M).

33
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The simplest and the most important example of a smooth manifold is
the space Rn, for which C∞(Rn) is defined as the set of functions that are
everywhere defined and infinitely many times differentiable.

Let M ⊂ Rn be any subset. A function f : M → R is called smooth, if,
for every point q ∈ M , there exists a neighborhood U of q in Rn such that
the restriction of f to M ∩ U coincides with the restriction of some smooth
function to U .

3.1. Suppose that M ⊂ Rn is given by a single equation F = 0, where F is a smooth
function on Rn such that dF ̸= 0 on M . Verify that smooth functions on M , as defined
above, equip M with a smooth manifold structure.

Every smooth manifold has a natural structure of a topological space,
i.e., we can define open and closed subsets. Firstly, the notion of an open
subset in a coordinate neighborhood is easy to define: this is the preimage
of any open subset of Rn under the local coordinate chart. We now say that
a subset of a smooth manifold is open if its intersection with any coordinate
neighborhood is open.

3.2. Verify the axioms of a topological space.

Since every smooth manifold is a topological space, we can talk about
connected, compact, etc., manifolds.

Let M and N be smooth manifolds. A mapping Φ : M → N is called a
smooth mapping if, for every smooth function f on N , the function f ◦Φ is
a smooth function on M .

3.3. Let a ∈ M and b = Φ(a) ∈ N . Consider local coordinates x1, . . . , xn in a neigh-
borhood of a and local coordinates y1, . . . , ym in a neighborhood of b. Then there
exist smooth functions φi, i = 1, . . . ,m defined on some neighborhood of the point
(x1(a), . . . , xn(a)) ∈ Rn such that

yi ◦ Φ = φi(x1, . . . , xn)

on some coordinate neighborhood of a.

3.4. Verify that the composition of smooth mappings is smooth.

We now give more examples of smooth manifolds. Consider the n-
dimensional torus Tn = Rn/Zn. A function f : Rn → R is said to be
Zn-periodic if f(q + a) = f(q) for all q ∈ Rn, a ∈ Zn. Clearly, every Zn-
periodic function descends to a function on the torus Tn. By definition, the
smooth functions on the torus are the functions that come from (lift to)
smooth Zn-periodic functions on Rn.

We can now generalize our example, in which the manifold was given by
a single equation in Rn. We now consider the set M of points q ∈ Rn given
by a system of equations

f1(q) = · · · = fk(q) = 0.
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Suppose that the differentials df1, . . . , dfk are linearly independent at every
point x ∈ M . Then the set M is a smooth manifold (with the notion of a
smooth function on M already defined above).

We will identify a vector v in Rn with coordinates (v1, . . . , vn), based at
a point q ∈ Rn with the operator of differentiation along v:

Lv : f 7→ Lvf(q) = lim
t→0

f(q + vt)− f(q)

t
.

This operator is linear over real numbers and satisfies the Leibnitz rule. The
differentiation along a vector v is the differentiation along any path passing
through q and such that the velocity vector of the path at q equals v. More
precisely, in order to compute Lvf , we restrict the function f to any smooth
path γ : (−ε, ε) → Rn such that γ(0) = q γ̇(0) = v, and then differentiate
the restriction by t at t = 0:

Lvf(q) =
d

dt
f(γ(t))|t=0.

On any smooth manifold, vectors can also be defined as derivations.
Namely, a vector X tangent to a manifold M at a point q, is defined as a
functional X : C∞(M) → R with the following properties:

1. X(αf + βg) = αXf + βXg for all f, g ∈ C∞(M) α, β ∈ R (linearity
over reals),

2. X(fg) = f(a)Xg + g(a)Xf (the Leibnitz rule).

We now establish some simple properties of vectors:

1. X(1) = 0, i.e., the derivative of the constant function identically equal
to one along any vector is zero. Indeed, we have:

X(1) = X(1 · 1) = 1 ·X(1) + 1 ·X(1) = 2X(1).

2. X(c) = 0 for every constant function c. This follows from the linearity
of X.

3. Let φ, ψ ∈ C∞(M) be functions such that φ(q) = ψ(q) = 0. Then
X(φψ) = 0. Indeed,

X(φψ) = φ(q)Xψ + ψ(q)Xφ = 0.
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4. Let φ ∈ C∞(M) vanish identically in some neighborhood of a point q.
Then Xφ = 0. Indeed, consider a smooth function ψ vanishing at the
point q and equal identically to one outside of a neighborhood of q, in
which φ = 0. Then φ = φψ. Therefore, Xφ = 0.

5. If a function φ ∈ C∞(M) is constant in some neighborhood of the
point q, then Xφ = 0. Indeed, the function φ − φ(0) satisfies the
assumptions of the previous paragraph.

The following assertion is called Hadamard’s Lemma:

Theorem 3.1. Let U be an open convex subset of Rn, containing the origin,
and f ∈ C∞(U). Then

f(x1, . . . , xn) = f(0, . . . , 0) +

n∑
i=1

xigi(x1, . . . , xn),

where gi are some smooth functions on U .

Proof. We have:

f(x)− f(0) =

∫ 1

0

f(tx)

dt
dt =

∫ 1

0

n∑
i=1

xi
∂f

∂xi
(tx) dt =

n∑
i=1

xigi(x),

where gi(x) =
∫ 1
0

∂f
∂xi

(tx) dt.

Theorem 3.2. Consider any smooth manifold M and a vector X tangent
to the manifold M at a point a ∈ M . Let (x1, . . . , xn) be a local coordinate
system in a neighborhood of the point a such that xi(a) = 0. Set Xxi = αi.
Then

Xf =

n∑
i=1

αi
∂f

∂xi
.

