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1 Introduction

The importance of word of mouth communication as one of the essential marketing tools is

well appreciated by both business and academic communities1. In some situations word of

mouth communication is actually the only effective mechanism of spreading information

about a product among consumers. This is especially the case for innovative products

for which traditional means of advertisement are not efficient. Indeed, it is quite hard to

explain a consumer in 10 seconds TV advertisement, what this product is aimed for, why

a consumer may need it, and most importantly, why consumer has to spend a sizeable

amount of money on its purchase. In contrast, sharing consumer experience with friends

about new products or services is everyday experience.

One of the examples of such products is an innovative service by Dropbox company

founded in 2007 by two MIT students. The service offers users storage space in the

internet. Despite the fact that the company provides consumers with some space for free,

in the beginning it had very few customers. One of the reasons was that consumers did not

understand well why do they need to store their data in the internet, instead of having it on

a flash drive with them. Advertisement using adwords with search engines like Google did

not help much either. Consumers were not looking for combinations of such words, while

using simpler patterns resulted in a much low targeting efficiency. The company decided

to rely on the positive word of mouth communication among consumers to promote new

service. The strategy turned out to be successful. Since official lunch in 2008 by 2012 the

company had reached 100 million registered users.

The main focus of this article is to study the optimal pricing strategy for innovative

goods in the presence of word of mouth communication. In particular, we study how the

optimal price depends on the product quality, and network characteristics such as average

connectivity and spreading efficiency of the network2. We also consider when it is optimal

to give the product for free, to offer bonuses and to use freemium business model that

assumes that part of the services consumers get for free.

We use the following modeling assumptions. An innovator creates a new product and

sells it to a continuum of consumers. Due to the innovative nature of the product its

quality is realized when development process already took place and that is why producer

treats quality as given exogenously. Later on in the analysis we relax this assumption

and endogenize quality choice. Consumers are embedded into a social network, which

is represented by a random graph. Each consumer has an outside option distributed

according to a uniform distribution and buys the product if a utility from purchase is

higher than the outside option.

1See for instance Campbell (2009), Galeotti and Goyal (2007), Leskovec et al. (2007), Iribarren and

Moro (2011), Lopez-Pintado and Watts (2008).
2A spreading efficiency is the ratio of the expected number of second neighbors (neighbors of neighbors)

to the expected number of first neighbors. This ratio shows how many consumers become aware of the

product if a consumer tells about it to one of her neighbors who buys it.
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Initially, consumers are not aware of the product and to induce sales the innovator

advertises it to a finite set of consumers directly. The rest of the population can learn

about the product and its quality from their neighbors who have already acquired the

product. In the case of innovative products informing consumers about the product and

its features is costly activity and that is why the producer marketing campaign mostly

relies on the word of mouth communication. In the model there is no asymmetry of

information about the product quality and everyone who becomes aware of the product

knows immediately its quality. The innovator knows statistical properties of a consumer

network and chooses a pricing strategy to maximize profits.

We show that, in general, the optimal price is a non-monotonic function of the product

quality. At first the price increases with the product quality, but after some threshold, it

is optimal for the innovator to decrease the price. When the product quality is sufficiently

low the diffusion is mostly limited to the first consumer, which gets a direct advertisement

from the producer. In this case the optimal price is close to the monopolist price when

all consumers are aware of the product and rises with the product quality. However, as

the product becomes of a sufficiently high quality, longer chains of connected consumers

buy it and a perimeter of diffusion wave increases. By perimeter we understand all those

consumers who became aware of the product, but find its price too high. When the

innovator decreases the price some share of consumers on the perimeter start to buy the

product and generate further information flows. Hence, at some point the informational

gains of cutting the price outweigh losses, and the optimal price decreases.

This phenomenon may explain aggressive pricing strategies of innovator firms that

struggle to create new markets. For example, Google company, despite having quite

established brand, prices what they call chromebooks below the average level that would

be charged for a hardware of such quality on the standard notebooks market. Our paper

shows that in the presence of word of mouth communication such strategy is not only

efficient in terms of increasing market size, but is also optimal if the only aim of the

company is to maximize revenues.

Some producers find it optimal to give a product for free to a set of consumers to fuel

word of mouth communication3. In this way a firm by sacrificing profits from purchases of

the first consumers, ensures that all their neighbors become aware of the product. In the

paper we study the condition under which such free sampling policy is optimal. It turns

out that the product quality has a different effect on the optimality of the free sampling,

which depends on the network characteristics. When the average connectivity is lower

than 1 and spreading efficiency is higher than 1 a sufficiently high product quality is a

necessary condition for the optimality of free sampling. In contrast, when the opposite is

true, a sufficiently low product quality is a sufficient condition for the optimality of free

sampling.

3For example web-sites like www.bzzagent.com and houseparty.com specialize on offering products of

different producers to consumers for free to generate word of mouth communication.
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In the first case when the product quality rises, the probability that the diffusion

reaches neighbors of the first consumer becomes sufficiently high, making it unnecessary

to give the product for free. The condition is reversed in the second case, when spreading

efficiency is higher than 1. An increase in the product quality increases exponentially the

payoff from further sales, making it optimal to sacrifice profits from selling the product to

the first consumer in order to ensure that the further diffusion will occur.

Another popular method to fuel word of mouth communication among consumers is

to offer bonuses for recommendations that lead to a product purchase4. In contrast to

price discounts, which apply to all buyers, bonuses allow a seller to treat consumers with

different connectivity differently. We study the optimality of bonuses strategy and its

impact on the optimal price using classical random graph model. We show that it is

always optimal to offer bonuses to fuel the propagation of word of mouth. Moreover, the

higher is the bonus that consumers receive, the higher is the optimal price. This policy

allows the innovator to subsidize consumption of highly connected consumers at the same

time extracting high profits per purchase from consumers with few links. The diffusion

of the product in this case mostly takes place on the core of the network that consists of

highly connected consumers that are interlinked among themselves.

One of the sales models that recently gains popularity in the business community

especially among software producers is a freemium model5. Under the freemium busi-

ness model a consumer may choose between two options - freemium and premium. The

freemium option assumes limited services for free, while the premium option includes all

services at some price. We show that even when there is no cost of providing services, if

the valuation of the premium option is a threshold function (consumers are satisfied with

the amount of services or not) then the freemium business model is never optimal. In

contrast, when the valuation of the premium option linearly increases in the amount of

services that a consumer uses then it is always optimal to provide consumers a free option.

There is a recent stream of network literature that studies strategic diffusion of in-

formation (see, for instance, Campbell, 2010; Galeotti and Goyal, 2009; Galeotti and

Mattozzi, 2008; Chuhay, 2012). Campbell (2010) studies the optimal pricing and adver-

tising strategy of a monopolist in the presence of word of mouth communication treating

the quality as given. Our paper focuses on the impact of product quality and network

characteristics on the optimal pricing. In the extension of the model we augment inno-

vator’s pricing strategy by possibilities of free sampling of the product, freemium option

and use of bonuses.

4This strategy is often employed by branches of ing-direct banking in different countries. Okabashi, the

largest US manufacturer of sandals and flip-flops, and Dropbox are companies that are known for most

efficient use of this strategy. Leskovec et al (2007) also studies usage of referrals on the books market.
5One of the prominent examples of such policy is Dropbox company. The majority of smartphone

games producers and anti-virus software offer limited versions for free, while to get the full version a user

should pay.

5



A paper Galeotti and Goyal (2009) studies the model of strategic diffusion of informa-

tion, where authors allow for network externalities in adoption decision. In the paper the

authors limit diffusion only to immediate neighbors of a consumer. We model the diffu-

sion process in explicit way, which allows us to study the effect of such network properties

as average connectivity and spreading efficiency on the propagation of information. In

addition the main focus of our paper is on the optimal pricing strategy, which is absent in

Galeotti and Goyal (2009).

A paper Candogan et al (2010) studies the optimal pricing problem of the monopo-

list from a different perspective. Authors assume that the monopolist knows complete

structure of the network and may decide how much each consumer should pay for the

product. Knowledge of whole network of consumers requires enormous amounts of in-

formation. Moreover, as authors show the problem of the monopolist which may select

consumers who get discounted price is a NP-hard problem. In contrast, we assume that the

monopolist knows only stochastic properties of the network, which boil down to at most

three moments of the degree distribution. Moreover, we show that by offering bonuses the

innovator efficiently differentiates consumers with respect to their connectivity without

knowing precise number of connections of each consumer.

The rest of the paper is organized as follows. In Section 2 we present the model. Section

3 presents the main properties of the demand function and optimal pricing strategy. In

Section 4 we relax assumption about fixed quality and endogenize it as a part of the

innovator’s problem. Section 5 examines the optimality of the free sampling strategy.

