Правительство Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный исследовательский университет «Высшая школа экономики»

		Утве	Утверждаю		
	Проре	ктор НИ	тор НИУ ВШЭ		
		С.Ю.	Рощин		
 ~			_2015 г.		

Программа вступительного испытания в аспирантуру по направлению 02.06.01 Компьютерные и информационные науки, профиль «Теоретические основы информатики»

Разработана Академическим советом Аспирантской школы по компьютерным наукам

	_	Академический директор
Аспирантской школы	и по компьютерным наукам С.А. Объедков	
<u> </u>	>>	2015 г.

Москва 2015 Вступительный экзамен в аспирантуру по специальности 05.13.17 «Теоретические основы информатики» проводится в устной форме с обязательным оформлением ответов на вопросы билета в письменном виде. Поступающие должны продемонстрировать знание следующих тем:

1. Математический анализ и дифференциальные уравнения

Исследование точек оптимума и перегиба функций одной переменной с помощью производных. Полные системы функций (полиномы и тригонометрические функции). Разложение произвольной функции по полной системе функций; остаточный член.

Обыкновенные дифференциальные уравнения: теорема существования и единственности, линейные уравнения первого и второго порядков, однородные уравнения, классификация стационарных точек.

2. Методы оптимизации

Математическое программирование. Типы экстремумов функций многих переменных, условия локального экстремума, метод множителей Лагранжа, их интерпретация. Основные понятия выпуклого программирования. Седловые точки. Функция Лагранжа. Теорема Куна — Таккера и ее геометрическая интерпретация. Современные методы градиентной оптимизации.

Формулировка задачи линейного программирования (ЛП). Понятия опорного плана и базиса, вырожденность и невырожденность задач ЛП, основные принципы симплекс-метода. Основные теоремы ЛП.

Динамическое программирование.

3. Алгебра

Линейное пространство. Линейная зависимость. Базис. Системы линейных уравнений (СЛУ). Критерий совместности СЛУ. Обратная и псевдообратная матрицы.

Линейные операторы. Собственные векторы и собственные значения квадратной матрицы и симметричной квадратной матрицы. Диагонализация матрицы линейного оператора. Сингулярные числа прямоугольных матриц и их связь с собственными числами ассоциированных матриц. Матричные разложения (сингулярное разложение, QR-разложение, LU-разложение, разложение Холецкого).

Скалярное произведение. Ортогональность. Процесс ортогонализации Грама – Шмидта.

Билинейные и квадратичные формы. Знакоопределенные и полуопределенные квадратичные формы и их свойства.

Полугруппы и моноиды. Группы, кольца, поля. Идеалы. Модули. Полурешетки и решетки, дистрибутивные и булевы решетки.

4. Основы теории вероятностей и математической статистики

Случайные величины. Распределение дискретных случайных величин. Характеристики распределений. Основные законы распределения непрерывных случайных величин. Функции плотности распределения, свойства и квантили одномерной, двумерной и *п*-мерной нормальной случайной величины. Распределения хи-квадрат, Стьюдента, Снедекора – Фишера, логнормальное и равномерное.

Случайные процессы: основные понятия, классификация. Конечные цепи Маркова. Эргодическая теорема для конечной однородной цепи Маркова. Уравнение Чепмена – Колмогорова для дискретных и непрерывных цепей.

Закон больших чисел (в форме Чебышёва) как выражение свойства статистической устойчивости среднего значения. Центральная предельная теорема.

Генеральная совокупность, выборка и ее основные характеристики (среднее значение, дисперсия, асимметрия, квантили, функции распределения и плотности). Понятие статистической гипотезы и статистического критерия. Основные понятия теории статистических оценок и свой-

ства оценок (несмещенность, состоятельность, асимптотическая нормальность, эффективность).

5. Основы теории множеств и математической логики

Основные понятия теории множеств. Операции над множествами. Счетные множества. Кардинальные числа. Определение и свойства отношений. Замыкание отношений относительно различных свойств. Отношение эквивалентности. Классы эквивалентности.