Proof. We may assume that M = Rn, a = 0 and f(0) = 0. Then, by
Hadamard’s Lemma, f =

∑
xigi for some smooth functions gi. It follows

from this representation that ∂f
∂xi

(0) = gi(0). We have:

Xf =

n∑
i=1

X(xi)gi(0) =

n∑
i=1

αi
∂f

∂xi
(0).
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It follows from Theorem 3.2 that the set TaM of all vectors at a fixed
point a of a manifold M forms a vector space of dimension n. Indeed, as
can be seen from Theorem 3.2, a tangent vector at a point a is completely
determined by its coordinates α1, . . . , αn, moreover, the mapping TaM →
Rn, associating with every vector its coordinates in a given local coordinate
system is linear. The space TaM is called the tangent space of M at the
point a.

A vector field X on a manifold M is a mapping assigning to every point
q ∈ M some vector Xq ∈ TqM . A vector field is said to be smooth, if, in

every local coordinate system (x1, . . . , xn), we have Xf =
∑n

i=1 αi(x)
∂f
∂xi

for every smooth function f , where αi(x) = αi(x1, . . . , xn) — are smooth
functions of the coordinates not depending on the choice of f . In this case,
we write

X =

n∑
i=1

αi
∂

∂xi
.

In fact, instead of assuming that the vector field X has this form in ev-
ery local coordinate system, it suffices to assume that the vector field has
this form in one particular local coordinate system. The coordinates (or
components) of the vector field (i.e., the functions αi) can be different in a
different local coordinate system but, if these coordinates were smooth in
one system, then they remain smooth in all other systems.

In the sequel, by vector fields, we always mean smooth vector fields.

3.5. How are do components of a vector field transform under a local coordinate change?
Answer: If (x1, . . . , xn) and (y1, . . . , yn) are two different coordinate systems, and

X =
∑

αi(x)
∂

∂xi
=

∑
βj(y)

∂

∂yj
,

then

βi(y) =
∑
k

αk(x)
∂yi
∂xk

.

This follows from the chain rule.

Another (equivalent) definition of a vector field is as follows: a smooth
vector field is a mapping (also called a first order differential operator) A :
C∞(M) → C∞(M) satisfying the following conditions:

1. linearity: A(αf + βg) = αA(f) + βA(g) for any constant coefficients
α and β,

2. the Leibnitz rule: A(fg) = (Af)g + f(Ag).

A vector fieldX in the sense of the first definition gives rise to a first order
differential operator A given by the formula A(f) = g, where g(q) = Xqf .
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3.6. Prove the equivalence of these two definitions.

Vector fields have the following geometric meaning. Let gt : M → M
be a smooth family of smooth mappings, i.e., a mapping (−ε, ε)×M →M
defined by the formula (t, a) 7→ gta is smooth. Suppose also that g0 coincides
with the identity transformation. The family of one-to-one mappings gt can
be interpreted physically as a motion of a medium: if one of the particles
constituting the medium was at time t = 0 in a point g0(q) = q, then at time
t it is located at the point gt(q). Every smooth family of smooth mappings
gt defines a vector field X that acts on functions by the formula

Xf(q) =
d

dt
f(gt(q)) |t=0 .

A physical interpretation is that the vector Xq equals the velocity vector of
a particle in the medium passing at time t = 0 through the point q.

The converse is also true: every smooth vector field can be obtained as
described above. This follows from the existence and uniqueness theorem
for ODEs. We recall the statement of the theorem in a form that is suitable
for our purposes:

Theorem 3.3 (Existence and Uniqueness Theorem). Consider a smooth
vector field A on a manifold M . For every point q ∈ M , there exists ε > 0
and a unique path t 7→ gt(q) defined for all t ∈ (−ε, ε) such that

d

dt
f(gt(q)) = Af(gt(q)).

These paths are included into a smooth family of mappings gt : U → M ,
where U is some neighborhood of the point q.

3.7. Suppose that t, s, t + s ∈ (−ε, ε). Then gt ◦ gs = gt+s wherever both sides are
defined.

Hint : this follows from the uniqueness theorem.

Solution. Indeed, by definition of the path gt(gs(q)) (originating at the point gs(q)), we
have

d

dt
f(gt(gs(q))) = Af(gt ◦ gs(q)).

On the other hand, by definition of the path gt(q) (originating at the point q), we have

d

dt
f(gt+s(q))) = Af(gt+s(q)).

We obtained two paths
t 7→ gt(gs(q)), t 7→ gt+s(q),

passing at time t = 0 through the same point gs(q) and tangent to the same vector field
A. It follows from the uniqueness theorem that these two paths coincide.
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Theorem 3.4. Suppose that M is compact, and A is a smooth vector field
on M . Then there exists a smooth mapping R ×M → M , q 7→ gt(q) such
that

d

dt
f(gt(q)) = Af(gt(q))

for every smooth function f on M . The mappings gt : M → M satisfy the
identity gt ◦ gs = gt+s.

A local version of this statement is contained in the existence and unique-
ness theorem. To prove the theorem, it suffices, using the compactness, to
cover the manifold with finitely many charts, in which the local statement
holds. A family of smooth mappings gt : M → M , t ∈ R with the property
gt+s = gt◦gs is called a one-parameter diffeomorphism group of the manifold
M . In general, a diffeomorphism of a manifold M is defined as a smooth
mapping g :M →M , whose inverse is also smooth. A one-parameter diffeo-
morphism group consists, indeed, of diffeomorphisms, since (gt)−1 = g−t. A
one-parameter diffeomorphism group satisfying the conditions of Theorem
3.4 is called the flow of the vector field A.

