Spherical double flag varieties

Evgeny Smirnov

Higher School of Economics
Department of Mathematics
Independent University of Moscow

Torus Actions in Geometry, Topology, and Applications Skolkovo, February 16, 2015

Outline

(1) General definitions

- Flag varieties
- Schubert varieties
(2) Spherical double flags of type A
- Double Grassmannians
- Combinatorics of B-orbits in double Grassmannians
(3) Cominuscule flag varieties
- Definition
- Combinatorial and geometric results

Flag varieties

Notation

- G reductive algebraic group;

Flag varieties

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;

Flag varieties

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;

Flag varieties

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, $P \supset B$;

Flag varieties

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, $P \supset B$;
- G / P (generalized) partial flag variety.

Flag varieties

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, $P \supset B$;
- G/P (generalized) partial flag variety.

Main example

- $G=G L(n)$;

Flag varieties

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, $P \supset B$;
- G/P (generalized) partial flag variety.

Main example

- $G=G L(n)$;
- B upper-triangular matrices;

Flag varieties

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, $P \supset B$;
- G/P (generalized) partial flag variety.

Main example

- $G=G L(n)$;
- B upper-triangular matrices;
- T diagonal matrices;

Flag varieties

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, $P \supset B$;
- G / P (generalized) partial flag variety.

Main example

- $G=G L(n)$;
- B upper-triangular matrices;
- T diagonal matrices;
- Two important subcases:

Flag varieties

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, $P \supset B$;
- G / P (generalized) partial flag variety.

Main example

- $G=G L(n)$;
- B upper-triangular matrices;
- T diagonal matrices;
- Two important subcases:
- $P=B$: full flag variety $G / B=F /(n)$.;

Flag varieties

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- P parabolic subgroup, $P \supset B$;
- G / P (generalized) partial flag variety.

Main example

- $G=G L(n)$;
- B upper-triangular matrices;
- T diagonal matrices;
- Two important subcases:
- $P=B$: full flag variety $G / B=F /(n)$.;
- $P=P_{\max }^{(k)}$: Grassmannian of k-planes $G / P_{\max }=\operatorname{Gr}(k, n)$.

Schubert decomposition

Schubert cells

- G / P has finitely many B-orbits Ω_{w} (G / P is a spherical variety);

Schubert decomposition

Schubert cells

- G / P has finitely many B-orbits Ω_{w} (G / P is a spherical variety);
- Each Ω_{w} has a unique T-stable point;

Schubert decomposition

Schubert cells

- G / P has finitely many B-orbits Ω_{w} (G / P is a spherical variety);
- Each Ω_{w} has a unique T-stable point;
- $G / P=\bigsqcup \Omega_{w}$ is a Białynicki-Birula decomposition;

Schubert decomposition

Schubert cells

- G / P has finitely many B-orbits Ω_{w} (G / P is a spherical variety);
- Each Ω_{w} has a unique T-stable point;
- $G / P=\bigsqcup \Omega_{w}$ is a Białynicki-Birula decomposition;
- Ω_{w} are indexed by the cosets W / W_{l};

Schubert decomposition

Schubert cells

- G / P has finitely many B-orbits Ω_{w} (G / P is a spherical variety);
- Each Ω_{w} has a unique T-stable point;
- $G / P=\bigsqcup \Omega_{w}$ is a Białynicki-Birula decomposition;
- Ω_{w} are indexed by the cosets W / W_{l};
- $X_{w}=\overline{\Omega_{w}}$ are called Schubert varieties.

Schubert decomposition

Schubert cells

- G / P has finitely many B-orbits Ω_{w} (G / P is a spherical variety);
- Each Ω_{w} has a unique T-stable point;
- $G / P=\bigsqcup \Omega_{w}$ is a Białynicki-Birula decomposition;
- Ω_{w} are indexed by the cosets W / W_{l};
- $X_{w}=\overline{\Omega_{w}}$ are called Schubert varieties.

Schubert varieties

- Useful for enumerative geometry;

Schubert decomposition

Schubert cells

- G / P has finitely many B-orbits Ω_{w} (G / P is a spherical variety);
- Each Ω_{w} has a unique T-stable point;
- $G / P=\bigsqcup \Omega_{w}$ is a Białynicki-Birula decomposition;
- Ω_{w} are indexed by the cosets W / W_{l};
- $X_{w}=\overline{\Omega_{w}}$ are called Schubert varieties.

Schubert varieties

- Useful for enumerative geometry;
- Have interesting geometry: they are usually singular...

Schubert decomposition

Schubert cells

- G / P has finitely many B-orbits Ω_{w} (G / P is a spherical variety);
- Each Ω_{w} has a unique T-stable point;
- $G / P=\bigsqcup \Omega_{w}$ is a Białynicki-Birula decomposition;
- Ω_{w} are indexed by the cosets W / W_{l};
- $X_{w}=\overline{\Omega_{w}}$ are called Schubert varieties.

