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Set functions and games

◮ X : finite universe. Set function on X : ξ : 2X → R.

◮ A set function can be

1. Additive if ξ(A ∪ B) = ξ(A) + ξ(B) for every disjoint
A, B ∈ 2X ;

2. Monotone if ξ(A) 6 ξ(B) whenever A ⊆ B;
3. Grounded if ξ(∅) = 0;
4. Normalized if ξ(X ) = 1.

◮ A game v : 2X → R is a grounded set function.

◮ G(X ): set of games on X

◮ conjugate ξ of ξ:

ξ(A) = ξ(X ) − ξ(Ac) (A ∈ 2X ).

◮ Note that

1. If ξ(∅) = 0, then ξ(X ) = ξ(X ) and ξ = ξ;
2. If ξ is additive, then ξ = ξ (ξ is self-conjugate).
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Measures and capacities

◮ A measure is a nonnegative and additive set function

◮ A normalized measure is called a probability measure.

◮ A capacity µ : 2X → R is a grounded monotone set function,
i.e., µ(∅) = 0 and µ(A) 6 µ(B) whenever A ⊆ B .

◮ MG(X ): set of capacities on X

◮ MG0(X ): set of normalized capacities on X
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Two different interpretations

◮ capacities/games as a means to represent the
importance/power/worth of a group:

◮ X : set of persons, usually called players, agents, voters,
experts, decision makers, etc.

◮ A ⊆ X : coalition, group of persons, who cooperate to achieve
some common goal

◮ µ(A): to what extent the goal is achieved by A

◮ capacities as a means to represent uncertainty:
◮ X : set of possible outcomes of some experiment. It is

supposed that X is exhaustive, and that each experiment
produces a single outcome.

◮ A ⊆ X : event
◮ µ(A): uncertainty that the event A contains the outcome of an

experiment, with µ(A) = 0 indicating total uncertainty, and
µ(A) = 1 indicating that there is no uncertainty.

M. Grabisch c©2014 An itnroduction to the Choquet integral



Examples

Example
Let X be a set of firms. Certain firms may form a coalition in order to control the
market for a given product. Then µ(A) may be taken as the annual benefit of the
coalition A. ♦

Example
Let X be a set of voters in charge of electing a candidate for some important position
(president, director, etc.) or voting a bill by a yes/no decision. Before the election,
groups of voters may agree to vote for the same candidate (or for yes or no). In many
cases (presidential elections, parliament, etc.), these coalitions correspond to the
political parties or to alliances among them. If the result of the election is in
accordance with the wish of coalition A, the coalition is said to be winning, and we set
µ(A) = 1, otherwise it is loosing and µ(A) = 0. ♦

Example
Let X be a set of workers in a factory, producing some goods. The aim is to produce
these goods as much as possible in a given time (say, in one day). Then µ(A) is the
number of goods produced by the group A in one day. Since the production needs in
general the collaboration of several workers with different skills, it is likely that
µ(A) = 0 if A is a singleton or a too small group. ♦
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Examples

Example
David throws a dice, and wonders what number will show. Here X = {1, 2, 3, 4, 5, 6},
and µ({1, 3, 5}) quantifies the uncertainty of obtaining an odd number. ♦

Example
A murder has been committed. After some investigation, it is found that the guilty is
either Alice, Bob or Charles. Then X = {Alice, Bob, Charles}, and µ({Bob, Charles})
quantifies the degree to which it is “certain” (the precise meaning of this word being
conditional on the type of capacity used) that the guilty is Bob or Charles. ♦

Example
Glenn is an amateur of antique chinese porcelain. He enters a shop and sees a
magnificent vase, wondering how old (and how expensive) this vase could be. Then X

is the set of numbers from, say −3000 to 2014, i.e., the possible date expressed in
years A.C. when the vase was created. For example, µ([1368, 1644]) indicates tho
what degree it is certain that it is a vase of the Ming period. ♦

Example
Leonard is planning to go to the countryside tomorrow for a picnic. He wonders if the
wheather will be favorable or not. Here X is the set of possible states of the weather,
like “sunny”, “rainy”, “cloudy”, and so on. For example, µ({sunny, cloudy}) indicates
to what degree of certainty it will not rain, and so if the picnic is conceivable or not. ♦
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Properties

1. v is superadditive if for any A,B ∈ 2X , A ∩ B = ∅,
v(A ∪ B) > v(A) + v(B).

(subadditive if the reverse inequality holds)
2. v is supermodular if for any A,B ∈ 2X ,

v(A ∪ B) + v(A ∩ B) > v(A) + v(B).
(submodular if the reverse inequality holds)

3. v k-monotone (k > 2) if for A1, . . . ,Ak ∈ 2X ,

v
(

k
⋃

i=1

Ai

)

>
∑

I⊆{1,...,k}
I 6=∅

(−1)|I |+1v
(

⋂

i∈I

Ai

)

.

v is totally monotone if it is k-monotone for any k > 2
4. v k-alternating (k > 2) if for A1, . . . ,Ak ∈ 2X ,

v
(

k
⋂

i=1

Ai

)

6
∑

I⊆{1,...,k}
I 6=∅

(−1)|I |+1v
(

⋃

i∈I

Ai

)

.

v is totally alternating if it is k-alternating for any k > 2.
M. Grabisch c©2014 An itnroduction to the Choquet integral



Properties

Theorem
Let v be a game on X . The following holds.