As we discussed, we can think of vector fields on M as first order linear
differential operators C∞(M) → C∞(M). Compositions of such operators
are no longer representable by vector fields. A linear differential operator
of of order 6 n can be defined as a linear combination of operators of the
form A1 ◦ · · · ◦An, where Ai are vector fields. According to this definition, a
linear differential operator can act on smooth functions. In local coordinates,
this action reduces to computing a linear combination of certain (higher
order) partial derivatives. Coefficients in this linear combination may be
any smooth functions.

We will deal with only the first and the second order operators so far. Let
D be an operator of order at most 2. We now define the quadratic symbol
σ2(D)q at a point q ∈ M . This is an element of the space Sym2(TqM)
spanned by formal products of pairs of tangent vectors at the point q. These
formal products are subject to the commutativity law, i.e., we have v · w =
w · v for all v, w ∈ TqM . Every element of the space Sym2(TqM) can be
represented as a linear combination of such products. We can identify the
space Sym2(TqM) with the space of all quadratic forms on the cotangent
space T ∗

qM . The element σ2(D)q ∈ Sym2(TqM) is defined by the formula

σ2(A1 ◦B1 + · · ·+Am ◦Bm)q = A1,q ·B1,q + · · ·+Am,q ·Bm,q.

Here, e.g., A1,q is a vector from TqM belonging to the vector field A1.
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Theorem 3.5. The quadratic symbol is well-defined, i.e., if D = A1 ◦B1 +
· · ·+Am ◦Bm = 0, then σ2(D) = 0 at all points.

This is not hard to verify by a straightforward computation in coordi-
nates (exercise: perform this computation!). The heart of the matter is that
the quadratic symbol corresponds to the second order partial derivatives
(ignoring the first and zeroth order derivatives) — recall that no deriva-
tives of order higher than two can appear in the differential operators under
consideration.

Let A and B are two vector fields. Define their commutator by the
formula

[A,B] = A ◦B −B ◦A.

The LHS looks like a differential operator of the second order. However,
σ2(A ◦ B − B ◦ A) = A · B − B · A = 0, since the product in Sym2 is
commutative (in fact, this is just a sophisticated way of saying that mixed
partial derivatives commute). It follows that A ◦ B − B ◦ A is in fact a
first order operator rather than a second order operator. But the first order
operators are the same as vector fields. Thus, the commutator of two vector
fields is again a vector field.

Let Φ : M → N be a smooth mapping, and v ∈ TqM a vector based
at some point q ∈ M . Then we can naturally define the vector w = Φ∗(v)
tangent to the manifold N at the point Φ(q) ∈ N . The vector w is defined
as a derivation at the point Φ(q) that acts on a smooth function g ∈ C∞(N)
by the formula w(g) = v(g ◦ Φ). Therefore, vectors are transported in the
direction of the mapping. If Φ is a diffeomorphism, then for every smooth
vector field X on M , one can define a smooth vector field Φ∗(X) on N .
The vector of this field based at the point Φ(q) ∈ N is Φ∗(Xq), where Xq

is the vector of the vector field X based at the point q. It is not hard to
check that Φ∗[X1, X2] = [Φ∗X1,Φ∗X2]. If Φ is not a diffeomorphism, then,
in general, the vector field Φ∗(X) is not defined, although every individual
vector tangent to M can be transported to the manifold N under Φ. The
problem is that, to the same point of N , several vectors may be transported,
and to some other point of N , no point is transported.

3.1.1 A geometric meaning of the commutator

Let A and B be two smooth vector fields. Let gt and hs denote the flows of these
vector fields (they are defined at least on some open subset and at least provided that
t and s have sufficiently small absolute values). Consider the commutator of these flows
h−s ◦ g−t ◦ hs ◦ gt. The action of the diffeomorphism h−s ◦ g−t ◦ hs ◦ gt on a point a can
be viewed as the composition of the following motions: the motion for time t along the
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first flow, the motion for time s along the second flow, then the motion for time t against
the first flow, and, finally, the motion for time s against the second flow. In general, in
the end of this process, we do not return to the same point.

Introducing a local coordinate system allows to reduce the consideration to the case,
where the manifold is an open subset of Rn containing 0, and the point a coincides with
0. In this case, the following formula holds

[A,B]0 = lim
t,s→0

h−s ◦ g−t ◦ hs ◦ gt(0)
ts

.

Here we use that points of the space Rn are identified with vectors tangent to the space
Rn at the point 0.

3.1.2 Problems

3.8. On the plane with coordinates x and y, find the commutator of the vector fields ∂
∂x

and x ∂
∂y

.

3.9. Does there exist a local diffeomorphism between a neighborhood of the point (0, 0)
and another neighborhood of the point (0, 0) transporting the vector fields ∂

∂x
and (1 +

x2) ∂
∂y

to the vector fields ∂
∂x

and ∂
∂y

, respectively?

3.10. Let gt : R2 → R2 be a mapping defined by the formula(
x
y

)
7→

(
x+ ty2

y

)
.

Find coordinates of a vector field A such that

Af(x) =
d

dt
f(gt(x)) |t=0

for every smooth function f .

