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Abstract

Data Envelopment Analysis is a well-known non-parametric technique of efficiency

evaluation which is actively used in many economic applications. However, DEA is not

very well applicable when a sample consists of firms operating under drastically different

conditions. We offer a new method of efficiency estimation on heterogeneous samples

based on a sequential exclusion of alternatives and standard DEA approach. We show

a connection between efficiency scores obtained via standard DEA model and the ones

obtained via our algorithm. We also illustrate our model by evaluating 28 Russian universities

and compare the results obtained by two techniques.
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1 Introduction

In standard DEA approach many firms can be located quite far from efficiency frontiers.

From the economic point of view it means that all inefficient firms are benchmarked

against some outstanding companies which are very rare in the whole sample. However,

there are a lot of other much more complicated situations in which different types of

heterogeneity make it impossible to use standard DEA technique successfully.

In our paper, we concentrate mainly on the heterogeneity caused by drastic differences

in operating environment. These are (for details see Fried et. al., (1999)

1. Differences in ownership status (public/private, corporate/non-corporate);

2. Location peculiarities (for universities — city/country, for electrical companies —

the density of population in the operating area);

3. Differences in legislation.

There are a lot of papers dealing with the problem of the influence of environmental

parameters on efficiency scores, see Banker and Morey (1986a, 1986b), Charnes, Cooper

and Rhodes (1981), Bessent and Bessent (1980), Ferrier and Lovell (1990). The following

solutions are commonly used

1. Partitioning of an original sample to the smaller groups by some environmental

factor (for instance, location in city – first group, suburbs – second group, etc).

Comparison is performed only between subsamples;

2. Separate application of DEA to each cluster, then construction of each firm’s projection

onto its respective efficiency frontier and launching one common DEA LP among

the obtained projections;

3. Imposition of additional restrictions to the DEA;

4. Composition of regression analysis with the approach 3.

One can find the detailed description of all methods, their strengths and shortages

in Coelli et al (2005). There is another widespread technique of taking into account

heterogeneity of the sample. The idea is to combine the power of clustering models with

DEA (see, e.g., Samoilenko, K.M.Osei-Bryson (2010); Shin and Sohn, (2004); Hirschberg

and Lye, (2001); Lemos et al., (2005); Meimand et al., (2002); Sharma and Yu, (2009);

Marroquin et al., (2008); Schreyogg and von Reitzenstein, (2008)). Generally, clustering

methods can be united with DEA via two different ways. The first one is to apply clustering

to the obtained efficiency scores, then form appropriate reference subsets of firms and
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apply DEA again. The second one is on the contrary based on the application of clustering

to initial set of DMUs and then comparison of each firm within its reference set.

Another approach introduced by Smirlis and Despotis, (2012) deals with the problem

of extreme units in DEA. The firm is characterized as extreme if its level of output (input)

is too high (low) for the given sample. First, the authors formulate linear program which

allows to reduce the influence of such extreme firms on efficiency scores. Second, they

offer a technique for specifying a threshold beyond which the values of output/input are

characterized as extreme.

Aggregated ratio analysis is another model introduced by Huang et al., (2005). Authors

claim their model is equivalent to standard CCR. However, Zha and Liang (2014) found

some errors in the proof of Theorem 1.

The so-called context dependent DEA introduced by Chen et al., (2005) is another

model aimed at heterogeneity problem in efficiency assessment. Authors state that the

model measures the relative attractiveness of evaluated items on a specific performance

level against items exhibiting poorer performance.

The structure of our algorithm differs from the above mentioned approaches. We

suggest to move the efficiency frontier in a special way, using the barycenter of the sample.

The next section presents the method in the simplest possible case with economy

consisting of single input and output. Then we introduce one of the possible ways to extend

our model to the evaluation of samples with arbitrary number of inputs and outputs. In

the last section we illustrate the proposed method via evaluating the efficiency scores of

28 Russian universities and comparing them with standard DEA.

2 The model

First, we briefly discuss Data Envelopment Analysis, which is one of the most wide-

spread and commonly used techniques of efficiency evaluation. The method offered by

Farrell (1957) was extended and generalized by Cooper et al (1978). They showed that

the problem of efficiency evaluation can be formulated in terms of mathematical program

as

max
u,v

(

θi =
u1q1i + . . .+ uMqMi

v1x1i + . . .+ vNxNi

)

subject to
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u1q1i+...+uMqMi

v1x1i+...+vNxNi

≤ 1, i ∈ {1, . . . , L};

uj ≥ 0, j ∈ {1, . . . ,M};

vk ≥ 0, k ∈ {1, . . . , N},

where L is the number of firms in the sample, qji — j-th output parameter (j ∈ {1, . . . ,M})

of i-th firm, xki — k-th input parameter (k ∈ {1, . . . , N}) of i-th firm, u and v are weight

vectors of appropriate lengths. Finally, θi represents efficiency measure of i-th firm.