Section 6 presents results for the use of bonuses. Section 7 studies optimality of use of

freemium business model and finally Section 7 concludes.

2 Model

There is an innovator that creates a new product, for which there are no close substitutes

and that is why the producer acts as a monopolist. We assume that due to the innovative

nature of the product its quality v is realized only after production process took place.

The innovator chooses price P to maximize profits and advertises the product to a finite

set of consumers.

There is a continuum of consumers that are embedded into a social network, which

is represented by a random graph with degree distribution {p(k)}∞k=0. We assume that

consumers initially are not aware about the existence of the product and may receive

information about the product and its quality either directly from producer, or from

neighbors who already have bought the product. All consumers have an outside option

γi with valuation distributed according to uniform distribution U [0, γ]. Without loss of

generality we assume that γ = 1. A consumer i buys the product if v − P > γi. Thus a

randomly selected consumer buys the product with the probability q = v−P . We assume

that there is no asymmetry of information regarding the product quality and when a
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consumer buys the product all her neighbors become aware about it and its quality.

3 Main Results

In this section we first derive the demand function and study its properties. Then we study

the effect of product quality and network characteristics on the optimal pricing strategy.

3.1 Demand

We begin our analysis by presenting an intuitive derivation of the demand function and

studying its properties. The more rigorous derivation that rely on the use of generating

functions’ approach based on Newman et al. (2001) can be found in the Appendix of the

paper (see Lemma 1)

A degree distribution of neighbor of randomly selected consumer plays an important

role in the further analysis. Note that it is not the same as the degree distribution of

a randomly selected consumer, since the more links a consumer has the greater is the

probability that she is someone’s neighbor. A consumer with k links has k-times higher

probability to be a neighbor of randomly selected consumer than a consumer with just one

link. Therefore, the probability to have a neighbor with k links is proportional to kp(k).

After normalization we obtain a degree distribution of neighboring consumer ξ(k), which

is the following:

ξ(k) =
kp(k)∑∞
j=1 jp(j)

=
kp(k)

z1
,

where a normalizing factor z1 is the average number of links that a randomly chosen

consumer possesses. Using the degree distribution of neighboring consumer, we can find

the expected number of second neighbors z2, which is a number of consumers that are

situated 2 links away from the current consumer. Each neighbor with degree k has k − 1

additional links and a consumer has on average z1 neighbors, thus z2 = z1
∑∞

k=1(k−1)ξ(k).

Hence, if a consumer tells about the product to one of her neighbors and she relays the

information further then on average z2
z1

consumers become aware of the product. We call

this measure as a network spreading efficiency.

Lets calculate the expected number of consumers that become aware of the product I

and that buy it N if we advertise the product to a randomly chosen consumer. Indepen-

dently of the way a consumer becomes informed about the product proportion q of them

buys it and thus I = N
q . A consumer that receives an advertisement becomes aware of the

product, its quality and buys it with probability q, in which case all her z1 neighbors also

find out about the product. If one of these neighbors buys the product she tells about

it to all her neighbors and z̃ = z2
z1

consumers become aware of the product. The first

consumer buys the product with probability q and thus if N consumers buy the product
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N − q of them receive the information from neighbors. The number of consumers who

become aware of the product is 1 + qz1 + z2
z1

(N − q). Taking into account that it also

should be equal to N
q we get the following self-consistency condition:

1 + qz1 + z̃(N − q) =
N

q

Solving equation for N and substituting q = v − P we can obtain an expression for

the demand function. The following lemma formalizes the result and has more formal

derivation with the use of generating functions approach.

Lemma 1 The demand function in the case of no giant cascade of sales condition is the

following:

D(v, P ) = q

(
1 +

qz1
1− qz̃

)
,

where q = v − P

Proof See Appendix �

Using the demand function we can calculate the price elasticity of demand, which is

the following expression:

εP = P

(
1

v − P
+

z1
(γ + (v − P )(z1 − z̃))(1− (v − P )z̃)

)
The price elasticity in the presence of word of mouth communication is higher than in

the case of full information, which is P
v−P .

Proposition 1 When consumers are engaged in the word of mouth communication the

following holds:

(i) The demand function increases in v.

(ii) The demand function increases in z̃.

(iii) The price elasticity of demand is increasing in z̃.

Proof See Appendix �

The first statement of the proposition implies that the higher is the product quality

v the higher is the demand. This is obviously true, since probability q that a consumer

buys the product is increasing in its quality and thus more consumers buy the product

when they become aware of it. The second statement in particular implies that if we

consider two networks, one of which is obtained by applying mean preserving spread to

the degree distribution of another than the demand is higher in the latter network. The
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mean preserving spread increases heterogeneity in the number of links, which results in

a higher expected connectivity of a neighboring consumer. This increases the spreading

efficiency of the network and more consumers become aware of the product when a new

consumer buys it. The same logic applies to the price elasticity. The higher is z̃ the

more efficient is the network in the spreading of information about the product existence

and thus the higher is the proportion of consumers’ whose decision is affected by a price

change.

One of the important characteristics of the diffusion process is a perimeter. The

perimeter is the number of potential buyers who are aware of the product, but do not

buy it because of high outside option. The perimeter can be obtained by multiplying the

demand function by 1−q
q , which is the following expression:

H(v, P ) = (1− (v − P ))

(
1 +

(v − P )z1
1− (v − P )z̃

)
Proposition 1 implies that the demand always increases in the valuation of the product,

since more consumers want to buy it. However, this not always the case for the number

of potential buyers. The following proposition summarizes the result:

Proposition 2 If valuation of the product increases then the number of potential buyers:

(i) Increases if both z1 and z̃ are greater than 1.

(ii) Decreases if both z1 and z̃ are less than 1.

(iii) First decreases and then increases if z1 < 1 < z̃.

(iv) First increases and then decreases if z̃ < 1 < z1.

Proof See Appendix �

To understand better the proposition lets think about the number of new consumers

that become aware of the product when the innovator sells it to the first consumer or

to any other consumer situated further in the chain of buyers. If the firm sells to the

first consumer then in expected terms z1 neighbors of this consumer become aware of the

product. If, however, the innovator sells the product to any consumer after the first one,

we have seen that the number of consumer that become aware of the product is z̃. In

the first two cases, described in the proposition, the firm by selling the product to any

consumer, independently of her position in the chain, gets access to more or to less than

one consumer and thus H(·) increases and decreases correspondingly. In the third case

the average connectivity is smaller than one, but the network spreading efficiency is higher

than one and thus the number of potential buyers first decreases and then increases. In

the forth case the same logic applies and result is reversed.
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3.2 Optimal Pricing

Lets turn to the optimal pricing strategy. We assume that the product is innovative and

the firm ex-ante does not know the eventual quality of the product. Thus the innovator

maximizes profits by choosing price and takes product quality v as given.

Proposition 3 The optimal price decreases in z̃ and is lower than the optimal price in

the case of full information P ∗FI = v
2 .

Proof See Appendix �

In the case of full information all consumers are aware of the product and a price

variation affects the decision of the fixed number of consumers that is all population.

However, when consumers initially are not aware of the product and information spreads

through the word of mouth communication, a price variation affects also the number of

consumers that become aware of the product. This effect leads to a lower optimal price

than in the case of full information.

The decreasing behavior of the optimal price with respect to z̃ follows immediately

from the fact that the price elasticity is increasing in z̃. The network spreading efficiency

z̃ shows how many consumers become aware if consumer tells about the product to a

neighbor. The higher is the spreading efficiency, the higher is the number of potential

buyers whose decision to buy is affected by a price variation. This in turn leads to a lower

optimal price.

Proposition 4 There exists z̃c < 1 such that if z̃c < z̃ < 2z1(2 +
√

2) then the optimal

price is non-monotonic function in product quality v. In particular, the optimal price first

increases in v and then decreases.

Proof See Appendix �

The intuition behind the proposition is the following. If the product quality is low

enough then even with price equal to zero the diffusion is mostly limited to the first

consumer. In this case the innovator sets the price close to the monopolistic price v
2 , since

independently of the price, the first consumer is informed about the product by the firm.

Thus in the beginning the optimal price rises with the quality of the product. However, as

the quality rises further the optimal price decreases. By Proposition 2 we know that when

z̃ is higher than 1 and v is sufficiently high the number of potential buyers is growing in

the product quality. Thus gains of a higher product awareness overweigh losses due to

lower profits from each purchase, and the optimal price decreases in the product quality.

The result holds for all z̃ higher than z̃c, but lower than 2z1(2+
√

2). The lower bound

appears because when the spreading efficiency is too low the component of connected

consumers upon which information spreads is too small. In this case there is no sense

to lower the price since majority of consumers are aware of the product and gain in new
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consumers does not compensate for losses in revenues from all consumers that would buy

the product at a higher price. The upper bound comes from the fact that in our model we

assume that the diffusion is limited and thus in the case when z̃ > 1 the maximal product

value is limited by 1
z̃ . An increase in the z̃ beyond the 2z1(2+

√
2) makes maximal product

value to be very small and as we know the price is lower than v
2 . Thus the price is already

too small and increase in awareness of consumers does not compensate for the fall in

revenues from existing consumers.