3.11. Prove that the commutator of vector fields satisfies the following identities:

• [A,B] = −[B,A],

• [A,B + C] = [A,B] + [A,C],

• [A, fB] = (Af)B + f [A,B] for every smooth function f (the Leibnitz rule),

• [A, [B,C]] = [[A,B], C] + [B, [A,C]] (the Jacobi identity)

(The Jacobi identity is the Leibnitz rule with respect to the commutator).

3.2 Differential forms: a reminder

Let M be a smooth manifold, and Vect(M) the space of all smooth vector
fields on M . Define a (smooth differential) 1-form on M as a mapping
α : Vect(M) → C∞(M) with the following properties:

α(fX) = fα(X), α(X + Y ) = α(X) + α(Y )

for all smooth vector fields X, Y and all functions f ∈ C∞(M).
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3.12. Consider a vector field X ∈ Vect(M) and a 1-form α. Prove that the value α(X)q
of the function α(X) at a point q ∈M depends only on α and on the vector Xq (i.e., the
vector at the point q belonging to the vector field X) but does not depend on what the
vector field X looks at other points.

Solution. Indeed, it suffices to prove that α(X)q = 0 if Xq = 0. We may assume without
loss of generality that the vector field Xq vanishes outside a small neighborhood of q.
Indeed, we can consider a smooth function φ ∈ C∞(M), equal to one at the point q and to
zero outside of a small neighborhood of q, and use the inequality α(φX)q = φ(q)α(X)q =
α(X)q. Thus, if necessary, we can replace the vector field X with the field φX. Since
the field X is defined locally, we can confine ourselves to consideration of a single chart,
or, which is equivalent, to assume that M = Rn. Let us write the field X in coordinates
(x1, . . . , xn):

X =

n∑
i=1

ξi
∂

∂xi
, ξi ∈ C∞(Rn).

Since Xq = 0, all functions ξi vanish at the point q. We obtain:

α (X) =

n∑
i=1

ξi(q)α

(
∂

∂xi

)
= 0.

The statement is proved.

We now give an equivalent definition of a 1-form. Suppose that, for every
point q ∈ M , we defined a linear functional on the tangent space TqM of
the manifold M at the point q, so that this functional depends smoothly
on q (a smooth dependence needs to be defined precisely — this is left
to the reader). Then there is a 1-form α such that the linear functionals
lq : TqM → R mentioned above have the form lq(Xq) = α(X)q (for the RHS
to make sense, we need to extend the vector Xq to a smooth vector field X
on M , no matter how).

3.13. Prove that every tangent vector (at any point of M) can be included into a smooth
vector field on M .

Let (x1, . . . , xn) be a local coordinate system on the manifold M in a
neighborhood U of some fixed point q. Recall that each of the coordinates
xi is a smooth function on an open subset U . For a 1-form α, set

αi(q) = α

(
∂

∂xi

)
q

.

This equality defines some smooth function αi on U . The functions α1, . . . ,
αn are called the coefficients of the 1-form α in a given local coordinate
system. Define the 1-form dxi on U by the formula

dxi(A) = Ai.

Here A is any smooth vector field on U , which in the given coordinate system
is written as A1

∂
∂x1

+ · · ·+An
∂

∂xn
.
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3.14. Prove that every smooth 1-form on U can be written as

α =
n∑

i=1

αi dxi.

Smooth 1-forms can be integrated over smooth curves. Consider a
smooth path γ : [0, 1] → M . Then, for every t ∈ [0, 1], there is the velocity
vector γ̇(t) ∈ Tγ(t)M . If the manifold M carries a 1-form α, we can apply
this form to each of the vectors γ̇(t), and thus obtain a smooth function of
t. This function can be integrated over the interval [0, 1]. The integral thus
obtained in called the integral of the form α over the path γ:∫

γ
α =

∫ 1

0
α(γ̇(t))dt.

In fact, what is important is not a particular parameterization of the curve
γ[0, 1] but only the orientation: if we make a smooth change of a parameter
on the curve, under which the orientation is unchanged, then the integral of
a differential 1-form does not change either. If the orientation is reversed,
then the integral changes sign.

3.15. Prove the claims made above.

For every smooth function f on M , we define the 1-form df by the
formula:

df(A) = Af.

This form is called the differential of the function f . The operation of
taking the differential satisfies the Leibnitz rule

d(fg) = g df + f dg.

We will now define (smooth differential) 2-. This is a mapping α of
Vect(M) × Vect(M) (i.e., of pairs of vector fields) to C∞(M) with the fol-
lowing properties:

α(X,Y ) = −α(Y,X), α(X,Y + Z) = α(X,Y ) + α(X,Z),

α(X, fY ) = fα(X,Y )

for all smooth vector fields X, Y , Z and all smooth function f .
Similarly to the case of 1-forms, it makes sense to talk about the value

of a 2-form on a pair of vectors based at the same point, i.e., belonging to
the same tangent space. This value does not depend on how these vectors
are extended to smooth vector fields on the entire manifold.
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If two 1-forms α and β are given, then we define their wedge product
(also called exterior product) α ∧ β, which is a 2-form. The wedge product
is defined by the following formula:

α ∧ β(A,B) = α(A)β(B)− α(B)β(A).

3.16. Verify that the thus defined function of pairs of vector fields is indeed a 2-form.

If (x1, . . . , xn) is a local coordinate system on the manifold M , then any
2-form α can be written in this coordinate system as follows:

α =
n∑

i,j=1

αi,j dxi ∧ dxj .

Here αi,j — are certain smooth functions on an open subset ofM , called the
coefficients of the form α in the given coordinate system. The coefficients
of α can be defined by the formula αi,j = α( ∂

∂xi
, ∂
∂xj

). It is not hard to see

that αi,j = −αj,i.