Отношения частичного и полного порядка. Полурешетки и решетки как частично упорядоченные множества.

Синтаксис и семантика логики высказываний. Понятия выполнимости, общезначимости и логического следствия. Дизъюнктивные и конъюнктивные нормальные формы. Метод резолюции в логике высказываний.

Синтаксис и семантика логики предикатов первого порядка. Нормальные формы, эрбрановские интерпретации, теорема Эрбрана. Неразрешимость задач определения выполнимости и общезначимости формулы логики предикатов. Метод резолюции в логике предикатов.

Понятия полноты и непротиворечивости логической системы. Теоремы о полноте исчисления высказываний и логики предикатов первого порядка. Теоремы Геделя о неполноте.

6. Основы теории графов

Бинарные отношения и графы. Способы представления графов. Подграфы. Маршруты, цепи, циклы. Связность. Компоненты связности в ориентированных и неориентированных графах.

Эйлеровы пути и циклы. Алгоритм построения эйлеровых циклов. Оценка сложности алгоритма. Гамильтоновы пути и циклы. Сложность задачи проверки существования гамильтонова цикла.

Раскраска графов. Хроматическое число.

Двудольные графы. Паросочетания и алгоритм построения наибольшего паросочетания в двудольном графе.

Деревья. Связанность любых двух вершин дерева единственным простым путем. Способы представления деревьев. Сбалансированные двоичные деревья.

Алгоритмы на графах: обход графа, поиск кратчайших путей, построение минимального остовного дерева, нахождение максимального потока и минимального разреза.

7. Основы теории принятия решений

Классификация задач принятия решений. Этапы принятия решений.

Модели индивидуального выбора. Отношения порядка и квазипорядка. Функция выбора. Понятия наследуемости и независимости. Теория полезности.

Экспертные методы в принятии решений. Принятие решений при многих критериях. Множество Парето. Процедуры выбора части множества Парето. Методы решения многокритериальных задач: методы свертки, пороговые методы.

Анализ эффективности затрат АЭЗ (методы затраты – эффект).

Системы поддержки принятия решений. Современные инструментальные средства и системы поддержки принятия решений.

8. Формальные языки и грамматики

Основные понятия и определения формальных языков и грамматик. Классификация грамматик и языков по Хомскому. Порождающие и аналитические (распознающие) грамматики.

Регулярные грамматики, конечные автоматы и регулярные выражения. Минимизация детерминированных конечных автоматов. Построение детерминированного автомата, эквивалентного данному недетерминированному автомату. Лемма о разрастании для конечных автоматов и

ее применение.

Контекстно-свободные грамматики и деревья вывода. Нормальные формы контекстно-свободных грамматик. Автоматы с магазинной памятью.

9. Алгоритмы и вычислительная сложность

Машины Тьюринга, частично рекурсивные функции, машины с произвольным доступом к памяти (РАМ-машины). Тезис Черча. Неразрешимость проблемы останова машины Тьюринга.

Анализ сложности алгоритмов. Классы задач Р и NP, примеры. Сводимость задач по Карпу и Тьюрингу. NP-полнота. Теорема Кука – Левина.

Классы задач по памяти: L, NL, coNL, PSPACE. Их соотношение с классами задач по времени.

Вероятностные алгоритмы. Классы задач ВРР, ZPP, RP.

Подходы к проектированию алгоритмов: «разделяй и властвуй», динамическое программирование, жадная стратегия. Алгоритмы сортировки, двоичного поиска, быстрое возведение в степень, вычисление расстояния Левенштейна. Двоичные деревья поиска, кучи, хеш-таблицы.

10. Анализ данных и основы машинного обучения

Виды задач машинного обучения. Задача классификации. Простейшие методы классификации: решающие деревья, k ближайших соседей, линейная регрессия.