To study the effect of average connectivity on the optimal price level we should first

make an assumption regarding the degree distribution. The reason is that average con-

nectivity z1 and spreading efficiency of the network z̃ are not independent and their re-

lationship depends on the assumed degree distribution. In the analysis that follows we

consider the case of classical random graph. Connectivity of nodes in classical random

graph follows Poisson distribution and arises in the network where each node has a uni-

form probability to create a link to any other node. In the case of the classical random

graph z̃ = z1 and average connectivity fully characterizes the network.

Proposition 5 In the case of classical random graph the optimal price always decreases

in the average connectivity of the network.

Proof See Appendix �

When z1 equals zero there is only one consumer which knows about the product from

advertisement and thus the optimal price coincides with the full information price P ∗FI .

When the average connectivity increases, the number of uninformed consumers that can

become aware of the product only from neighbors who bought the product rises. This

effectively lowers the optimal price, since the only way to reach these consumers is to

make the product attractive enough for long chains of connected consumers.

4 Endogenous Product Quality

In previous analysis we considered the optimal pricing strategy assuming that the product

quality is given exogenously. In this section we assume that the innovator can choose

product quality paying some cost c(v). We study how network characteristics, such as

average connectivity and spreading efficiency, affect the choice of optimal quality and

price. In particular, we want to check wether non-monotonic behavior of the optimal price

is robust to the assumption about endogenous product quality, which is natural in many

situations.

We assume that the cost of the product is associated with the development stage and

its further provision to consumers is costless. This formulation, for example, fits well the

case of IT industry, where designing the product is costly process, but making program

copies is costless. Thus the optimization problem of the innovator becomes:
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max
v,P

PD(v, P )− c(v)

We allow for a general form of the cost function that satisfies the following properties

c(0) = 0, c′(v) > 0, c′′(v) > 0. We start the analysis by considering the impact of average

connectivity and mean preserving spread on the optimal quality of the product. The

following proposition formalizes the result.

Proposition 6 The optimal quality v∗ always increases in network spreading efficiency

z̃. It also increases in average connectivity z1 if the transformation of degree distribution

that leads to a higher average connectivity simultaneously increases z̃.

Proof See Appendix �

A higher spreading efficiency of the network assumes more channels for information

to spread and thus increases the marginal effect of the product quality on the quantity

demanded (cross-derivative ∂2D
∂v∂z̃ > 0). This in turn leads to a higher optimal quality level.

To study the effect of the average connectivity on the optimal strategy we should

make an assumption about the way in which a degree distribution is transformed. Note

that adding links affects not only the average connectivity but also the expected number

of second neighbors and thus the spreading efficiency may rise or fall depending on the

precise form of the transformation.

The second part of the proposition states that if a degree distribution transformation

simultaneously increases both the average connectivity and spreading efficiency then the

optimal quality rises. An increase in the average connectivity, when network spreading

efficiency is fixed, increases the number of neighbors of the first consumer. The optimal

product quality increases as the innovator tries to ensure that the first consumer buys the

product and additional information channels are used. Obviously, the effect is even higher

when the network spreading efficiency increases too.

As we have seen the result regarding the average connectivity holds if a transforma-

tion simultaneously increases both the average connectivity and spreading efficiency. For

example, it is easy to show that transformation that increases the connectivity of nodes

with k links by factor β with β > 1 simultaneously increases the spreading efficiency:

z̃′ =

∑∞
k=1 βk(βk − 1)p(k)(∑∞

j=1 βjp(j)
)2 =

∑∞
k=1 k

(
k − 1

β

)
p(k)(∑∞

j=1 jp(j)
)2 >

∑∞
k=1 k(k − 1)p(k)(∑∞

j=1 jp(j)
)2 = z̃

Another example of transformation that satisfies the property is the following. We

consider a transformation that adds one link to share α of consumers with k̂ connections.

The new network spreading efficiency is given by the following expression:
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z̃′ =

∑∞
k=1 k(k − 1)p(k)− αk̂(k̂ − 1) + αk̂(k̂ + 1)(∑∞

j=1 jp(j)− αk̂ + α(k̂ + 1)
)2 =

z2z1 + 2αk̂

(z1 + α)2

By construction we know that the transformation increases the average connectivity.

Moreover, it is easy to show that z̃′ is higher than z̃ when k̂ > z̃+α z̃
2z1

. In particular, the

last result implies that if a transformation increases the connectivity of sufficient number

of well connected nodes then its application increases both the average connectivity and

spreading efficiency.

Now we turn to the analysis of the optimal pricing strategy when the product quality

is endogenous. The following proposition formalizes the result regarding the impact of

average connectivity on the pricing strategy for the case of classical random graph.

Proposition 7 In the case of classical random graph, the optimal quality v∗(z1) is the

solution to the following equation c′(v) = 1
z1

(
1√
1−v − 1

)
. Moreover, if c′′(v∗(0)) < 2,

c′′(v∗(1)) > 2√
1−v∗(1)

and function c′′(v)− 2(c′(v) + 1) is monotonically increasing on the

interval [0, 1] then the optimal price first increases and than decreases in z1.

Proof See Appendix �

Proposition 7 states that at least in the case of classical random graph, when the quality

level is endogenous the effect of z1 on the optimal price is, in general, non-monotonic.

Recall that when product quality is fixed according to Proposition 5 an increase in the

average connectivity leads to a lower optimal price, independently of the quality level. This

indicates that an increase in the price for small z1 should be attributed to the increasing

quality level.

Indeed, when z1 is close to zero the network essentially consists of one node. When

the average connectivity increases the innovator increases the product quality along with

simultaneous increase in the price. This allows the firm to increase sales while simultaneous

increasing revenue from each purchase. However, at some level of z1, a further increase

in the product quality becomes too expensive, while gains in terms of increasing sales a

from higher v are rising at a higher pace, ∂3D
∂v∂2z̃

> 0. Thus when the product quality is

sufficiently high the firm continues to increase quality, but at the same time lowers the

price.

One of the examples of cost function that satisfies all the properties outlined in Propo-

sition 7 is 1
25(1−v) . If a cost function does not satisfy monotonicity property then non-

monotonicity in price behavior, potentially, can be even higher. If, instead, the boundary

conditions are violated then the optimal price may be increasing or decreasing on the

whole interval.
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5 Free Sampling Strategy

In the previous analysis we assumed that the innovator advertises the product to the first

consumer, which decides whether to buy it. However, sometimes firms find it optimal to

give the product for free to some number of consumers. In this section we try to capture

such possibility by assuming that the innovator gives the product for free to a consumer

who gets a direct advertisement of the product. We call this strategy free sampling.

Note that the profit function in the case of free sampling is different from the standard

one in two respects. First, we should subtract the profit that firm makes on the first

consumer, since it gives the product for free. Second, we should divide what is left by the

probability that the first consumer buys the product, since she always accepts the gift.

After modifications we obtain the following profit function:

π̂(P ) = P
(v − P )z1

1− (v − P )z̃

In the case of free sampling, the innovator does not profit directly from the first con-

sumer, but ensures that her neighbors become aware of the product. The following two

proposition characterizes the optimal price in the case of free sampling.

Proposition 8 If z̃ > 3
4 then the optimal price in the case of free sampling P̂ ∗ is non-

monotonic function in v, which first increases and then decreases. Moreover, P̂ ∗ is higher

than the optimal price in the standard case if z1 > z̃ and is lower otherwise.

Proof See Appendix �

The intuition behind the non-monotonic behavior of the optimal price in v is exactly

the same as in the standard case. When v is too small the diffusion is mostly limited to z1
neighbors of the first consumer and the price increases in v as in the full information case.

When z̃ > 3
4 and v is sufficiently high informational gains of spreading outweigh losses of

lowering the price.

Note that in the case of free sampling the average connectivity enters into the opti-

mization problem for the optimal price only as a factor by which profit is multiplied. Thus

in the case of free sampling the optimal price does not depend on the average connectiv-

ity. Actually, one can think about the free sampling problem as a standard one where z1
equals to z̃. Potential losses of profit when the first consumer does not buy the product

are higher for the case when z1 > z̃ as compared to z1 < z̃. Thus the optimal price in the

standard case is lower than P̂ ∗ if z1 > z̃ and is higher otherwise.

The following two propositions characterize a condition under which free sampling is

optimal the optimal strategy.

Proposition 9 The free sampling strategy gives a higher payoff than the standard one if

and only if the following condition holds:
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Figure 1: Showing the area where it is optimal to use the free sampling strategy for

different values of product quality.