3.17. Prove the claims made above.

With every smooth 1-form β, we associate a smooth 2-form dβ, called
the differential of the form β. The differential is defined by the following
formula:

dβ(A,B) = Aβ(B)−Bβ(A)− β([A,B]).

3.18. Prove that dβ is indeed a 2-form.

However, the algebraic definition of the differential given above does
not clarify the geometric meaning of this notion. Informally speaking, the
geometric meaning is the following. A pair of tangent vectors based at the
same point defines a parallelogram in the tangent space. As can be seen
from the definition, the value of a 2-form on the pair of vectors depends on
the orientation and the area of the corresponding parallelogram but does
not depend on its shape. (by the orientation of the parallelogram, we mean
in which plane it lies and how it is oriented in this plane, i.e., which is the
direction of the shortest rotation from the first vector to the same vector). A
parallelogram in the tangent space can be thought of (which is not entirely
correct but useful) as an infinitesimal oriented 2-dimensional surface piece in
the manifold. Thus, a 2-form can be understood as a special kind of function
on infinitesimal surface pieces. Integrate the 1-form α over the boundary
of the surface piece. We obtain a function of an infinitesimal surface piece,
which in fact coincides with the 2-form dα. The term with the commutator
is a correction term responsible for the discrepancy between a small surface
piece in the manifold and a piece of a tangent space.
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Differential 2-forms can be integrated over two-dimensional surfaces.
First consider a smooth parameterized surface Γ : W 7→ M , where W is
a domain in the plain with coordinates (u, v). The integral of the a 2-form
α over this surface is defined by the following formula:∫

Γ
α =

∫
W
α

(
∂Γ

∂u
,
∂Γ

∂v

)
du dv.

In fact, this integral does not depend on the parameterization; it depends
only on the orientation of a smooth surface. We have considered the case,
where the surface is the image of some planar domain under some smooth
mapping. In fact, we will need more general surfaces, which can be glued
out of several such pieces. For example, we can consider an arbitrary union
of convex oriented polygons (lying in a space of arbitrary dimension), and
define a smooth mapping on each of these polygons M . Suppose that these
mappings match on the intersections. Then such a collection of date is called
a smooth 2-chain. The integral of α over a smooth 2-chain is defined as the
sum of integrals over individual polygons.

The boundary ∂Γ of an oriented smooth 2-chain Γ is an oriented 1-chain,
i.e., a finite union of smooth oriented curves.1 On every boundary piece, the
orientation is chosen so that, as a particle traverses the boundary piece in a
positive direction, the adjacent piece of the chain is on the left (the notions
of left and right are determined by the orientation of the chain). The integral
of a 1-form over ∂Γ can be related to the integral of the differential of this
form over Γ. This is a partial case of the Stokes formula:∫

∂Γ
α =

∫
Γ
dα.

We will adopt this formula without proof. A proof of the Stokes formula is
given in analysis courses and in differential geometry courses.

A differential 1-form α is said to be closed, if dα = 0, and exact, if α
coincides with the differential of some smooth function. In the space Rn,
every closed 1-form is exact. Indeed, fix an arbitrary initial point q(0), and
consider the integral

f(q) =

∫ q

q(0)

α

This integral does not depend on the choice of a path connecting the point
q(0) with the point q. Indeed, if we consider two different paths γ0 and γ1,

1More precisely, we need to consider not a union but rather a formal sum of curves.
Curves may enter this sum with integer, not necessarily positive, coefficients. Thus we
can think of a union of curves, on which some integers are written.
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connecting the point q(0) with the point q, then the union of these paths2 is
the boundary of some 2-chain and, as follows from the Stokes formula, the
integral of α over the union γ0 ∪ γ1 is equal to zero. Therefore, f(q) does
not depend on a path. It is not hard to verify that df = α.

Similarly to 2-forms, we can define (smooth differential) 3-forms on a
manifold M as mappings

α : Vect(M)×Vect(M)×Vect(M) → C∞(M),

that are linear over C∞(M) w.r.t to each argument and skew-symmetric. In
other terms, for any vector fields X1, X2, X3, Y1, any permutation σ of the
set {1, 2, 3}, and any smooth function f , we have

α(Xσ(1), Xσ(2), Xσ(3)) = sign(σ)α(X1, X2, X3),

α(X1 + Y1, X2, X3) = α(X1, X2, X3) + α(Y1, X2, X3),

α(fX1, X2, X3) = fα(X1, X2, X3).

Here sign(σ) denotes the sign of the permutation σ, which equals 1 for an
even permutation and −1 for an odd permutation. For every 2-form β, we
define the differential dβ by the formula

dβ(X,Y, Z) = Xβ(Y,Z) + Y β(Z,X) + Zβ(X,Y )−

−β([X,Y ], Z)− β([Y, Z], X)− β([Z,X], Y ).

Note that, together with every term, this formula includes all terms obtained
from the given one by cyclic permutations of the arguments X, Y , Z. Thus
it is enough to memorize just two terms: Xβ(Y, Z) −β([X,Y ], Z); all other
terms are obtained from these two by cyclic permutations. It is easy to
verify that the differential of every 2-form is a 3-form. The most meaningful
part of this statement is that the differential of a 2-form is multilinear over
smooth functions.