Recall the standard definition of DEA using CRS setting. Cooper et al (1978) also

showed that presented above model can be simplified and rewritten in the form of linear

program as

min
λ,θi

θi (1)

subject to







−qi +Qλ ≥ 0;

θixi −Xλ ≥ 0;

λ ≥ 0,

(2)

where qi is M × 1 vector of output parameters of i-th firm, xi is N × 1 vector of input

parameters of i-th firm, Q is M ×L matrix of output parameters of all firms, X is N ×L

matrix of input parameters of all firms, λ is L× 1 weight vector, one may interpret it as

intensity parameters, (Coelli, 2005). As in the previous case θi is the efficiency measure

of i-th firm.

The formulation (1)–(2) is fundamental and called CCR model (after the names of its

authors). Note that CCR allows to assess efficiency only when constant return to scale

takes place. Thereby the program (1)–(2) is also called CRS DEA model. However, it is

easy to adjust the method to the situation with variable return to scale – we only need

to impose one additional constraint

1T · λ = 1, (3)

where 1T is a unit vector of the size 1× L.

The programm (1)–(2) with the restriction (3) is called VRS DEA model. This

modification was introduced in Charnes and Cooper (1984). Note that VRS model is

applicable if analyzed firms operate at the non-optimal scale.
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One can write the linear programm dual to (1), (2), (3) and discover a geometric

interpretation of the two discussed models in the case of single input and output production

(Fig. 1).
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Figure 1. Interpretation of two DEA models in the case N = M = 1.

Efficiency score of the firm B (Fig. 1) via VRS and CRS models is calculated as |OBV
x |

|OBx|

and |OBC
x |

|OBx|
, respectively.

Throughout the rest of the text we use the definition of efficient firms according to

CRS model. In this section we consider the situation with single input and output. Note

that in this case there may be several efficient firms if and only if all of them are lying

on the same ray which i) begins in the origin, and ii) has the highest slope amongst all

analogous rays which connect other firms with origin. Algebraically it means that several

efficient firms must have exactly the same minimal among others ratio of input to output.

Therefore without loss of generality we consider the case when there is only one 100%

efficient company in the sample.

Our purpose is to construct a new efficiency frontier which takes into account hetero-

geneity of the evaluated sample. Recall that the i-th firm in the sample is represented via

two coordinates (xi, qi) in the space of input-output parameters.

The core idea is the following. First, we calculate the barycenter of all firms in the

usual geometric sense. The next step is to construct a frontier generating company lying

on the segment between the most efficient firm and the barycenter of the sample (Fig. 2).

Now it is possible to form a subgroup of relatively inefficient organizations and evaluate

their scores regarding the new frontier generating company.
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Figure 2. Graphic interpretation of the algorithm in the case N = M = 1.

On the figure above initial sample consists of the firms F1, . . . , F6 and according to

standard CRS model F1 is the efficient firm. According to the introduced algorithm we

calculate the barycenter (point B) and construct the new frontier via generating phantom

firm G, lying on the segment BF1. Clearly, F3, . . . , F6 should be benchmarked against the

firm G. Still, F1 and F2 remain unevaluated, to compute their efficiency scores we should

repeat the same algorithm excluding the firms F3, . . . , F6 from consideration.

It is of separate interest to define exact position of the frontier generating company. It

is clear that this location depends on the heterogeneity of the sample. Roughly speaking,

it means that the higher heterogeneity within the sample the nearer generator to the

barycenter. Let us measure heterogeneity of a sample as a number µ ∈ [0, 1]. The higher

heterogeneity the higher the value of µ. It is out of scope of this paper to discuss how one

can compute this index. Then the position of generating company is defined as

G = µB + (1− µ)F1, (4)

where B is the barycenter of the sample and F1 is a 100% efficient firm according to the

standard DEA CRS model.

Note several important properties of the procedure. First, the algorithm obviously

converges for any sample. Second, the only firm that remains efficient is the one which is

efficient according to standard CRS model. Besides there is a simple connection between

DEA efficiency scores and the ones obtained via the sequential process. Suppose that

current subgroup of firms is evaluated via frontier generating firm G. Let F be in this
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subgroup, then

ECRS

F
= ECRS

G
·ENew

F
, (5)

where the lower index stands for firms and the upper one does for efficiency evaluation

method. Note that the formula (5) follows immediately from the interpretation of CRS

efficiency scores given in Fig. 1.