(2p3 − 9pq + 27r)2 + 4(3q − p2)3 > 0,

where p = −2v − 1
z1−z̃ , q = v2 + (v−Rz̃)

z1−z̃ , r = R(vz̃−1)
z1−z̃ , and R = z1

2−2
√
1−vz̃−vz̃
z̃2

Proof See Appendix �

The previous proposition although states necessary and sufficient condition for the

optimality of free sampling does not provide much intuition for the result. The following

proposition elaborates on the result.

Proposition 10 The following holds:

(a) If z1 > 1 and z̃ > 1−z1(1−v)
v then it is optimal to use the free sampling strategy.

(b) If z1 < 1 and z̃ < 1−z1(1−v)
v then the free sampling is not optimal.

Proof See Appendix �

In particular, Proposition 10 implies that if z1 > 1 and z̃ > 1 and thus at each time

step as a result of purchase more consumers become aware of the product then the free

sampling strategy is optimal for any quality v. Conversely, if z1 < 1 and z̃ < 1 the free

sampling is never optimal, since by sacrificing gains from the first consumer the producer

at each time step gets access to less and less consumers.

More interesting are cases where both z1 and z̃ are not higher or lower than 1. In

these cases the product quality comes into play and affects optimality condition in a non-

monotonic way. Figure 1 depicts the area where free sampling is optimal for different

values of product quality v. In the case when z1 < 1 < z̃, product quality v higher than
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1−z1
z̃−z1 is a necessary condition for the optimality of free sampling. Indeed, if v is sufficiently

small then even by giving the product for free, the seller is not able to benefit from a high

spreading efficiency of the network, since the diffusion, in expected terms, is mostly limited

to neighbors of the first consumer. However, when v is sufficiently high, by sacrificing gains

from the first consumer the producer is able to generate enough word of mouth thanks to

a sufficiently high spreading efficiency z̃.

In the case when z̃ < 1 < z1, product quality v lower than z1−1
z1−z̃ is a sufficient condition

for the optimality of free sampling. As before, when v is sufficiently small the diffusion

is mostly limited to the first consumer. Thus by giving the product for free to the first

consumer the producer ensures access to z1 consumers, which is higher than one. In

contrast when the product quality is sufficiently high there is no need of giving it for free,

since with a high probability the first consumer buys it anyway.

Overall, the proposition shows that the effect of the product quality on the optimality

of free sampling is different and depends on whether average connectivity z1 and spreading

efficiency z̃ are higher or lower than 1. The result is somehow similar to the one for the

expected number of potential consumers as a function of product quality v, which was

increasing or decreasing depending on the particular values of z1 and z̃.

Proposition 11 If z̃ < 1 it is never optimal to give the product for free beyond the first

consumer. Contrary, if z̃ > 1 it is always optimal for the innovator to delay charging the

price till the next step.

Proof See Appendix �

If the firm gives the product for free to a neighbor of consumer then it gets access on

average to z̃ consumers. To be optimal this should be higher than one in order to make

up for foregone profits of giving the product for free. Thus when z̃ > 1 the innovator will

prefer to postpone charging the price as long as possible, since at each time step it gets

an access to a higher number of potential buyers. Note that combination of Proposition

and Proposition implies that there exist z1 > 1, such that for any z̃ < 1 it is optimal to

give the product for free to the first consumer only.

In the model there is no cost of production and giving the product for free has only

opportunity costs of foregone profits. However, one can find a sufficiently small cost c,

such that P − c multiplied by the number of new consumers that buy the product will be

higher than c, the cost of giving the product for free to the first consumer. Thus the result

should continue to hold even when there is a cost of production of each unit, assuming

that the cost is sufficiently small.

If we want to find examples of such strategy in the real world we should look at busi-

nesses which use extensively word of mouth communication for marketing the product

and for which the cost of providing the product to an additional consumer is sufficiently

low. One of the examples may be Dropbox company that in two years after the launch
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grew to more than 4 million users. The company offers a storage space in the internet

for user’s files. At 2008 when the Dropbox company started to provide cloud space this

was an innovative product and majority of users were not aware about it. That is why

the company relied mostly on the word of mouth marketing in advertisement of the prod-

uct. More traditional methods like advertising the product through search engines simply

did not work due to a high innovative component of the product. The company uses a

freemium business model. Under this model a user gets some free space just by signing

and additional space can be bought at some price. To boost the adoption in the beginning

the company used different promotions upon which a user were able to increase free space.

To win the mobile phone market Dropbox offers promo with 50Gb of free space for two

years on the top of 2Gb that you get with free account just by installing their mobile

application on some models of mobile phones.

6 Bonuses

One of the popular methods to fuel word of mouth communication is use of bonuses. A

consumer gets a bonus for each neighbor buying the product. In contrast to discounts,

which influence decision of all buyers in the same way, bonuses allow seller to differentiate

consumers with respect to individual spreading efficiency. In this section we study opti-

mality of bonuses strategy and its impact on the optimal price for the Poisson random

network.

We assume that when consumer receives information about the product she also be-

comes aware about bonuses program proposed by the innovator. The bonuses program

works in the following way. When a consumer buys the product and recommends it to

her neighbors, she receives bonus b for each neighbor buying the product. Thus now the

consumer’s decision to buy the product has an additional term that represents bonuses

that consumer expects to get from purchases of neighbors. If a neighbor buys the product

with probability q̄1 then the expected share of neighbors who buy the product is also q̄1.

Hence, the expected probability to buy the product for a randomly selected consumer with

k links is the following:

q(k) = v − P + bq̄1k

To have always meaningful q(k) we assume that product quality v and bonus b are

sufficiently low and thus v+bk < γ for all k that are in support of p(k). When a consumer

with k links gets the information about the product from a neighbor she can earn bonuses

only by recommending it to other k− 1 neighbors and that is why a neighbor with k links

buys the product with the following expected probability:

q1(k) = v − P + bq̄1(k − 1)
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Weighting this probability by the degree distribution of neighbor we can formulate the

following self-consistency condition for q̄1:

q̄1 = v − P + b
∞∑
k=1

q̄1(k − 1)ξ(k)

Solving for q̄1 we get:

q̄1 =
(v − P )z1
z1 − bz2

We skip the derivation of the demand function into appendix and present the result

as the following lemma.

Lemma 2 If seller uses bonuses the demand function is the following:

D = (v − P + z1q̄1b) + (z1(v − P ) + (z2 + z1)q̄1b)
z1(v − P ) + z2q̄1b

z1 − (v − P )z2 − (< k3 > −2z2 − z1)q̄1b
,

where q̄1 = (v−P )z1
z1−bz2 and < k3 > is the third uncentered moment of the degree distribu-

tion.

Proof See Appendix �

Using the obtained demand function we can find the profit function of the innovator.

The difference from the usual profit function is that for each consumer that buys the

product the producer gets P − b instead of the price P . This applies to all consumers

apart of the first, since she gets a direct advertisement from the producer and thus no

one receives bonuses for that. Thus the profit function is a sum of the following two

terms. The first one is P − b multiplied by the demand. And the second is b multiplied

by the probability that the first consumer buys the product which is q̄ =
∑∞

k=0 q(k)p(k).

In the case of Poisson network we know that z2 = z21 and < k3 >= z1
(
1 + 3z1 + z21

)
.

Substituting these values into the profit function we get the following expression:

(v − P )

(
(1 + b+ b2)(P − b)

1− (b+ (b+ 1)(v − P ))z1
+

b

1− bz1

)
We assume that there is no giant cascade of sales and thus b should be lower than

1−vz1
(1+v)z1

. It is interesting to note that under no giant cascade of sales condition the model

does not allow for the appearance of financial pyramid. More, precisely however high is

the bonus if P > v the demand is zero. It is particularly interesting, since network in our

model is a stochastic graph and thus backward induction argument does not work, since

there is always a probability that your neighbor also has neighbors and thus will buy the

product.
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Proposition 12 In the case of Poisson random network, using bonuses is always optimal

strategy. Moreover, for sufficiently small z1 the optimal price is increasing function in the

value of bonus.

Proof See Appendix �

The Proposition 12 implies that in the case of Poisson random network it is always

optimal to use bonuses strategy to fuel propagation of word of mouth in the network.

Moreover, the higher is the bonus that consumers receive the higher is the optimal price.

The main idea of such strategy is to facilitate spreading of the information among con-

sumers with highest connectivity by offering them bonuses, but at the same time to charge

a higher price. In this way the innovator ensures that the diffusion takes place on the net-

work core of highly connected consumers.

7 Freemium business model

In this section we study a freemium business model. The freemium business model assumes

that a consumer may choose between two options - freemium and premium services. Under

the freemium option a consumer gets limited services for free, while the premium option

assumes access to all services, but consumer should pay some price. A consumer can

select one of these two plans. In the further analysis we consider two cases. In the first

one the valuation of premium option does not depend on the actual amount of services

that consumer requires. In the second case, the valuation of the premium option linearly

increases in the needs of consumer.