It is not hard now to define a smooth differential k-form for arbitrary
k as a skew-symmetric form on the space of smooth vector fields that is
multilinear over the algebra of smooth functions. The (exterior) differential
of a smooth k-form is defined similarly to the cases of 1-forms and 2-forms; it
is a smooth (k+1)-form. An explicit formula for the value of the differential

2more precisely, the formal difference of these paths, if both paths are oriented from
q(0) to q
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dα of a smooth k-form α on smooth vector fields X0, . . . , Xk is rather
involved:

dα(X0, . . . , Xk) =

k∑
i=0

(−1)iXiα(X0, . . . , X̂i, . . . , Xk)+

+(−1)i+1α(X0, . . . , [Xi, Xi+1], . . . , Xk).

This formula, as well as the entire formalism of differential forms, is due
to E. Cartan. If i = k, the last term in Cartan’s formula is equal to
(−1)kα(X1, . . . , [Xk, X0]). In other words, we consider indices as residues
modulo k + 1, in particular, we set k + 1 = 0.

Let α be a smooth k-form, and β be a smooth l-form on the same
manifold. Then we can define the wedge product α∧β. This is a differential
(k + l)-form. The value of this form on a tuple of smooth vector fields X1,
. . . , Xk, Xk+1, . . . , Xk+l can be computed by the following formula:

α ∧ β(X1, . . . , Xk+l) =
∑

±α(Xi1 , . . . , Xik)β(Xj1 , . . . , Xjl).

Here the indices i1, . . . , ik, j1, . . . , jl run through all values such that

i1 < · · · < ik, j1 < · · · < jl, {i1, . . . , ik, j1, . . . , jl} = {1, . . . , k + l}.

The sign (plus or minus) coincides with the sign of the permutation

(i1, . . . , ik, j1, . . . , jl) ∈ Sk+l

Let us emphasize the similarity between this formula and the expansion
formula for a determinant of side k + l, say, in the first k rows (or, which
is the same, in the last l rows). Let W denote the determinant, and let
W ′

i1,...,ik
denote the minor obtained at the intersection of the first k rows

with columns i1, . . . , ik. Similarly, we letW ′′
j1,...,jl

denote the minor obtained
at the intersection of the last l rows with columns j1, . . . , jl. Lagrange’s
formula expresses the determinant W as the sum of products of the form
W ′

i1,...,ik
W ′′

j1,...,jl
taken with suitable signs. Note that the term

α(Xi1 , . . . , Xik)β(Xj1 , . . . , Xjl)

enters the expression for α∧β(X1, . . . , Xk+l) with the same sign, with which
the term W ′

i1,...,ik
W ′′

j1,...,jl
enters the expansion of the determinant W . This

rule allows not to memorize two formulas: it suffices to only memorize La-
grange’s formula for the expansion of a determinant, and then the formula
for the product of two differential forms can be easily recovered.
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We now discuss how differential forms are transported under smooth
mappings. If Φ : M → N is a smooth mapping and α is a differential
form on N , then we will define differential form β = Φ∗α on M . Thus, the
differential forms are transported against the arrows representing smooth
mappings. To fix the ideas, we assume that α is a 2-form. The case of a
k-form for arbitrary k is similar. For any pair of smooth vector fields X and
Y on the manifold M and for any point q ∈M , we set

β(X,Y )q = α(Φ∗(Xq),Φ∗(Yq))Φ(q).

In the left-hand side, we have the value of the function β(X,Y ) at the point
q. In the RHS, the differential form α is applied at the point Φ(q) to the
pair of vectors Φ∗(Xq) and Φ∗(Yq) obtained by transporting tangent vectors
Xq, Yq ∈ TqM to the tangent space TΦ(q)N under the smooth mapping Φ.
The form β is called the pullback of the form α under the mapping Φ. The
pullback operation commutes with all natural operations over differential
forms, in particular, with wedge products and taking differential. In other
words, we have the identities

Φ∗(α1 ∧ α2) = Φ∗α1 ∧ Φ∗α2,

Φ∗(dα) = dΦ∗α

for all smooth differential forms α, α1, α2 on the manifold N .

3.2.1 Problems

3.19. Let β be a smooth 1-form on a manifold M , and α be a smooth 2-form on the
manifold M such that

α(A,B) = Aβ(B)−Bβ(A)

for any pair of commuting vector fields A and B. Prove that α = dβ.

3.20. Verify that the differential of any differential 2-form α defined by the formula

dα(X,Y, Z) = Xα(Y,Z) + Zα(X,Y ) + Y α(Z,X)−

−α([X,Y ], Z)− α([Z,X], Y )− α(Y, [Z,X]).

is a smooth 3-form.

3.21. On the torus T 2 = R2/Z2 with coordinates (x, y) (these coordinates are real numbers
modulo integers), consider a differential form α = dx ∧ dy. Is this form exact?

3.3 Symplectic manifolds

A symplectic structure on a manifold M is a 2-form ω on M with the fol-
lowing properties:
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1. the form ω is closed, i.e., dω = 0,

2. the form ω is non-degenerate, i.e., for every 1-form α on M , there
exists a vector field X on M such that α(Y ) = ω(Y,X) for all vector
fields Y on M .

The second condition is equivalent to saying that the restriction of the form
ω to every tangent space of M is a non-degenerate bilinear form (the non-
degeneracy is understood in the sense of linear algebra).

3.22. Prove that the vector field X from condition (2) is necessarily unique.

We obtain a linear mapping of the 1-forms to vector fields, which, to
every 1-form α, assigns a vector field X on M such that α(Y ) = ω(Y,X)
for all vector fields Y on M . This mapping of 1-forms to vector fields will
be denoted by I.

