Spherical double flag varieties

Evgeny Smirnov

Higher School of Economics Department of Mathematics

Independent University of Moscow

Torus Actions in Geometry, Topology, and Applications Skolkovo, February 16, 2015

Outline

- General definitions
 - Flag varieties
 - Schubert varieties
- Spherical double flags of type A
 - Double Grassmannians
 - Combinatorics of B-orbits in double Grassmannians
- Cominuscule flag varieties
 - Definition
 - Combinatorial and geometric results

Notation

G reductive algebraic group;

- G reductive algebraic group;
- B fixed Borel subgroup;

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, $P \supset B$;

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, $P \supset B$;
- G/P (generalized) partial flag variety.

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, P ⊃ B;
- G/P (generalized) partial flag variety.

Main example

• G = GL(n);

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, P ⊃ B;
- G/P (generalized) partial flag variety.

- G = GL(n);
- B upper-triangular matrices;

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, $P \supset B$;
- G/P (generalized) partial flag variety.

- G = GL(n);
- B upper-triangular matrices;
- T diagonal matrices;

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, P ⊃ B;
- G/P (generalized) partial flag variety.

- G = GL(n);
- B upper-triangular matrices;
- T diagonal matrices;
- Two important subcases:

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, P ⊃ B;
- G/P (generalized) partial flag variety.

- G = GL(n);
- B upper-triangular matrices;
- T diagonal matrices;
- Two important subcases:
 - P = B: full flag variety G/B = FI(n).;

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, P ⊃ B;
- G/P (generalized) partial flag variety.

- $\bullet \ G = GL(n);$
- B upper-triangular matrices;
- T diagonal matrices;
- Two important subcases:
 - P = B: full flag variety G/B = FI(n).;
 - $P = P_{max}^{(k)}$: Grassmannian of k-planes $G/P_{max} = Gr(k, n)$.

Schubert cells

• G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique T-stable point;

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique T-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique T-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;
- Ω_W are indexed by the cosets W/W_I ;

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique T-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;
- Ω_W are indexed by the cosets W/W_I ;
- $X_w = \overline{\Omega_w}$ are called *Schubert varieties*.

Schubert cells

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique T-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;
- Ω_W are indexed by the cosets W/W_I ;
- $X_w = \overline{\Omega_w}$ are called *Schubert varieties*.

Schubert varieties

Useful for enumerative geometry;

Schubert cells

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique T-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;
- Ω_W are indexed by the cosets W/W_I ;
- $X_w = \overline{\Omega_w}$ are called *Schubert varieties*.

Schubert varieties

- Useful for enumerative geometry;
- Have interesting geometry: they are usually singular...

Schubert cells

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique T-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;
- Ω_W are indexed by the cosets W/W_I ;
- $X_w = \overline{\Omega_w}$ are called *Schubert varieties*.

Schubert varieties

- Useful for enumerative geometry;
- Have interesting geometry: they are usually singular...
- ...however, still nice!

Schubert cells

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique T-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;
- Ω_W are indexed by the cosets W/W_I ;
- $X_w = \overline{\Omega_w}$ are called *Schubert varieties*.

Schubert varieties

- Useful for enumerative geometry;
- Have interesting geometry: they are usually singular...
- ...however, still nice!
 - normal;
 - Cohen–Macaulay;
 - have rational singularities...

Let $U \in Gr(k, n)$, and let (V_i) be the flag fixed by B.

Let $U \in Gr(k, n)$, and let (V_i) be the flag fixed by B. Then $X_w \subset Gr(k, n)$ are given by conditions of type

$$\dim(U \cap V_i) \geq d_i, \qquad d_i - d_{i-1} \in \{0,1\}, \quad d_n = k.$$

Let $U \in Gr(k, n)$, and let (V_i) be the flag fixed by B. Then $X_w \subset Gr(k, n)$ are given by conditions of type

$$\dim(U \cap V_i) \geq d_i, \qquad d_i - d_{i-1} \in \{0,1\}, \quad d_n = k.$$

Such sequences of 0's and 1's correspond to Young diagrams inside a $k \times (n-k)$ -rectangle.