Schubert varieties

- Useful for enumerative geometry;
- Have interesting geometry: they are usually singular...
- ...however, still nice!

Schubert decomposition

Schubert cells

- G / P has finitely many B-orbits Ω_{w} (G / P is a spherical variety);
- Each Ω_{w} has a unique T-stable point;
- $G / P=\bigsqcup \Omega_{w}$ is a Białynicki-Birula decomposition;
- Ω_{w} are indexed by the cosets W / W_{l};
- $X_{w}=\overline{\Omega_{w}}$ are called Schubert varieties.

Schubert varieties

- Useful for enumerative geometry;
- Have interesting geometry: they are usually singular...
- ...however, still nice!
- normal;
- Cohen-Macaulay;
- have rational singularities...

Schubert varieties in Grassmannians

Let $U \in \operatorname{Gr}(k, n)$, and let $\left(V_{i}\right)$ be the flag fixed by B.

Schubert varieties in Grassmannians

Let $U \in \operatorname{Gr}(k, n)$, and let $\left(V_{i}\right)$ be the flag fixed by B. Then $X_{w} \subset \operatorname{Gr}(k, n)$ are given by conditions of type

$$
\operatorname{dim}\left(U \cap V_{i}\right) \geq d_{i}, \quad d_{i}-d_{i-1} \in\{0,1\}, \quad d_{n}=k
$$

Schubert varieties in Grassmannians

Let $U \in \operatorname{Gr}(k, n)$, and let $\left(V_{i}\right)$ be the flag fixed by B. Then $X_{w} \subset G r(k, n)$ are given by conditions of type

$$
\operatorname{dim}\left(U \cap V_{i}\right) \geq d_{i}, \quad d_{i}-d_{i-1} \in\{0,1\}, \quad d_{n}=k
$$

Such sequences of 0's and 1's correspond to Young diagrams inside a $k \times(n-k)$-rectangle.

Schubert varieties in Grassmannians

Let $U \in \operatorname{Gr}(k, n)$, and let $\left(V_{i}\right)$ be the flag fixed by B. Then $X_{w} \subset \operatorname{Gr}(k, n)$ are given by conditions of type

$$
\operatorname{dim}\left(U \cap V_{i}\right) \geq d_{i}, \quad d_{i}-d_{i-1} \in\{0,1\}, \quad d_{n}=k
$$

Such sequences of 0's and 1's correspond to Young diagrams inside a $k \times(n-k)$-rectangle.

Example: $k=4, n=9$

$$
d_{i}=\left(\begin{array}{lllllllll}
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Schubert varieties in Grassmannians

Let $U \in \operatorname{Gr}(k, n)$, and let $\left(V_{i}\right)$ be the flag fixed by B. Then $X_{w} \subset \operatorname{Gr}(k, n)$ are given by conditions of type

$$
\operatorname{dim}\left(U \cap V_{i}\right) \geq d_{i}, \quad d_{i}-d_{i-1} \in\{0,1\}, \quad d_{n}=k
$$

Such sequences of 0's and 1's correspond to Young diagrams inside a $k \times(n-k)$-rectangle.

Example: $k=4, n=9$

$$
d_{i}=\left(\begin{array}{lllllllll}
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Spherical multiple flags

- Consider the direct product of several flag varieties:

Spherical multiple flags

- Consider the direct product of several flag varieties:

$$
X=G / P_{1} \times \cdots \times G / P_{r}
$$

Spherical multiple flags

- Consider the direct product of several flag varieties:

$$
X=G / P_{1} \times \cdots \times G / P_{r}
$$

- G acts diagonally.

Spherical multiple flags

- Consider the direct product of several flag varieties:

$$
X=G / P_{1} \times \cdots \times G / P_{r}
$$

- G acts diagonally.
- X is not G-homogeneous anymore!

Spherical multiple flags

- Consider the direct product of several flag varieties:

$$
X=G / P_{1} \times \cdots \times G / P_{r}
$$

- G acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?
l.e., when does $B \subset G$ have a finite number of orbits on X ?

Spherical multiple flags

- Consider the direct product of several flag varieties:

$$
X=G / P_{1} \times \cdots \times G / P_{r}
$$

- G acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?
l.e., when does $B \subset G$ have a finite number of orbits on X ?

Answer

- $r=1$: always;

Spherical multiple flags

- Consider the direct product of several flag varieties:

$$
X=G / P_{1} \times \cdots \times G / P_{r}
$$

- G acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?
l.e., when does $B \subset G$ have a finite number of orbits on X ?