We study the freemium business model using a simplified version of the Dropbox

company problem. Assume that under the freemium option a consumer gets storage space

w for free, while with the premium option a consumer gets unlimited storage space for

a fixed price P . A consumer can select one of these two plans or stay with an outside

option. As before consumers differ in outside option that they have γi. In addition they

also differ in the amount of space ωi that they need to store their files. We assume that

ωi is distributed according to U [0, 1].

7.1 Threshold utility function

Assume that the consumer’s utility function is a threshold function. If consumer i gets

a space that is greater or equal to ωi her utility is 1 minus the price she needs to pay

for it. Thus when a consumer becomes aware of the premium and freemium offers she

first checks whether a free space covers her needs. This happens with the probability

P (ωi < w) = w. In this case consumer gets utility 1 from consumption and since she pays

nothing it is always better than the outside option. If the free space provided by the firm

is not enough, she checks whether the utility she gets by buying the product is higher than

the outside option P (1− P > γi|ωi > w).
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Given that valuation of the premium service does not depend on the space that con-

sumer needs the probability that a consumer buys the product is simply qb = 1−P . Thus

a combined probability that a consumer buys the product or uses the free space is the

following:

q = w + (1− w)(1− P ) = 1− P (1− w)

Note that out of those who adopt the product only fraction qb
q are actually buying it.

Substituting q to the demand function from Lemma 1 and multiplying it by qb
q we get the

following demand function:

D = (1− P )(1− w)

(
1 +

(1− P (1− w))z1
1− (1− P (1− w))z̃

)
Proposition 13 If the valuation of the premium option does not depend on the required

space it is never optimal to provide consumers with free space. The results holds even

though there is no cost of providing storage space.

The firm would benefit most from the freemium model if consumers check first premium

option and only then the freemium option. In this case consumers who are not ready to buy

the product still with some probability use the freemium option and spread the information

about the product. However, the model works other way round and consumers first check

the freemium option. The share w of informed consumers chooses freemium option and

the firm looses profits by not selling to w(1−P ) share of informed consumers. Proposition

13 implies that a higher spread of information does not compensate for the foregone profits

when the valuation of the premium option does not depend on the required space.

7.2 Linear utility function

In this part we consider the case when valuation of the premium service is proportional

to the amount of space that a consumer needs. Thus if the free space provided under the

freemium option is not enough (ωi > w) a consumer buys the product if ωi − P > γi.

Assume that price P is higher than free space w. A consumer buys the product with the

following probability:

qb =
1

1− w

∫ 1

P

∫ ω−P

0
1 dγ dω =

(1− P )2

2(1− w)

or if P < w then

qb =
1

1− w

∫ 1

w

∫ ω−P

0
1 dγ dω =

1

2
(1− P + w − P )

Thus the probability that a consumer buys the product or uses the free space option

is the following:

20



q =

{
w − P + 1

2(1 + P 2), P > w

w + 1
2(1− w)(1− P + w − P ), otherwise

Note that out of those who adopt the product only qb
q are buying it. Substituting q to

the demand function from Lemma 1 and multiplying by qb
q we get the following demand:

D =


(1−P )2

2

(
1 +

z1((1−P )2+2w)
2−z̃((1−P )2+2w)

)
, P > w

1
2(1− w)(1− P + w − P )

(
1− z1

z̃

(
1− 2

2−z̃((1−w)(1−P+w−P )+2w)

))
, otherwise

It is easy to note that the first part of the demand function is increasing in w and

thus the optimal value of w is always higher or equal to P . Taking the derivative of the

second part with respect to w and substituting w = P one can show that the derivative is

positive and thus w∗ is always higher then P ∗. The following proposition summarizes the

result:

Proposition 14 If the valuation of the premium option linearly increases in the required

space then it is always optimal to use the freemium business model. Moreover, the optimal

space w∗ > P ∗.

In contrast to the case of the threshold utility function, when the valuation of the pre-

mium option is increasing in the required space, the probability that a consumer prefers the

freemium option is negatively correlated with the probability that she finds the premium

option appealing. Thus consumers who choose to use freemium option with sufficiently

high probability are not willing to buy the product at first place. That is why the firm

does not loose much by offering the free space. Hence, Proposition 13 states that gains of

offering some free space always dominates the foregone profits from given the product for

free.

8 Conclusions

In some situations word of mouth communication is the only effective mean of spreading

information about a product among consumers. This is especially the case for innovative

products for which traditional means of advertisement are costly and usually are not effi-

cient. The main focus of this article is on the optimal pricing strategy for innovative goods

when marketing campaign of a producer relies mostly on word of mouth communication.

In the paper we show that the optimal price is a non-monotonic function of the product

quality. At first the price increases with the product quality, but after some threshold

decreases. When the product quality is low enough the diffusion is mostly limited to the

first consumer and the optimal price is close to the one set by the monopolist when all
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consumers are aware of the product. However, as the product becomes of sufficiently high

quality the perimeter of the diffusion wave increases and the informational gains of cutting

the price outweigh losses.

Some producers find it optimal to give a product for free to a set of consumers to boost

word of mouth. By sacrificing profits from purchase of the first consumer, the producer

ensures that all her neighbors become aware of the product. In the paper we show that

the product quality has a different impact on the optimality of the free sampling, which

depends on the network characteristics. When the average connectivity is lower than 1

and spreading efficiency is higher than 1 a sufficiently high product quality is a necessary

condition for the optimality of free sampling. In contrast, when the opposite is true, a

sufficiently low product quality is a sufficient condition for the optimality of free sampling.

Another popular methods to fuel word of mouth communication among consumers is

to offer bonuses for recommendations that lead to a product purchase. We show that it

is always optimal to offer bonuses to fuel the propagation of word of mouth. Moreover,

the higher is the bonus that consumers receive, the higher is the optimal price. The main

idea is to facilitate spreading of the information among the most connected consumers

who constitute network, while making major part of profits on low connected individuals.

One of the models that recently gains popularity in the business community is a

freemium model. Under this model the producer offers limited amount of services for

free and full services at some price. We show that even when there is no costs of provid-

ing services, if the valuation of the premium option is a threshold function then it is not

optimal to provide any services for free. In contrast, when the valuation of the premium

option linearly increases in the amount of services that consumer uses then it is always

optimal to propose consumers a freemium option.
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9 APPENDIX

Proof of Lemma 1

A random graph with an arbitrary degree distribution given by p(k) can be described

by means of probability generating functions. A pseudo-generating function F0(x) for a

distribution p(k) is given by:

F0(x) =

∞∑
k=0

qxkp(k) (1)

This is a polynomial expression with argument x, where the coefficient on the k-th

power is a probability that a randomly chosen individual has exactly k neighbors and

buys the product. A probability generating function encapsulates all information about

the degree distribution, and thus completely characterizes a random network. The prefix

pseudo indicates that for x = 1 it does not sum to 1. This happens since not all consumers

buy the product. Actually, F0(1) = q, which is the probability that a randomly chosen

consumer buys the product given that she is aware of it.

A degree distribution of a neighbor of a randomly chosen consumer plays an important

role in the further analysis. Note that it is not the same as the degree distribution of a ran-

domly selected consumer, since the more links consumer has the greater is the probability

that she will be encountered as a neighbor. A consumer with k links has k-times higher

probability to be selected as a neighbor of a randomly chosen consumer than a consumer

with one link. Therefore, the probability to have a neighbor with k links is proportional

to kp(k). After normalization we obtain a degree distribution of neighboring consumer

ξ(k), which is the following:
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ξ(k) =
kp(k)∑∞
j=1 jp(j)

=
kp(k)

z1
,

where a normalizing factor z1 is the average number of links that a randomly chosen

consumer possesses. Using the degree distribution of neighboring consumer, we can find

the expected number of second neighbors z2, which is number of consumers that are

situated 2 links away from the current consumer. Note, each neighbor with degree k

has k − 1 additional links and consumer has in expected terms z1 neighbors, thus z2 =

z1
∑∞

k=1(k − 1)ξ(k). A generating function that characterizes the degree distribution of

consumer’s neighbor is:

F1(x) = q

∞∑
k=0

ξ(k)xk

Generating functions characterizing the probability that a neighboring consumer of

type i has k links apart of the link, which led to this consumer is given by:

F̂1(x) = q

∞∑
k=1

ξ(k)xk−1

Let us denote by H1(x) a probability generating function over sizes of buyers compo-

nents, induced by recommendation from one consumer to another consumer with k links.