1. v superadditive ⇒ v > v .

2. v is k-monotone (resp., k-alternating) for some k > 2 if and
only if v is k-alternating (resp., k-monotone). In particular, v
is supermodular (resp., submodular) if and only if v is
submodular (resp., supermodular).

3. v > 0 and supermodular implies that v is monotone.
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0-1 capacities

◮ A 0-1-capacity is a capacity valued on {0, 1}.

◮ Apart the null capacity 0, all 0-1-capacities are normalized.

◮ In game theory, 0-1-capacities are called simple games.

◮ A set A is a winning coalition for µ if µ(A) = 1.

◮ A 0-1-capacity µ is uniquely determined by the antichain of its
minimal winning coalitions.

◮ The number of antichains in 2X with |X | = n is the Dedekind
number M(n)

n M(n)
0 2
1 3
2 6
3 20
4 168
5 7581
6 7828354
7 2414682040998
8 56130437228687557907788
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Unanimity games

◮ Let A ⊆ X , A 6= ∅. The unanimity game centered on A is the
game uA defined by

uA(B) =

{

1, if B ⊇ A

0, otherwise.

◮ Unanimity games are 0-1-valued capacities.
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Possibility and necessity measures

◮ A possibility measure or maxitive measure on a X is a
normalized capacity Π on X satisfying

Π(A ∪ B) = max(Π(A),Π(B)) for all A,B ∈ 2X

◮ A necessity measure or minitive measure is a normalized
capacity N satisfying

N(A ∩ B) = min(N(A),N(B)) for all A,B ∈ 2X

◮ The conjugate of a possibility measure (resp., a necessity
measure) is a necessity measure (resp., a possibility measure).
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Belief and plausibility measures

◮ A belief measure is a totally monotone normalized capacity.

◮ A plausibility measure is a totally alternating normalized
capacity.

◮ the conjugate of a belief measure is a plausibility measure,
and vice versa

◮ Possibility and necessity measures are particular cases of belief
and plausibility measures

◮ A particular case: the λ-measure (λ > −1) is a normalized
capacity satisfying for every A,B ∈ 2X , A ∩ B = ∅

µ(A ∪ B) = µ(A) + µ(B) + λµ(A)µ(B)

◮ A λ-measure is a belief measure if and only if λ > 0, and is a
plausibility measure otherwise
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normalized capacities

superadditive

2-monotone (or convex, supermodular)

3-monotone

∞-monotone (or belief measures)

necessity
unanimity games

Dirac measures

λ > 0

−1 < λ < 0

subadditive

2-alternating (or concave, submodular)

3-alternating

∞-alternating (or plausibility measures)

possibility

λ-measure

probability (λ = 0)
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The Möbius transform

Definition
Let ξ be a set function on X . The Möbius transform or Möbius
inverse of ξ is a set function mξ on X defined by

mξ(A) =
∑

B⊆A

(−1)|A\B|ξ(B) (1)

for every A ⊆ X .

Given mξ, it is possible to recover ξ by the formula

ξ(A) =
∑

B⊆A

mξ(B) (A ⊆ X ). (2)
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Properties

1. v is additive if and only if mv (A) = 0 for all A ⊆ X , |A| > 1.
Moreover, we have mv ({i}) = v({i}) for all i ∈ X .

2. v is monotone if and only if

∑

i∈L⊆K

mv (L) > 0 (K ⊆ X , i ∈ K ).

3. Let k > 2 be fixed. v is k-monotone if and only if

∑

L∈[A,B]

mv(L) > 0 (A,B ⊆ X , A ⊆ B , 2 6 |A| 6 k).

4. If v is k-monotone for some k > 2, then mv(A) > 0 for all
A ⊆ X such that 2 6 |A| 6 k.

5. v is a nonnegative totally monotone game if and only if
mv > 0.
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k-additive games

Definition
A game v on X is said to be k-additive for some integer
k ∈ {1, . . . , |X |} if mv (A) = 0 for all A ⊆ X , |A| > k, and there
exists some A ⊆ X with |A| = k such that mv (A) 6= 0.

◮ A game v is at most k-additive for some 1 6 k 6 |X | if it is
k ′-additive for some k ′ ∈ {1, . . . , k}

◮ The set of k-additive games on X (resp., capacities, etc., ) is
denoted by Gk(X ) (resp., MGk(X ), etc. )

◮ We denote by G6k(X ),MG6k(X ) the set of at most
k-additive games and capacities.

G(X ) = G1(X ) ∪ G2(X ) ∪ · · · ∪ G|X |(X )

= G1(X ) ∪ G62(X ) ∪ · · · ∪ G6|X |(X )
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The vector space of games

For any nonempty A ⊆ X the identity game δA centered at A is
the 0-1-game defined by

δA(B) =

{

1, if A = B

0, otherwise.