Let H be a smooth function on the manifold M . The vector field XH =
I(dH) is called a Hamiltonian vector field generated by the Hamiltonian
H. In other words, by definition, the field XH is the unique vector field
satisfying the identity

dH(Y ) = ω(Y,XH)

for every smooth vector field Y on M .

Example. Consider the coordinate space M = R2n with coordinates p1, . . . ,
pn, q1, . . . , qn. The 2-form

ω =

n∑
i=1

dpi ∧ dqi

is a symplectic structure on the manifold M . This symplectic structure
is called the standard symplectic structure on R2n. Let us see what the
Hamiltonian vector field generated by the Hamiltonian H looks like. We
have

dH(Y ) =

n∑
i=1

∂H

∂pi
dpi(Y ) +

n∑
i=1

∂H

∂qi
dqi(Y ).

On the other hand,

ω(X,Y ) =
n∑

i=1

(dpi(X)dqi(Y )− dqi(X)dpi(Y )).

If X = XH , then we must have dH(Y ) = −ω(X,Y ) for all Y . In particular,
the numbers dpi(Y ) and dqi(Y ) can be thought of as independent variables.
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Equating the coefficients with these variables, we obtain

dpi(X) = −∂H
∂qi

, dqi(X) =
∂H

∂pi
.

It follows that the system of ODEs defined by the vector field X has the
form

ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
.

Thus, we obtained the standard form of a Hamiltonian system, which is
the principle (although not the only) motivation for the notions introduced
above. We will discuss other examples of symplectic structures later.

Let XH be a Hamiltonian vector field corresponding to the Hamiltonian
H. The flow gtH generated by the vector field X is called the Hamiltonian
flow with the Hamiltonian H. By definition of a flow generated by a vector
field, we have

d

dt
f(gtH(a)) = XHf(g

t
H(a))

for every point a ∈M .

Theorem 3.6. A Hamiltonian flow preserves the corresponding Hamilto-
nian:

H ◦ gtH = H ∀t ∈ R.

Proof. It suffices to prove that the derivative of the function H ◦ gtH with
respect to t equals zero. We have:

d

dt
H ◦ gtH(a) = XHH(gtH(a)) = dgtH(a)H(XH) = ωgtH(a)(XH , XH) = 0,

as desired.

Note that Theorem 3.6 is a generalization of the energy preservation in
classical mechanics to the case of arbitrary Hamiltonian flows.

Theorem 3.7. A Hamiltonian flow preserves the symplectic form:

(gtH)∗ω = ω ∀t ∈ R.

This is a deep and hard theorem. It provides a collection of integrals of
a Hamiltonian flow that are more subtle than the Hamiltonian itself. Before
we prove Theorem 3.7, we need to discuss Lie derivatives. Let X be a vector
field on a manifold M . Let gt denote the corresponding Hamiltonian flow
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on M . The Lie derivative of a differential form α on a manifold M along a
vector field X is defined by the following formula:

LXα =
d

dt
(gt)∗α|t=0.

Note that the Lie derivative commutes with taking the differential: LXdβ =
dLXβ. The definition of the Lie derivative was given for every smooth
differential k-form and every k. In particular, it makes sense for k = 0.
Recall that smooth 0-forms are just smooth functions. In this case, we
obtain the usual differentiation of a smooth function along a smooth vector
field, i.e., we have LXf = Xf .

3.23. Verify that the Lie derivative satisfies the Leibnitz rule with respect to the wedge
product of differential forms:

LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ)

(in this formula, X is a smooth vector field, α and β are smooth differential forms on a
smooth manifold).

3.24. Let X1, . . . , Xn be coordinates of a smooth vector field X in some local coordinate
system (x1, . . . , xn). Prove that LX(dxi) = dXi for every i = 1, . . . , n.

Solution. We can assume that the manifold under consideration coincides with the space
Rn, on which some coordinate system (x1, . . . , xn) is fixed. Let gt denote the flow gener-
ated by the vector field X. By definition of the Lie derivative,

LX(dxi) =
d

dt
(gt)∗(dxi)|t=0 =

d

dt
d(xi ◦ gt)|t=0 = d

(
d

dt
xi ◦ gt|t=0

)
.

In the last equality, we used that the operation of taking the differential of a differential
form commutes with the operation of differentiation with respect to a parameter. Note
that

d

dt
xi ◦ gt|t=0 = X(xi) = Xi.

The statement is thus proved.

We now define the substitution of a vector field X into a differential
form α. To fix the ideas, we assume that α is a smooth 2-form. Then the
substitution of a vector field X into the form α gives the 1-form ιXα defined
by the following formula:

ιXα(Y ) = α(X,Y ).

Thus the vector field X is being substituted as the first argument of the
form α. Similarly, we can define the substitution of a vector field into a
differential k-form for arbitrary k.
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The following formula relates the Lie derivative, the substitution of a
vector field, and the differential:

LXα = d ιXα+ ιXdα.

This formula holds for every smooth k-form α. It is called the homotopy
formula. The homotopy formula can be verified by a direct computation in
coordinates. We will now perform these computations in the case k = 2. By
linearity, it suffices to assume that α = fdxi∧dxj for some smooth function
f . In this case, we have:

LXα = (Xf)dxi ∧ dxj + fdXi ∧ dxj + fdxi ∧ dXj .

Here Xi and Xj are coordinates of the vector field X regarded as smooth
functions.