According to (5) our algorithm evaluates inefficient firms less strictly than the standard

CRS model. Again, the reason for such alleviation is that the sample is heterogeneous and

all firms cannot be benchmarked against the firm which showed exceptional efficiency.

Such situations happen in practice very often and may occur, for instance, because of the

presence of some crucial environmental factors.

3 Extensions to general case

Consider now the case of a sample characterized by several input and output variables. It

is impossible to apply the considerations above directly. Thus we construct a sequence of

linear programs which allow us to carry out the same algorithm in general case. Besides,

we want to preserve the following properties

i) Convergence of the procedure for any sample;

ii) The only firms that remain efficient are those which were efficient according to standard

CRS model;

iii) Some counterpart of the equality (5) should be obtained.

Recall that i-th firm is represented by the vector xi = (x1i, . . . , xNi) of inputs and

qi = (q1i, . . . , qMi) of outputs. As before we define the input and output parts of the

barycenter as

bx = (x1, . . . , xN ).

and

bq = (q1, . . . , qM),

where, as usual, the bar means the average value of a particular parameter.

We will also need the heterogeneity index µ.

Let the whole sample be defined by the set of indices I = {1, . . . , L}. Recall that there

are N input and M output variables. We denote the group of 100% efficient (relatively
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to the standard DEA) companies as a subset Ie = {i1, . . . , iS} ⊂ I. Now, let Xe be the

N × S matrix of input parameters of all efficient firms, and Qe be the M × S matrix of

outputs for the same firms. We also define the following matrix

Bi
x =

∥
∥bTx , . . . , b

T
x

︸ ︷︷ ︸

S

, xT
i

∥
∥,

where bTx is transposed input part of the barycenter repeated S times, xi is the input

vector for some inefficient firm, i.e., i ∈ I \ Ie. Similarly we define the M × (S+1) matrix

Bi
q =

∥
∥bTq , . . . , b

T
q

︸ ︷︷ ︸

S

, qTi
∥
∥,

where bTq is transposed output part of the barycenter, and qi is the vector of outputs for

the i-th company, i ∈ I \Ie. Let X i
e and Qi

e be the matrices Xe and Qe with the one added

column — xT
i and qTi , respectively. Since the core idea is to move the frontier towards the

barycenter, we can form the matrices

Xi = µBi
x + (1− µ)X i

e and Qi = µBi
q + (1− µ)Qi

e, (6)

where the product of a matrix by a scalar is defined in the usual componentwise way.

Let us make two important remarks. First, matrices (6) are defined only for inefficient

companies, i.e. i ∈ I\Ie. Note that the last column of Xi and Qi are xT
i and qTi , respectively.

Now we introduce the general form of the procedure. The first step is to solve the

following linear program for every inefficient firm i ∈ I \ Ie.

min
λ,θ∗

i

θ∗i (7)

subject to 





−qi +Qiλ ≥ 0;

θ∗i xi −Xiλ ≥ 0;

λ ≥ 0,

(8)

where Xi and Qi are defined in (6), λ is (S + 1) × 1 vector of constants, xi and qi are

input and output vectors for the i-th inefficient firm. Finally, θ∗i is the corrected efficiency

score of the i-th inefficient company.

The algorithm works as follows. Let Z1 = I \Ie, i.e., Z1 is the set of all firms inefficient

according to the standard DEA model. The description of k-th stage is as follows

1. Calculation of the barycenter of firms included in the set Zk ∪ Ie;
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2. Calculation of new Xi and Qi matrices for all companies i in Zk;

3. Calculation of θ∗i < 1 for all companies i in Zk;

4. All those companies i which get θ∗i < 1 are excluded from the sample, i.e. Zk+1 =

Zk \ {i|θ
∗
i < 1};

5. If Zk+1 is empty then stop, if not – begin (k + 1)-th stage of the algorithm.

We did not take into account only one case, when matrices (6) are organized in such

a way that for all inefficient companies according to (7)-(8) θ∗= 1 holds, i.e., Zk+1 = Zk

at some stage k. It means that the original frontier is moved too much. Therefore we have

to decrease the value of µ and begin the procedure from the beginning. For instance, we

can take the new value of the heterogeneity index as µ2.