If the consumer does not buy the product, a component is empty. This happens with

probability 1 − q
∞∑
k=1

ξ(k) = 1 − F̂1(1). With a complementary probability the consumer

buys the product and relays information to neighbors. The further spreading of informa-

tion is subject to analogous considerations for k − 1 additional links and is described by

F̂1(H1(x)). We get the following self-consistency condition for H1(x):

H1(x) = 1− F̂1(1) + xF̂1(H1(x))

A leading factor x accounts for the fact that the consumer buys the product. On

the basis of H1(x) we can define H
(
0x) - generating function describing the size of buyers

components resulting from an advertisement to a randomly chosen consumer. Since a

randomly chosen consumer does not buy the product with the probability 1 − F0(1) we

have:

H0(x) = 1− F0(1) + xF0(H1(x))

The derivative of the generating function evaluated at x = 1 gives us the first moment

of a distribution. That is why the number of consumers who eventually buy the product

if we advertise it to a randomly chosen consumer is ∂H0
∂x evaluated at x = 1. With the

abuse of notation we assume that all function are being evaluated at point x = 1:
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H0x = F0 + F0xH1x

We can find H1x by solving H1x = F̂1 + F̂1xH1x. The solution is H1x = F̂1

1−F̂1x
. Thus

we can find the number of consumers who buy the product if one consumer receives direct

advertisement:

H0x = F0 + F0x
F̂1

1− F̂1x

(2)

Note that F0 = q, F0x = z1, F̂1 = q, F̂1x = q z2z1 and q = v − P . The demand for the

product therefore is given by the following expression:

D(v, P ) = (v − P )

(
1 +

(v − P )z1
1− (v − P )z̃

)
Proof of Proposition 1

Taking the derivative we get

D′v(v, P ) =
(2− (v − P )z̃)(v − P )(z1 − z̃) + 1

(1− (v − P )z̃)2

The numerator of the expression represents upward sloping parabola in z̃. Thus taking

the derivative and equating to 0 we can find its minimum, which occurs at the point
1

v−P + z1
2 . Note that by NGC condition z̃ < 1. Thus the minimum of the numerator

when 0 < z̃ < 1 is at the point where z̃ = 1. Substituting it into the numerator we get

((v − P )(2− (v − P ))(z1 − 1) + 1) which attains the minimum when v − P = 1 in which

case it is zero. The same holds for z̃:

D′z̃(v, P ) =
(v − P )3z1

(1− (v − P )z̃)2
> 0

The price elasticity of demand is:

εP = P

(
1

v − P
+

z1
(1 + (v − P )(z1 − z̃))(1− (v − P )z̃)

)
Note that z̃ enters only the denominator of the second term in the brackets, which is

decreasing in z̃. Thus the price elasticity of demand increases in z̃.

Proof of Proposition 2
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Taking the derivative of the number of potential buyers with respect to q we get:

z1(1− q(2− qz̃))− (1− qz̃)2

(1− qz̃)2
(3)

The denominator is always positive and thus the derivative is positive if z̃(z1 − z̃)q2 +

2(z̃ − z1)q + z1 − 1 > 0. Solving we get the following two roots

q1 =
1

z̃
−
√
z1(z̃ − z1)(z̃ − 1)

z̃(z̃ − z1)
; q2 =

1

z̃
+

√
z1(z̃ − z1)(z̃ − 1)

z̃(z̃ − z1)
;

It is easy to show the following:

• If 1 < z̃ < z1 then both q1 and q2 are complex and expression (3) is always positive.

• If 1 < z1 < z̃ then q1 < 0 and q2 > 0 and expression (3) is always positive.

• If z̃ < z1 < 1 then q1 < 0 and q2 > 0 and expression (3) is always negative.

• If z1 < z̃ < 1 then both q1 and q2 are complex and expression (3) is always negative.

• If z1 < 1 < z̃ then 0 < q1 <
1
z̃ and q2 >

1
z̃ thus the derivative first increases and then

decreases.

• If z̃ < 1 < z1 then 0 < q1 <
1
z̃ and q2 >

1
z̃ thus the derivative first decreases and

then increases.

Lemma 3 Function ∂π(v,P )
∂P is convex in P and crosses horizontal axes from above.

Proof

Taking the derivative of profit with respect to price we get the following FOC:

∂π

∂P
=

(v − 2P )− (v − P )2(v − 2P )(z1 − z̃)z̃ − (v − P )(Pz1 + (v − 2P )(2z̃ − z1))
(1− (v − P )z̃)2

= 0

(4)

Lets denote this derivative by F (v, P ). Evaluating it at the end points we get

F (v, 0) =
v(v(z1 − z̃) + 1)

(1− vz̃)
> 0, F (v,

v

2
) = − v2z1

(2− vz̃)2
< 0

The second derivative of F with respect to P is

F ′′PP (v, P ) =
6z1(1− vz̃)

(1− (v − P )z̃)4
≥ 0

Thus we can conclude that F (v, P ) is convex function that crosses axes x ones from

above.

26



Proof of Proposition 3

The optimal price is lower than P ∗FI = v
2

Substituting P = v
2 into FOC for price we get − v2z1

(vz̃−2)2 , which is negative. Thus by

Lemma 3 the optimal price is lower than P ∗FI = v
2 .

Optimal price decreases in z̃

Taking the derivative of FOC for price with respect to z̃ we get:

(v − P )2(v − 2P )z21
(z1 − (v − P )z2)2

− 2P (v − P )2z31
(z1 − (v − P )z2)3

,

which is positive if optimal price P ∗ is lower than P̄z̃ =
3vz̃−4+

√
(vz̃−4)2−8vz̃
4z̃ . Substitut-

ing P̄z̃ into FOC for price we get F (v, P̄z̃) > 0, which by Lemma 3 implies that P ∗ > P̄z̃
and thus the optimal price decreases in z̃.

Proof of Proposition 4

Optimal price first increases in v and then decreases

Taking the derivative of price elasticity with respect to v we get

(εP )′v = P

(
z̃2

(1− (v − P )z̃)2
− 1

(v − P )2
− (z1 − z̃)2

((v − P )(z1 − z̃) + 1)2

)
(5)

Lets denote previous derivative by G(v, P ) and by G∗(v) = G(v, P ∗(v)) . Substituting

v = 0 to the G(·) function we get:

G(0, P ) = P

(
z̃2

(P z̃ + 1)2
− 1

P 2
− (z̃ − z1)2

(P (z̃ − z1) + 1)2

)
= −P

(
(1 + 2P z̃)

P 2(1 + P z̃)2
+

(z̃ − z1)2

(P (z̃ − z1) + 1)2

)
< 0

Hence G(0, P ) is less than zero for all price values and thus G∗(0) < 0. Lets now

consider the other extreme value of v. Assume that z̃ > 1 then the maximal value v is 1
z̃ .

Substituting it to the (4) we get the following expression for the optimal price:

P ∗
(

1

z̃

)
=

2z1 − z̃
2(z1 − z̃)z̃

(6)

The solution is non-negative if z̃ ≥ 2z1 or z̃ < z1. The SOC at P ∗
(
1
z̃

)
is 2(z1−z̃)

z̃ and
(2z1−z̃)
z1−z̃ < 1. Thus (6) is a solution if z̃ ≥ 2z1. If z̃ < 2z1 then the optimal price is zero.

Substituting v = 1
z̃ into G∗(·) we get that if z̃ > 1 then function is the following:
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G∗
(

1

z̃

)
=

{
−2(z1−z̃)(8z21−8z1z̃+z̃2)

(2z1−z̃)z̃ , max{1, 2z1} ≤ z̃
∞, 1 < z̃ < max{1, 2z1}

Thus G∗
(
1
z̃

)
> 0 if 1 < z̃ < 2z1(2 +

√
2). It is easy to check that (4) is continuous in

v and thus by Lemma 3 the optimal price P ∗ is also continuous in v. One also can note

that given no giant cascade condition G(v, P ) is continuous in both v and P . Thus there

exists z̃c < 1 such that G∗
(
1
z̃

)
> 0 if the following holds:

z̃c < z̃ < 2z1(2 +
√

2) (7)

Taking derivative of G(v, P ) with respect to v we get:

G′v(v, P ) = 2P

(
1

(v − P )3
+

(z1 − z̃)3

(2 + (v − P )(z1 − z̃))3
+

z̃3

(1− (v − P )z̃)3

)
The last term in the brackets is positive. The sum of first two terms is also positive:

2(1 + (v − P )(z1 − z̃))((v − P )2(z1 − z̃)2 + 2(2 + (v − P )(z1 − z̃)))
(v − P )3(2 + (v − P )(z1 − z̃))3

> 0

Thus G(v, P ) is increasing function of v for all P ∈
[
0, v2
]
. Lets consider the derivative

∂

∂v
G∗(v) = G′v(v, P

∗(v)) +G′P (v, P ∗(v))
∂P ∗(v)

∂v

We want to prove that there is at most one point where G∗(v) changes sign. Indeed,

assume that G∗(v0) = 0 and there exists v1, s.t. G∗(v1) = 0. We know that G∗(0) < 0

thus for the second point to exists the derivative ∂
∂vG

∗(v1) should be less than zero. By

assumption G∗(v1) = ∂εP (v1)
∂v = 0 and thus ∂P ∗(v)

∂v should be equal to zero. We got a

contradiction since ∂
∂vG

∗(v1) = G′v(v1, P ) > 0. Thus we can conclude that if there is v0
s.t. G∗(v0) = 0 then ∀v > v0 function G∗(v) ≥ 0.