Answer

- $r=1$: always;
- $r \geq 3$: never;

Spherical multiple flags

- Consider the direct product of several flag varieties:

$$
X=G / P_{1} \times \cdots \times G / P_{r}
$$

- G acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?
l.e., when does $B \subset G$ have a finite number of orbits on X ?

Answer

- $r=1$: always;
- $r \geq 3$: never;
- $r=2$: sometimes...

Spherical multiple flags

- Consider the direct product of several flag varieties:

$$
X=G / P_{1} \times \cdots \times G / P_{r}
$$

- G acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?
l.e., when does $B \subset G$ have a finite number of orbits on X ?

Answer

- $r=1$: always;
- $r \geq 3$: never;
- $r=2$: sometimes...
- ...classification given by P. Littelmann, J. Stembridge.

Type A: double Grassmannians

If $G=G L(n)$, all spherical double flag varieties correspond to P_{1}, P_{2} maximal:

$$
X=\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n) .
$$

Type A: double Grassmannians

If $G=G L(n)$, all spherical double flag varieties correspond to P_{1}, P_{2} maximal:

$$
X=\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)
$$

B-orbits correspond to configurations of two subspaces and a full flag, up to $G L(n)$-action.

Type A: double Grassmannians

If $G=G L(n)$, all spherical double flag varieties correspond to P_{1}, P_{2} maximal:

$$
X=\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)
$$

B-orbits correspond to configurations of two subspaces and a full flag, up to $G L(n)$-action.
Combinatorics becomes more involved!

```
Example: }\operatorname{Gr}(1,3)\times\operatorname{Gr}(1,3)=\mp@subsup{\mathbb{P}}{}{2}\times\mp@subsup{\mathbb{P}}{}{2
```


Type A: double Grassmannians

If $G=G L(n)$, all spherical double flag varieties correspond to P_{1}, P_{2} maximal:

$$
X=\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)
$$

B-orbits correspond to configurations of two subspaces and a full flag, up to $G L(n)$-action.
Combinatorics becomes more involved!

$$
\text { Example: } \operatorname{Gr}(1,3) \times \operatorname{Gr}(1,3)=\mathbb{P}^{2} \times \mathbb{P}^{2}
$$

Type A: double Grassmannians

If $G=G L(n)$, all spherical double flag varieties correspond to P_{1}, P_{2} maximal:

$$
X=\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)
$$

B-orbits correspond to configurations of two subspaces and a full flag, up to $G L(n)$-action.
Combinatorics becomes more involved!
Example: $\operatorname{Gr}(1,3) \times \operatorname{Gr}(1,3)=\mathbb{P}^{2} \times \mathbb{P}^{2}$

One $B \times B$-orbit splits into three B-orbits!

Combinatorics of B-orbits

- Our next goal is to describe B-orbits on $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$.

Combinatorics of B-orbits

- Our next goal is to describe B-orbits on $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$.
- $B \times B$-orbits are indexed by pairs of Young diagrams.

Combinatorics of B-orbits

- Our next goal is to describe B-orbits on $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$.
- $B \times B$-orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

Combinatorics of B-orbits

- Our next goal is to describe B-orbits on $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$.
- $B \times B$-orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

The common diagram of two Young diagrams

Combinatorics of B-orbits

- Our next goal is to describe B-orbits on $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$.
- $B \times B$-orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

The common diagram of two Young diagrams

0	0	1	0	1	1	0	0	1
0	1	0	0	1	0	0	0	1
0			0	1		0	0	1

Combinatorics of B-orbits

- Our next goal is to describe B-orbits on $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$.
- $B \times B$-orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

The common diagram of two Young diagrams

0	0	1	0	1	1	0	0	1
0	1	0	0	1	0	0	0	1
0			0	1		0	0	1

Consider rook placements in the common diagram.

Combinatorics of B-orbits

- Our next goal is to describe B-orbits on $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$.
- $B \times B$-orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

The common diagram of two Young diagrams

0	0	1	0	1	1	0	0	1
0	1	0	0	1	0	0	0	1
0			0	1		0	0	1

Combinatorics of B-orbits

- Our next goal is to describe B-orbits on $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$.
- $B \times B$-orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

The common diagram of two Young diagrams

0	0	1	0	1	1	0	0	1
0	1	0	0	1	0	0	0	1
0			0	1		0	0	1

Consider rook placements in the common diagram.

Combinatorics of B-orbits

Theorem (S.)

B-orbits in $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$ are indexed by triples $\left(Y_{1}, Y_{2}, R\right)$, where:

Combinatorics of B-orbits

Theorem (S.)

B-orbits in $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$ are indexed by triples $\left(Y_{1}, Y_{2}, R\right)$, where:

- $Y_{1} \subset k \times(n-k)$ and $Y_{2} \subset I \times(n-I)$ are Young diagrams;

Combinatorics of B-orbits

Theorem (S.)