To conclude we make two remarks regarding the algorithm. The convergence is guaranteed

by construction. The set of efficient firms is preserved as well. Although we cannot preserve

the property (5), the straightforward counterpart is the following. Since we use standard

DEA CRS model, we can calculate a projection of every inefficient firm on the temporary

frontier defined by (7)-(8) programm (see Coelli (2005) for details). Then it holds that

ECRS

F
= ECRS

P
·ENew

F
, (9)

where ECRS

F
is the standard efficiency score of the firm F , ECRS

P
is the efficiency of the

projection P of the firm F on the new frontier defined by (7)-(8). Finally, ENew

F
is the

efficiency score of the firm F according to our procedure.

Thus, we proposed a theoretical description of the sequential DEA process and showed

the simplest properties of the procedure. Note also that our model with µ = 0 corresponds

to the usual DEA CRS model.

Now, let us give an example how the algorithm works for the case of two inputs and

single output parameter.

As always, we denote first input, second input, single output and heterogeneity index

defined in (4) as x1, x2, q and µ, respectively. Apparently all efficient firms with coordinates

(xe
1, x

e
2, q

e) are moved towards the barycenter via the following transformation

(xe
1, x

e
2, q

e) 7−→ µ(x̄1, x̄2, q̄) + (1− µ)(xe
1, x

e
2, q

e). (10)

It is known that in this case standard CRS model can be easily visualized on the

plane (x1

q
, x2

q
). Without loss of generality, suppose all outputs are equal to 1, it allows to
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simplify the plane to the form (x1, x2). Recall also that µq̄ + (1 − µ)qe = 1. Therefore,

according to (10) every frontier generating company has the following coordinates on the

space (x1, x2)

(µx̄1 + (1− µ)xe
1, µx̄2 + (1− µ)xe

2) .

This means that frontier generating companies are represented as convex combination

of the barycenter and efficient according to standard CRS model firms. Generally (if

outputs are arbitrary) it is not the case, however, it adds only technical difficulties.

Using all above notes we are able to illustrate the first phase of the algorithm on Fig.

3.

O x1

x2

F1

F2

F4

F3

F5

F6
B

F8

F7

Barycenter
F

′

2

F
′

1

New frontier

CRS frontier

P3

P
′

3

Figure 3. Graphic interpretation of the algorithm for the case N = 2,M = 1.

According to Fig. 3, F1 and F2 are efficient according to the standard DEA model,

therefore we move them towards the barycenter (with the fixed µ). Thus, F ′
1 and F ′

2

become new frontier generating firms. It is clear that on the first stage of the procedure

we evaluate only F3, . . . , F7 because F8 gets θ∗8 = 1. For instance, the efficiency score of

F3 can be determined as a ratio |OP ′
3| to |OF3|, where P ′

3 is the projection of F3 on the

new frontier. Note that standard efficiency of this firm is defined by |OP3|
|OF3|

, where P3 is a

similar projection of F3 onto standard CRS frontier.

Finally, let us illustrate what the identity (9) means

ECRS

P
′

3

·ENew

F3
=

|OP3|

|OP ′
3|
·
|OP ′

3|

|OF3|
=

|OP3|

|OF3|
= ECRS

F3
,

where all notation is taken from Fig. 3.

To conclude this Section, let us note also that the procedure cannot be simplified and

performed via some single-step modification of the standard DEA model.
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4 An illustration

We apply now our model to evaluation of efficiency scores for 28 Russian universities

and compare the results with the standard DEA outcome. The detailed description of

related research is presented in Abankina et. al. (2012). To apply DEA we choose three

input parameters, which reflect main universities’ resources – the level of state financing,

quality of professorial and teaching staff and a quality of entrants.

1. Funding from federal budget (denoted as I1);

2. The number of employees with a degree of Doctor of Science (denoted as I2);

3. The quality of university entrants, to estimate this parameter we use a mean value

of Universal State Exam (USE), which is mandatory for admission (denoted as I3).

and two output parameters

1. The number of students who do not pay tuition (denoted as Q1);

2. The number of published articles on refereed journals (denoted as Q2).

The first output indicates the attractiveness of a university for the applicants and the

second one is a proxy for success of scientific and research work within a university. The

descriptive statistics for all parameters is presented below (28 observations for 2008).