In the computation displayed above, we use the Leibnitz rule and the
easily verifiable fact that LX(dxi) = dXi, cf. Problem 3.24. On the other
hand, we have:

d ιXα = d(f(Xi dxj −Xj dxi)) =

= df ∧ (Xi dxj −Xj dxi) + f(dXi ∧ dxj − dXj ∧ dxi).

ιXdα = df ∧ dxi ∧ dxj = (Xf)dxi ∧ dxj − df ∧ (Xi dxj −Xj dxi).

Comparing the three obtained equalities, we see that the homotopy formula
holds.

It may be that the proof of the homotopy formula presented above is
the most direct, however, it does not shed any light on a geometric meaning
of this formula. For this reason, we sketch another, more geometric proof,
omitting details. Consider a 2-chain σ, and let σt denote the image of
this chain under the flow mapping gt generated by the vector field X. By
definition of the Lie derivative,∫

σ
LXα =

d

dt

∫
σt

α

∣∣∣∣
t=0

= lim
t→0

1

t

(∫
σt−σ0

α

)
.

Consider a 3-chain Σ spanned by στ as τ runs through the interval [0, t].3

The boundary of the 3-chain Σ consists of the following parts: the “top” σt,
the “bottom” σ0, and the “side surface” δ that is spanned by the 1-chain
∂στ , when τ runs through the interval [0, t], see Figure 3.1. By the Stokes

3Recall that a 2-chain can be thought of as a formal linear combination of elementary
2-chains, and an elementary 2-chain is by definition a smooth mapping from a convex
polygon to the manifold. If we assume that σ is an elementary 2-chain given by a smooth
mapping φ : P →M from a convex polygon P to the manifoldM , then Σ is an elementary
3-chain ψ : P × [0, t] →M given by the formula ψ(a, τ) = gτ ◦ φ(a).
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Σ

¶Σ

¶Σ
t

Figure 3.1: The boundary of the chain Σ. The “side surface” δ consists of
trajectory segments. The “bottom” coincides with σ0, and the top with σt.

formula, ∫
Σ
dα =

∫
σt−σ0

α−
∫
δ
α.

In order to verify the signs, we need to explore the orientation of the bound-
ary of the chain Σ. The integral in the LHS can be rewritten as an integral
over τ , namely, ∫

Σ
dα =

∫ t

0
dτ

∫
στ

ιX dα.

This follows immediately from the definition of the integral of a differential
3-form over a 3-chain. The integral over δ in the RHS can also be rewritten
as an integral over τ ; then the Stokes formula yields:∫

δ
α =

∫ t

0
dτ

∫
∂στ

ιXα =

∫ t

0
dτ

∫
στ

d ιXα.

Thus we have ∫
σt−σ0

α =

∫ t

0
dτ

∫
σt

(ιXdα+ d ιXα) .

We obtain the homotopy formula if we divide this formula by t and pass to
the limit as t→ 0, since the the 2-chain σ is arbitrary.

Proof of Theorem 3.7. In order to prove that the Hamiltonian flow with a
Hamiltonian H preserves the symplectic structure ω, we need to verify that
LXH

ω = 0. This follows from the homotopy formula:

LXH
ω = ιXH

dω + d ιXH
ω = 0.
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The first term vanishes since dω = 0 by definition of a symplectic structure.
The second term vanishes since ιXH

ω = −dH by definition of of the Hamil-
tonian vector field XH , and since every exact differential form is closed.

3.25. Consider the upper halfplane y > 0 with the symplectic structure

ω = y dx ∧ dy.

Find a Hamiltonian vector field corresponding to the Hamiltonian H(x, y) = ex + y.

3.26. In the space R4 with coordinates (x1, x2, x3, x4), we are given the 2-form

ω = 3 dx1 ∧ dx2 + dx1 ∧ dx3 + 5 dx3 ∧ dx4.

Verify that this 2-form is a symplectic structure. Find the skew-orthogonal complement
of the plane x3 = x4 = 0 with respect to ω, i.e., the vector subspace of R4, consisting of
all vectors v with the following property: for every vector u in the plane x3 = x4 = 0, we
have ω(u, v) = 0.

3.27. Consider the vector field on R2 with coordinates (x,−y+sinx). Is this vector field
Hamiltonian with respect to the symplectic structure ω = dx ∧ dy? If so, then find the
Hamiltonian.

3.28. Give an example of a vector field that is not Hamiltonian, no matter which sym-
plectic structure and which Hamiltonian function we consider.

3.29. Consider a 2-torus with coordinates p, q ∈ R/2πZ and the function

H(p, q) = sin(p) cos(q)

on this 2-torus. Is it true that every solution (p(t), q(t)) of the Hamiltonian system

ṗ = −∂H
∂q

, q̇ =
∂H

∂p

is periodic, i.e., p(t+ T ) = p(t), q(t+ T ) = q(t) for some T > 0? If yes, then prove. If no,
then give a counterexample.

3.30. On the torus T 4 = R4/Z4, consider the symplectic structure

ω = dx1 ∧ dx2 + dx3 ∧ dx4

and the function H = sinx1 sinx2 sinx3 sinx4. Find

LvH

(
sin2(x1) sin

2(x2) sin
2(x3) sin

2(x4)(dx1 ∧ dx2 + dx3 ∧ dx4)
)
,

where vH is the Hamiltonian vector field corresponding to the Hamiltonian H.

3.31. Let H :M → R be a smooth function on a symplectic manifold M , and vH be the
Hamiltonian vector field with the Hamiltonian H. Prove that vH ∈ T ∩T⊥, where T is the
tangent space at a point x to the hypersurface {H = const}, and T⊥ is its skew-orthogonal
complement.