The last statement in particular implies that there is v0 s.t. G∗(v0) = 0 only if

G∗
(
1
z̃

)
≥ 0. Thus we can conclude: if condition (7) holds then the optimal price first

increases in v and then decreases.

Proof of Proposition 5

The first order condition in the case of Poisson degree distribution is the following:

F =
v − 2P − (v − P )2z1

(1− (v − P )z1)2
= 0

By second order condition the derivative of F with respect to P is less than zero. The

derivative of F with respect to z1 is the following:
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∂F

∂z1
=

(v − 2P )2 − (v − P )3z1 − P
(1− (v − P )z1)3

The denominator of the derivative is positive and the nominator is negative since by

the first order condition v − 2P = (v − P )2z1. Thus by implicit function theorem the

derivative ∂P ∗

∂z1
is negative and the optimal price decreases in z1.

Proof of Proposition 6

The first order conditions with respect to price and quality, which we denote by F and

G are the following:

F = ∂π
∂P = D + P ∂D

∂P = 0

G = ∂π
∂v = P ∂D

∂v −
∂c
∂v = 0

(8)

Lets denote by P ∗(v, z1, z̃) the solution for the optimal price from the first equation in

(8) and substitute it the profit function. In this way we reduce our problem to just one

variable v. Taking partial derivative of the result with respect to v we get:

∂P ∗

∂v

(
D + P ∗

∂D

∂P

)
+ P ∗

∂D

∂v
− ∂c

∂v
= 0

Note that the demand function effectively depends on one parameter q = v − P and

thus ∂D
∂P = −∂D

∂v . Substituting it and deriving the FOC with respect to z̃ we get:

∂2P ∗

∂v∂z̃

(
D + P

∂D

∂P

)
+
∂P ∗

∂v

(
∂D

∂z̃
+
∂D

∂P

∂P ∗

∂z̃
+
∂P ∗

∂z̃

∂D

∂P
+ P ∗

∂2D

∂P∂z̃

)
−∂P

∗

∂z̃

∂D

∂P
−P ∗ ∂

2D

∂P∂z̃

The first two terms are zero because first order condition for the price should hold for

any v and z̃. From the second term we can express:

∂D

∂P

∂P ∗

∂z̃
= −1

2

∂D

∂z̃
− 1

2
P ∗

∂2D

∂P∂z̃

Substituting it to the third term we get:

1

2

(
∂D

∂z̃
− P ∗ ∂

2D

∂P∂z̃

)
We know that ∂D

∂z̃ > 0 and − ∂2D
∂P∂z̃ = ∂2D

∂v∂z̃ , which is positive. Thus using the fact that

by second order condition the second derivative of π(v, P ∗(v, z1, z̃), z1, z̃) with respect to

v is negative by implicit function theorem we can conclude that ∂v∗

∂z̃ > 0.

Noting that ∂2D
∂v∂z1

> 0 we can show that an increase in the average connectivity which

leads to a higher z̃ leads to a higher optimal quality.
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Proof of Proposition 7

Substituting z2 = z21 into the first order conditions we get:

F = (v − P )(1− z1(v − P ))− P = 0

G = (v − P )− (1− z1(v − P ))c′(v) = 0

Taking the full derivative with respect to z1 of both conditions and solving for dv
dz1

and
dP
dz1

we get:

dv

dz1
=

(v − P ) (v − P + (2− z1(v − P ))c′(v))

2c′′(v)(1− z1(v − P ))2 − z1c′(v)− 1

dP

dz1
=

(v − P ) (v − P + (1− (v − P )z1) (c′(v)− (v − P )c′′(v)))

2c′′(v)(1− z1(v − P ))2 − z1c′(v)− 1

From previous analysis we know that dv∗

dz1
> 0, which implies that the denominator in

both expressions is positive. The derivative dP
dz1

is positive when the nominator is positive.

Solving for c′(v) FOC and substituting it to the nominator we get the following condition

2− (1− (v−P )z1)c
′′(v) > 0. Substituting the optimal price and taking into account that

∂D
∂v <

∂2c
∂v2

we get the following condition:

1

1− vz1
< c′′(v) <

2√
1− vz1

(9)

Lets denote by v∗(z1) the optimal price. Thus if c′′(v∗(0)) < 2 for sufficiently small z1
the optimal price increases in z1. If c′′(v∗(1)) > 2√

1−v∗(1)
then for sufficiently high z1 the

optimal price decreases in z1. Substituting the optimal price into the second FOC we get:

c′(v) =
1

z1

(
1√

1− vz1
− 1

)
(10)

Combining (9) and (10) we get that if c′′(v)− 2(c′(v) + 1) is quasi-concave function on

the interval [0, 1] and c′′(v∗(0)) < 2 and c′′(v∗(1)) > 2√
1−v∗(1)

then the optimal price first

increases in z1 and then decreases.

Assume that the cost function is the following c(v) = v
1−v , The first derivative is

c′(v) = 1
(1−v)2

Proof of Proposition 8

If z̃ > 3
4 then the optimal price in the case of free sampling P̂ ∗ =

√
1−vz̃−(1−vz̃)

z̃

is non-monotonic function in v, which first increases and then decreases.
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Taking the first derivative of profit function in the case of free sampling with respect to

price we get z1(v−2P )−(v−P )2z1z̃
(1−(v−P )z̃)2

. The second derivative is − 2z1(1−vz̃)
(1−(v−P )z̃)3

, which is negative

and thus the function is concave and the following critical point is maximum:

P̂ ∗ =

√
1− vz̃ − (1− vz̃)

z̃
(11)

Taking the first derivative of P̂ ∗ with respect to v we get 1 − 1
2
√
1−vz̃ . It is positive

when v = 0 and is negative when v > 3
4z̃ . Thus if z̃ > 3

4 there are v such that the derivative

is negative. Taking into account that the second derivative is always negative − z̃
4(1−vz̃)3/2

we can conclude that if z̃ > 3
4 , P̂ ∗ first increases in v and then decreases.

The optimal price in the case of free sampling P̂ ∗ is higher than in the

standard case if z1 > z̃ and is lower otherwise.

Taking into account that π(P ) is quasi concave, price P̂ ∗ will be higher than P ∗ if
∂π(P̂ ∗)
∂P < 0. Substituting (11) into (12) the condition reduces to the following:

(z1 − z̃)
(
vz̃ − 2(1−

√
1− vz̃)

)
z̃2

< 0

The last condition holds whenever z1 < z̃. Thus optimal price in the case of free

sampling P̂ ∗ is higher than in the standard case if z1 > z̃ and is lower otherwise.

Proof of Proposition 9

Condition for the optimality of free sampling.

Substituting the optimal price in the case of free sampling to π̂ we get:

π̂∗ = z1
2
(
1−
√

1− vz̃
)
− vz̃

z̃2

Profit function for the case when we sell to the first consumer is the following:

π(P ) = P (v − P )

(
1 +

(v − P )z1
1− (v − P )z̃

)
The first derivative with respect to price is:

(v − P )2(v − 2P )(z̃ − z1)z̃ − (v − P )((3P − v)z1 + 2(v − 2P )z̃) + (v − 2P )

(1− (v − P )z̃)2
(12)

The denominator is always positive by no giant cascade of sales condition. Substituting

P = 0 we get 1+v(v(z1−z̃))
1+z̃−v > 0, and for P = v we get −v. The derivative of the numerator

with respect to P is −2((2v − 3P )(z1 − z̃) + 1)(1 − (v − P )z̃). Thus the derivative first

31



decreases and then after P = 1
3

(
2v + 1

z1−z̃

)
increases. However, we know that at P =

v the derivative is still negative and thus on the interval P ∈ [0, v] function π(P ) is

quasiconcave.