B-orbits in $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$ are indexed by triples $\left(Y_{1}, Y_{2}, R\right)$, where:

- $Y_{1} \subset k \times(n-k)$ and $Y_{2} \subset I \times(n-l)$ are Young diagrams;
- R is a rook placement in the common diagram of Y_{1} and Y_{2}.

Combinatorics of B-orbits

Theorem (S.)

B-orbits in $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$ are indexed by triples $\left(Y_{1}, Y_{2}, R\right)$, where:

- $Y_{1} \subset k \times(n-k)$ and $Y_{2} \subset I \times(n-I)$ are Young diagrams;
- R is a rook placement in the common diagram of Y_{1} and Y_{2}.
- Dimension and rank of orbits can be read from this description;

Combinatorics of B-orbits

Theorem (S.)

B-orbits in $\operatorname{Gr}(k, n) \times \operatorname{Gr}(I, n)$ are indexed by triples $\left(Y_{1}, Y_{2}, R\right)$, where:

- $Y_{1} \subset k \times(n-k)$ and $Y_{2} \subset I \times(n-I)$ are Young diagrams;
- R is a rook placement in the common diagram of Y_{1} and Y_{2}.
- Dimension and rank of orbits can be read from this description;
- This allows to construct resolutions of singularities of orbit closures à la Bott-Samelson-Demazure-Hansen.

Cominuscule double flags

Definition

A partial flag variety is cominuscule if it belongs to the following list:

Cominuscule double flags

Definition

A partial flag variety is cominuscule if it belongs to the following list:

Group type	Variety	
A_{n-1}	$G r(k, n)$	Grassmannian
B_{n}	$Q^{2 n-1}$	quadric
C_{n}	$L G r(n)$	Lagrangian Grassmannian
D_{n}	$O G r(n)$ $Q^{2 n}$	orthogonal Grassmannian quadric
E_{6}	$\mathbb{O P}^{2}$	Cayley plane
E_{7}	$G_{\omega}\left(\mathbb{O}^{3}, \mathbb{O}^{6}\right)$	Lagrangian octonion Grassmannian

Cominuscule double flags

Definition

A partial flag variety is cominuscule if it belongs to the following list:

Group type	Variety	
A_{n-1}	$G r(k, n)$	Grassmannian
B_{n}	$Q^{2 n-1}$	quadric
C_{n}	$\operatorname{LGr(n)}$	Lagrangian Grassmannian
D_{n}	$O G r(n)$ $Q^{2 n}$	orthogonal Grassmannian quadric
E_{6}	$\mathbb{O P}^{2}$	Cayley plane
E_{7}	$G_{\omega}\left(\mathbb{O}^{3}, \mathbb{O}^{6}\right)$	Lagrangian octonion Grassmannian

We will consider double cominuscule flag varieties (they are all spherical).

Results on cominuscule double flags

Combinatorics

- There is a combinatorial indexing of B-orbits in double cominuscule flag varieties of classical groups, similar to the one we had in the type A. (S.)

Results on cominuscule double flags

Combinatorics

- There is a combinatorial indexing of B-orbits in double cominuscule flag varieties of classical groups, similar to the one we had in the type A. (S.)
- Still open for E_{6} and E_{7}.

Results on cominuscule double flags

Combinatorics

- There is a combinatorial indexing of B-orbits in double cominuscule flag varieties of classical groups, similar to the one we had in the type A. (S.)
- Still open for E_{6} and E_{7}.

Geometry

- If G is simply laced, then the B-orbit closures in double cominuscule flag varieties are normal, Cohen-Macaulay, and have rational singularities (P.Achinger, N.Perrin, 2013).

Results on cominuscule double flags

Combinatorics

- There is a combinatorial indexing of B-orbits in double cominuscule flag varieties of classical groups, similar to the one we had in the type A. (S.)
- Still open for E_{6} and E_{7}.

Geometry

- If G is simply laced, then the B-orbit closures in double cominuscule flag varieties are normal, Cohen-Macaulay, and have rational singularities (P.Achinger, N.Perrin, 2013).
- In type A was proved by methods of quiver theory (G.Bobiński, G.Zwara, 2001)

Results on cominuscule double flags

Combinatorics

- There is a combinatorial indexing of B-orbits in double cominuscule flag varieties of classical groups, similar to the one we had in the type A. (S.)
- Still open for E_{6} and E_{7}.

Geometry

- If G is simply laced, then the B-orbit closures in double cominuscule flag varieties are normal, Cohen-Macaulay, and have rational singularities (P.Achinger, N.Perrin, 2013).
- In type A was proved by methods of quiver theory (G.Bobiński, G.Zwara, 2001)
- Normality can fail for nonsimply laced G.

That's all...

Thank you!