Table 1. Descriptive statistics of input and output parameters

I1 I2 I3 Q1 Q2

Mean value 416486.71 68.35 454.39 424.35 612.03

Variance 156141404288.75 45.30 553190.76 56397.94 675861.36

Standard Deviation 395147.31 6.73 743.76 237.48 822.10

Median 261386.5 69.05 204 362.5 315

Minimum 61190.9 56.7 18 116 6

Maximum 1694875.5 82.6 3770 926 3556

Sum 11661628.1 1913.7 12723 11882 17137

First, we calculate efficiency scores according to standard DEA model. After that we

apply our technique taking three distinct values of heterogeneity index µ, namely, 0.2,
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0.5 and 0.8. We emphasize that these values are chosen only to test the developed model,

we did not computed the index of heterogeneity of Russian universities in a fair way.

Appendix 1 contains the detailed list of efficiency scores for all four cases.

We compare the results obtained via different models in two ways. First, we rank all

universities according to their efficiency scores in each of four cases and compare different

orderings via Kendall’s distance, see Kendall (1938), i.e., we count all discordant pairs in

the two ranks and then normalize this value by dividing by the total number of pairs in a

list consisting of N objects. The discordant pair (i, j) is the one for which i is better than

j in the first rank and j is better than i in the second one, or vice versa. Consequently a

concordant pair is the one which is ranked in the same order in both orderings.

Further, let us denote the number of discordant pairs as N− and the number of

concordant pairs as N+. Note that

N+ +N− = C2

N =
N(N − 1)

2
,

where C2
N is a binomial coefficient.

According to this notation the Kendall’s distance may be calculated as

K(r1, r2) =
N+ −N−

N+ +N−
, (11)

where r1 and r2 are different ranks consisting of N objects. Note that the value of Kendall’s

distance lie between −1 and 1, where 1 means that two orderings are the same and −1

means that the two rankings are inverse.

Table 2 shows the Kendall’s distance between all four types of efficiency evaluation

models.

Table 2. Kendall’s distances

DEA µ = 0.2 µ = 0.5 µ = 0.8

DEA 1 - - -

µ = 0.2 0.9086 1 - -

µ = 0.5 0.7849 0.8441 1 -

µ = 0.8 0.7258 0.7097 0.6720 1

Note that the distance between ranks obtained via the technique is small. Moreover

the nearer the value of µ to 1 the higher the bias of new efficiency scores from the ones

obtained via standard DEA.

As another measure of a difference between two rankings we compute median, mean

and minimal values of efficiency scores for all four versions of our evaluations (recall
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that standard DEA can be obtained from our model taking the value of µ = 0). The

information is given below.

Table 3. Median and mean values of efficiency scores for different models (in percents)

DEA µ = 0.2 µ = 0.5 µ = 0.8

Median 53.19 61.04 88.98 92.35

Mean 61.60 68.94 81.09 86.56

Minimal 15.25 22.16 26.64 32.16

Again, Table 3 confirms that the obtained results are quite consistent. With the

increasing of heterogeneity index µ our model evaluate all firms more and more mildly.

All characteristics are increasing with the growth of µ.

5 Conclusion

We have introduced a new algorithm of efficiency evaluation in the case when the sample

is heterogeneous. One of the main assumptions used is that the geometric barycenter of

a sample represents the average situation of the evaluated sector of economy. Taking it

into account, the core idea of our technique is to move the efficiency frontier towards the

barycenter. It allows to evaluate all inefficient firms more mildly.

Our algorithm has three important properties. First, the convergence for any sample

is guaranteed. Second, the set of firms that are efficient according to the standard DEA

model is preserved. Finally, there is the simple connection between efficiency scores obtained

via DEA and our algorithm.

We tested our model on the real data set containing the information on five parameters

on 28 Russian universities in 2008. The developed technique shows consistent results, i.e.,

our model does not crucially change the structure of a ranking by efficiency, however, the

efficiency scores grow when the heterogeneity of the sample is increasing.
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7 Appendix 1

Efficiency scores (in percents) for different models

№ DEA (µ = 0) µ = 0.2 µ = 0.5 µ = 0.8

1 100 100 100 100

2 54 60 74 98

3 100 100 100 100

4 35 40 77 91

5 42 59 90 78

6 53 61 96 93

7 99 99 99 99

8 15 35 38 32

9 24 27 40 71

10 100 100 100 100

11 23 26 33 58

12 31 39 73 81

13 53 59 71 90

14 70 98 99 85

15 100 100 100 100

16 100 100 100 100

17 100 100 100 100

18 73 84 98 90

19 19 22 26 33

20 100 100 100 100

21 45 52 57 74

22 52 58 84 81

23 45 52 79 88

24 59 80 95 89

25 49 55 67 93

26 92 98 94 97

27 33 47 87 97

28 48 68 82 97

Mean 61.60 68.94 81.09 86.56
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