Let $U \in Gr(k, n)$, and let (V_i) be the flag fixed by B. Then $X_w \subset Gr(k, n)$ are given by conditions of type

$$\dim(U \cap V_i) \ge d_i, \qquad d_i - d_{i-1} \in \{0, 1\}, \quad d_n = k.$$

Such sequences of 0's and 1's correspond to Young diagrams inside a $k \times (n-k)$ -rectangle.

Example: k = 4, n = 9

$$d_i = (0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1)$$

Let $U \in Gr(k, n)$, and let (V_i) be the flag fixed by B. Then $X_w \subset Gr(k, n)$ are given by conditions of type

$$\dim(U \cap V_i) \geq d_i, \qquad d_i - d_{i-1} \in \{0,1\}, \quad d_n = k.$$

Such sequences of 0's and 1's correspond to Young diagrams inside a $k \times (n-k)$ -rectangle.

Example: k = 4, n = 9

$$d_i = (0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1)$$

• Consider the direct product of several flag varieties:

Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

G acts diagonally.

Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- G acts diagonally.
- X is not G-homogeneous anymore!

Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- G acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?

I.e., when does $B \subset G$ have a finite number of orbits on X?

Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- G acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?

I.e., when does $B \subset G$ have a finite number of orbits on X?

Answer

• *r* = 1: always;

Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- G acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?

I.e., when does $B \subset G$ have a finite number of orbits on X?

Answer

- r = 1: always;
- $r \ge 3$: never;

Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- G acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?

I.e., when does $B \subset G$ have a finite number of orbits on X?

Answer

- *r* = 1: always;
- $r \ge 3$: never;
- r = 2: sometimes...

Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- G acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is *X* a *G*-spherical variety?

I.e., when does $B \subset G$ have a finite number of orbits on X?

Answer

- *r* = 1: always;
- r ≥ 3: never;
- *r* = 2: sometimes...
- ...classification given by P. Littelmann, J. Stembridge.

If G = GL(n), all spherical double flag varieties correspond to P_1, P_2 maximal:

$$X = Gr(k, n) \times Gr(l, n).$$

If G = GL(n), all spherical double flag varieties correspond to P_1, P_2 maximal:

$$X = Gr(k, n) \times Gr(l, n).$$

B-orbits correspond to configurations of two subspaces and a full flag, up to GL(n)-action.

If G = GL(n), all spherical double flag varieties correspond to P_1, P_2 maximal:

$$X = Gr(k, n) \times Gr(l, n).$$

B-orbits correspond to configurations of two subspaces and a full flag, up to GL(n)-action.

Combinatorics becomes more involved!

Example:
$$Gr(1,3) \times Gr(1,3) = \mathbb{P}^2 \times \mathbb{P}^2$$

If G = GL(n), all spherical double flag varieties correspond to P_1, P_2 maximal:

$$X = Gr(k, n) \times Gr(l, n).$$

B-orbits correspond to configurations of two subspaces and a full flag, up to GL(n)-action.

Combinatorics becomes more involved!

Example:
$$Gr(1,3) \times Gr(1,3) = \mathbb{P}^2 \times \mathbb{P}^2$$

If G = GL(n), all spherical double flag varieties correspond to P_1, P_2 maximal:

$$X = Gr(k, n) \times Gr(l, n).$$

B-orbits correspond to configurations of two subspaces and a full flag, up to GL(n)-action.

Combinatorics becomes more involved!

One $B \times B$ -orbit splits into three B-orbits!

• Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.

- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- $B \times B$ -orbits are indexed by pairs of Young diagrams.

- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- B × B-orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- $B \times B$ -orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

The common diagram of two Young diagrams

- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- $B \times B$ -orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- $B \times B$ -orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

Consider *rook placements* in the common diagram.

- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- $B \times B$ -orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- B × B-orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

Consider *rook placements* in the common diagram.

Theorem (S.)

Theorem (S.)

B-orbits in $Gr(k, n) \times Gr(l, n)$ are indexed by triples (Y_1, Y_2, R) , where:

• $Y_1 \subset k \times (n-k)$ and $Y_2 \subset l \times (n-l)$ are Young diagrams;

Theorem (S.)

- $Y_1 \subset k \times (n-k)$ and $Y_2 \subset l \times (n-l)$ are Young diagrams;
- R is a rook placement in the common diagram of Y_1 and Y_2 .