To find whether π̂∗ ≥ π(P ) for any P ∈ [0, v] we should identify, whether equation

π(P ) = π̂∗ has roots on interval [0, v]. Rewriting, we get the following cubic equation:

(z1 − z̃)P 3 − (2v(z1 − z̃) + 1)P 2 + (v2(z1 − z̃) + v −Rz̃)P −R(1− vz̃) = 0, (13)

where R = z1
2−2
√
1−vz̃−vz̃
z̃2

. Taking into account that π(P ) is quasiconcave function

on [0, v] there should exist two or none roots in this region. However, the cubic equation

may have one or three real roots. Thus if (13) has just one real root then we can conclude

π̂∗ ≥ π∗. The condition is the following:

(2p3 − 9pq + 27r)2 + 4(3q − p2)3 ≥ 0, (14)

where p = −2v − 1
z1−z̃ , q = v2 + v−Rz̃

z1−z̃ and r = R(vz̃−1)
z1−z̃ .

Proof of Proposition 10

Condition for the optimality of free sampling. Intuition.

Taking the derivative of the difference π̂(P )−π(P ) with respect to P and substituting

P = 0 we get the following expression:

η =
v(z1 − 1 + v(z̃ − z1))

1− vz̃
When η is higher than zero the profit function in the case of free sampling has a higher

slope than the standard one at P = 0. We also can find an interior point of intersection

of the two functions, which is is not zero or one. The point is Pc = v + z1−1
z̃−z1 .

Lets consider first the case when z1 < 1 and z̃ < 1. It is easy to show that η is negative

and Pc does not belongs to the interval (0, 1). Thus we can conclude that for any P ∈ (0, 1)

function π̂(P ) lies below π(P ), which implies that it is never optimal to use free sampling.

When z1 > 1 and z̃ > 1 we can show that η is positive for any v and Pc does not

belongs to the interval (0, 1). Thus we can conclude that for any P ∈ (0, 1) function π̂(P )

lies above π(P ), which implies that it always optimal to use the free sampling strategy.

If z1 < 1 and 1 < z̃ < 1−z1(1−v)
v then η is negative and Pc does not belong to (0, 1).

Thus we can conclude that in this case a necessary condition is z̃ > 1−z1(1−v)
v .

When z1 > 1 and 1−z1(1−v)
v < z̃ < 1 one can show that η is positive and Pc does not

belong to (0, 1). Thus condition z̃ > 1−z1(1−v)
v is a sufficient condition for the optimality

of free sampling.

32



Proof of Proposition 11

It is not optimal to give the product for free to any consumer beyond the

first one if z̃ < 1.

Profit function for the case of free sampling can be rewritten in the following way:

π̂(P ) = P (v − P )z1
1

1−(v−P )z̃ . Term (v − P )z1 is the probability that the first neighbor

buys the product multiplied by the number of first neighbors z1. If the innovator gives the

product for free to the first neighbor the profit it gets is π̃(P ) = Pz1

(
1

1−(v−P )z̃ − 1
)

. One

is subtracted to take into account that we do not sell the product to the first neighbor.

Solving for the optimal price we get P̃ ∗ = vz̃−1+
√
1−vz̃

z̃ . Substituting the optimal prices

P̂ ∗ and P̃ ∗ into profit functions correspondingly and taking the difference we get:

π̂(P̂ ∗)− π̃(P̃ ∗) =
z1(1− z̃)

(
2− vz̃ − 2

√
1− vz̃

)
z̃2

=
z1(1− z̃)

(
1−
√

1− vz̃
)2

z̃2

The difference is positive for z̃ < 1 and is negative otherwise.

Proof of Lemma 2

Evaluating generating functions we get:

F0(1) =
∞∑
k=0

p(k)q(k) = v − P + z1q̄1b

F ′0x(1) = µ
∞∑
k=0

kp(k)q(k) = z1(v − P ) + (z2 + z1)q̄1b

F̂1(1) =
∞∑
k=0

ξ(k)q1(k) = (v − P + b) + q̄1b
z2
z1

F̂ ′1x(1) = µ
∞∑
k=1

(k − 1)ξ(k)q1(k) =
z2(v − P + b) + (< k3 > −2z2 − z1)q̄1b

z1

Substituting into expression for the demand (2) we get:

D = (v− P + z1q̄1b) + (z1(v − P ) + (z2 + z1)q̄1b)
z1(v − P ) + z2q̄1b

z1 − (v − P )z2 − (< k3 > −2z2 − z1)q̄1b

Proof of Proposition 12
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The FOC with respect to b is the following:

(P − v)

(
b2 + b+ 1

z1(b(P − v − 1) + P − v) + 1
−
(
b2 + b+ 1

)
z1(b− P )(P − v − 1)

(z1(b(P − v − 1) + P − v) + 1)2

+
(2b+ 1)(b− P )

z1(b(P − v − 1) + P − v) + 1
+

1

bz1 − 1
− bz1

(bz1 − 1)2

)
= 0

Substituting b = 0 we get the following expression:

(v − P )(P − (v − 2P )z1 + (v − P )2z21)

(1− (v − P )z1)2

An expression in the second brackets in the numerator is an upward sloping parabola

in P with a positive root given by the following expression:

P̂ = v −
1 + 2z1 −

√
1 + 4z1(z1 + 1)(1− vz1)

2z21

Thus if the optimal price is higher than P̂ then the derivative ∂π
∂b

∣∣
b=0

is positive.

Substituting P = P̂ and b = 0 into the FOC for the price we get:

2v

1 + 2z1(1− v(z1 + 1)) +
√

1 + 4z1(z1 + 1)(1− vz1)

If 1 + 2z1(1 − v(z1 + 1)) > 0 then the expression is trivially positive. Assume that

1 + 2z1(1− v(z1 + 1)) < 0 then the expression is positive if√
1 + 4z1(z1 + 1)(1− vz1) > |1 + 2z1(1− v(z1 + 1))|

Squaring both sides and rearranging we get:

4vz1(1 + z1)
2(1− vz1) > 0

Thus we can conclude that when b = 0 the optimal price is always higher than P̂ ,

which in turn implies that ∂π
∂b

∣∣
b=0

and thus using bonuses is always an optimal strategy.

The FOC with respect to price is:

(b2 + b+ 1)(v − P )
(
z1
(
b2 − (b+ 1)v

)
+ 1
)

(z1(b(P − v − 1) + P − v) + 1)2
− b

1− bz1
− (b2 + b+ 1)(P − b)
z1(b(P − v − 1) + P − v) + 1

= 0

Taking the derivative with respect to b and evaluating limit as z1 approaches 0 we get

plus infinity, which implies that for sufficiently small z1 the optimal price is increasing in

b.
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Proof of Proposition 13

The derivative of the profit function with respect to w is the following:

P (1− P )

(
z1
z̃

(
1− 1− z̃

(1− (1− P (1− w))z̃)2

)
− 1

)
(15)

The second derivative is always negative:

− 2(1− P )P 2z1(1− z̃)
(1− z̃(1− P (1− w)))3

Thus the profit function is concave in w. Note that the expression in the brackets in

(15) increases in P . Evaluating (15) at w = 0 and assuming that P equals to 1 we get in

the brackets z1 − 1, which is negative if z1 < 1. Hence, for any P (15) at w = 0 is always

negative. Taking into account that profit is concave and when z1 < 1 the first derivative

is negative at 0 we can conclude that the optimal free space is zero.

Assume that z1 > 1. The expression in the brackets in (15) can be rewritten as:

(1− w)2(z1 − z̃)z̃P 2 + 2(1− w)(z1 − z̃)(1− z̃)P − (1 + z1 − z̃)(1− z̃)
(1− (1− P (1− w))z̃)2

The nominator represents upward sloping parabola in P with roots:

P1,2 =
−(z1 − z̃)(1− z̃)∓

√
z1(z1 − z̃)(1− z̃)

(1− w)(z1 − z̃)z̃

The smallest root is negative and thus the expression is positive only if P > P2. Taking

the derivative of the profit function with respect to P and substituting P2 we get:

−z1 − (z1 − z̃)(1− z̃)− 2
√
z1(z1 − z̃)(1− z̃)

z̃2

The expression does not depend on w and is always negative. Thus the optimal price

is always lower than P2, which in turn implies that the first order condition for w is always

negative. Hence, it is not optimal to give any space for free.
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В данной статье рассматривается оптимальная ценовая стратегия инноватора, который 
учитывает присутствие сарафанного радио. В модели инноватор разрабатывает и продает но-
вый продукт потребителям, которые изначально не знают о его существовании. Потребители 
общаются между собой и могут узнать о продукте и его качестве непосредственно из рекламы 
или от соседей, которые уже приобрели товар. Инноватор знает статистические свойства сети 
и выбирает ценовую стратегию, чтобы максимизировать прибыль. Мы показываем, что опти-
мальная цена сначала увеличивается, а затем уменьшается при росте качества продукта. Мы 
также показываем, что таргетирование потребителей с большим количеством связей с помо-
щью бонусов за покупки, сделанные соседями, при одновременном повышении цены является 
оптимальной стратегией.

Ключевые слова: cарафанное радио, вирусный маркетинг, распространение информации, 
социальные сети, стратегия ценообразования
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