Оценка качества обучения: точность, полнота, F-мера. Явление переобучения. Обучающая и валидационная ошибка. Регуляризация алгоритмов классификации и восстановления регрессии.

Понятие сложности задачи обучения по Вапнику – Червоненкису.

Кластеризация: метод k средних, иерархическая кластеризация. Поиск зависимостей в данных. Ассоциативные правила.

Задачи и методы анализа текстовых данных. Тематическая категоризация, кластеризация документов, анализ мнений, информационный поиск, машинный перевод.

Список рекомендуемой литературы

- 1. Алескеров Ф.Т., Хабина Э.Л., Шварц Д.А. Бинарные отношения, графы и коллективные решения. М.: Физматлит, 2013.
- 2. Арнольд В.И., Обыкновенные дифференциальные уравнения. М.: Наука, 1984.
- 3. Басакер Р., Саати Т. Конечные графы и сети. М.: Наука, 1974.
- 4. Вентцель Е.С., Овчаров Л.А. Прикладные задачи теории вероятностей. М: Радио и связь, 1983.
- 5. Воронцов К.В. Математические методы обучения по прецедентам (теория обучения машин). http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf
- 6. Гельфанд И.М. Лекции по линейной алгебре. М: Наука 1971.
- 7. Гладкий А.В. Формальные грамматики и языки. М.: Наука, 1973.
- 8. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.
- 9. Дасгупта С., Пападимитриу Х., Вазирани У. Алгоритмы. М.: МНЦМО, 2014.
- 10. Кормен Т.Х., Лейзерсон Ч.И., Ривест Р.Л., Штайн К. Алгоритмы: построение и анализ. 2-е издание: Пер. с англ. М.: Вильямс, 2007.
- 11. Крупский В.Н. Введение в сложность вычислений. М.: Факториал Пресс, 2006.
- 12. Кузнецов О.П. Дискретная математика для инженера. М.: Лань, 2004.
- 13. Ларичев О.И. Теория и методы принятия решений. М.: Логос, 2002.
- 14. Литвак Б.Г. Экспертные оценки и принятие решений. М.: Патент, 1996.
- 15. Мендельсон Э. Введение в математическую логику. М.: Наука, 1971.
- 16. Миркин Б.Г. Проблема группового выбора. М.: Наука, 1974.
- 17. Рассел С., Норвиг П. Искусственный интеллект: современный подход. 2-е изд.: Пер. с англ. М.: Вильямс, 2006.

- 18. Рудин У. Основы математического анализа. М.: Мир, 1976.
- 19. Оре О. Графы и их применение. М.: Мир, 1965; Новокузнецк: Изд. отдел Новокузнецкого физико-математического ин-та, 2000.
- 20. Успенский В.А., Верещагин Н.К., Плиско В.Е. Вводный курс математической логики. 2-е изд. М.: Физматлит, 2004.
- 21. Хопкрофт Дж., Мотвани Р., Ульман Дж. Введение в теорию автоматов, языков и вычислений. 2-е изд.: Пер. с англ. М.: Вильямс, 2002.
- 22. Шведов А.С. Теория вероятностей и математическая статистика. Учебное пособие для студентов экономических специальностей. М.: Изд-во ВШЭ, 1995.
- 23. Arora S., Barak B. Computational Complexity: A Modern Approach. Cambridge University Press, 2009.
- 24. Bishop C. Pattern Recognition and Machine Learning. Springer, 2006.
- 25. Jurafsky D., Martin, J.H. Speech and Language Processing. Prentice Hall, 2008.
- 26. Flach P. Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, 2012.
- 27. Kleinberg J., Tardos E. Algorithm Design. Addison-Wesley, 2005.
- 28. Moore C., Mertens S. The Nature of Computation. Oxford University Press, 2011.
- 29. Sipser M. Introduction to the Theory of Computation. Boston, Mass.: Thomson Course Technology, 2006.