Theorem (S.)

- $Y_1 \subset k \times (n-k)$ and $Y_2 \subset l \times (n-l)$ are Young diagrams;
- R is a rook placement in the common diagram of Y_1 and Y_2 .
- Dimension and rank of orbits can be read from this description;

Theorem (S.)

- $Y_1 \subset k \times (n-k)$ and $Y_2 \subset l \times (n-l)$ are Young diagrams;
- R is a rook placement in the common diagram of Y_1 and Y_2 .
- Dimension and rank of orbits can be read from this description;
- This allows to construct resolutions of singularities of orbit closures à la Bott–Samelson–Demazure–Hansen.

Cominuscule double flags

Definition

A partial flag variety is *cominuscule* if it belongs to the following list:

Cominuscule double flags

Definition

A partial flag variety is *cominuscule* if it belongs to the following list:

A_{n-1} $Gr(k, n)$ Grassmannian $Gr(k, n)$ Grassmannian $Gr(k, n)$ Quadric $Gr(k, n)$ Lagrangian Grassmannian	Group type	Variety	
C_n	A_{n-1}		Grassmannian
()	B _n	Q^{2n-1}	quadric
	C_n	LGr(n)	Lagrangian Grassmannian
	D_n	OGr(n)	orthogonal Grassmannian
Q ²ⁿ quadric		Q^{2n}	quadric
E_6 \mathbb{OP}^2 Cayley plane	<i>E</i> ₆	\mathbb{OP}^2	Cayley plane
E_7 $G_{\omega}(\mathbb{O}^3,\mathbb{O}^6)$ Lagrangian octonion Grassmannian	E ₇	$G_{\!\omega}(\mathbb{O}^3,\mathbb{O}^6)$	Lagrangian octonion Grassmannian

Cominuscule double flags

Definition

A partial flag variety is *cominuscule* if it belongs to the following list:

Variety	
Gr(k,n)	Grassmannian
Q^{2n-1}	quadric
LGr(n)	Lagrangian Grassmannian
OGr(n)	orthogonal Grassmannian
Q^{2n}	quadric
\mathbb{OP}^2	Cayley plane
$G_{\omega}(\mathbb{O}^3,\mathbb{O}^6)$	Lagrangian octonion Grassmannian
	$Gr(k, n)$ Q^{2n-1} $LGr(n)$ $OGr(n)$ Q^{2n} \mathbb{OP}^2

We will consider *double cominuscule flag varieties* (they are all spherical).

Combinatorics

 There is a combinatorial indexing of B-orbits in double cominuscule flag varieties of classical groups, similar to the one we had in the type A. (S.)

Combinatorics

- There is a combinatorial indexing of B-orbits in double cominuscule flag varieties of classical groups, similar to the one we had in the type A. (S.)
- Still open for E_6 and E_7 .

Combinatorics

- There is a combinatorial indexing of B-orbits in double cominuscule flag varieties of classical groups, similar to the one we had in the type A. (S.)
- Still open for E_6 and E_7 .

Geometry

 If G is simply laced, then the B-orbit closures in double cominuscule flag varieties are normal, Cohen–Macaulay, and have rational singularities (P.Achinger, N.Perrin, 2013).

Combinatorics

- There is a combinatorial indexing of B-orbits in double cominuscule flag varieties of classical groups, similar to the one we had in the type A. (S.)
- Still open for E_6 and E_7 .

Geometry

- If G is simply laced, then the B-orbit closures in double cominuscule flag varieties are normal, Cohen–Macaulay, and have rational singularities (P.Achinger, N.Perrin, 2013).
- In type A was proved by methods of quiver theory (G.Bobiński, G.Zwara, 2001)

Combinatorics

- There is a combinatorial indexing of B-orbits in double cominuscule flag varieties of classical groups, similar to the one we had in the type A. (S.)
- Still open for E_6 and E_7 .

Geometry

- If G is simply laced, then the B-orbit closures in double cominuscule flag varieties are normal, Cohen–Macaulay, and have rational singularities (P.Achinger, N.Perrin, 2013).
- In type A was proved by methods of quiver theory (G.Bobiński, G.Zwara, 2001)
- Normality can fail for nonsimply laced G.

That's all...

Thank you!