Theorem
The set of identity games {δA}A∈2X \{∅} and the set of unanimity

games {uA}A∈2X \{∅} are bases of G(X ) of dimension 2|X | − 1.

◮ In the basis of identity games, the coordinates of a game v are
simply {v(A)}A∈2X \{∅}.

◮ We have for any game v ∈ G(X )

v(B) =
∑

A∈2X \{∅}

λAuA(B) =
∑

A⊆B,A6=∅

λA (B ⊆ X ).

It follows that the coefficients of a game v in the basis of
unanimity games are its Möbius transform: λA = mv(A) for
all A ⊆ X ,A 6= ∅
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Simple functions

◮ X nonempty set

◮ A function f : X → R is simple if its range ranf is a finite set.

◮ We assume ranf = {a1, . . . , an}, supposing
0 6 a1 < a2 < · · · < an. Then

f =
n

∑

i=1

ai1{x∈X : f (x)=ai}

=
n

∑

i=1

(ai − ai−1)1{x∈X : f (x)>ai}

X

f

a1

a3

a5
a4

a2

X

a1

a3

a5
a4

a2

X

a1

a3

a5
a4

a2
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The decumulative distribution function

◮ X nonempty set, F algebra on X (closed under finite union
and complementation)

◮ f is F-measurable if {x : f (x) > t} and {x : f (x) > t}
belong to F for all t ∈ R.

◮ B(F): set of bounded F-measurable functions; B+(F): set of
bounded F-measurable nonnegative functions

◮ Let f ∈ B(F), µ a capacity on F . The decumulative
(distribution) function of f w.r.t. µ is

Gµ,f (t) = µ({x ∈ X : f (x) > t}) (t ∈ R)

◮ Properties of Gµ,f :
◮ it is a nonnegative nonincreasing function, with

Gµ,f (0) = µ(X );
◮ Gµ,f (t) = µ(X ) on the interval [0, ess infµf ];
◮ it has a compact support, namely [0, ess sup

µ
f ].
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The Choquet integral

Definition
Let f ∈ B+(F) and µ be a capacity on (X ,F). The Choquet
integral of f w.r.t. µ is defined by

∫

f dµ =

∫ ∞

0
Gµ,f (t)dt,

where the right hand-side integral is the Riemann integral.

Remark: > can replace > in the definition of Gµ,f .
A fundamental fact is the following.

Lemma
Let A ∈ F (i.e., 1A is measurable). Then for every capacity µ

∫

1A dµ = µ(A).
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The Sugeno integral

Definition
Let f ∈ B+(F) be a function and µ be a capacity on (X ,F). The
Sugeno integral of f w.r.t. µ is defined by

−

∫

f dµ =
∨

t>0

(Gµ,f (t) ∧ t) =
∧

t>0

(Gµ,f (t) ∨ t). (3)

Remark 1: > can replace > in the definition of Gµ,f .

Remark 2: −

∫

1A dµ = µ(A) for any A ∈ F holds if µ is normalized.
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The case of real-valued functions

◮ For any f ∈ B(F) we write
f = f + − f −, with f + = 0 ∨ f , f − = (−f )+.

◮ The symmetric Choquet integral is defined by
ˇ∫

f dµ =

∫

f + dµ −

∫

f − dµ.

◮ Symmetry property:
ˇ∫

(−f )dµ = −
ˇ∫

f dµ

◮ Homogeneity (ratio scale invariance):
ˇ∫

αf dµ = α
ˇ∫

f dµ (α ∈ R)
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The case of real-valued functions

◮ The asymmetric Choquet integral is defined by
∫

f dµ =

∫

f + dµ −

∫

f − dµ

◮ Positive homogeneity and translation invariance (interval scale
invariance)

∫

(αf + β1X )dµ = α

∫

f dµ + βµ(X ) (α > 0, β ∈ R)

◮ Expression w.r.t. the decumulative function:

∫

f dµ =

∫ ∞

0
µ(f > t)dt +

∫ 0

−∞

(

µ(f > t) − µ(X )
)

dt.
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The Choquet integral of simple functions

◮ f : simple, measurable nonnegative function with
ranf = {a1, . . . , an}, and 0 6 a1 < a2 < · · · < an

◮ Ai = {x ∈ X : f (x) > ai}, for i = 1, . . . , n

◮ From the decumulative function, one finds
∫

f dµ =

n
∑

i=1

(ai − ai−1)µ(Ai ),

letting a0 = 0, and
∫

f dµ =

n
∑

i=1

ai

(

µ(Ai) − µ(Ai+1)
)

,

with the convention An+1 = ∅.

M. Grabisch c©2014 An itnroduction to the Choquet integral



The Sugeno integral of simple functions

With same notations, one finds

−

∫

f dµ =

n
∨

i=1

(

ai ∧ µ(Ai)
)

−

∫

f dµ =

n
∧

i=0

(

ai ∨ µ(Ai+1)
)

with the convention An+1 = ∅ and a0 = 0.
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The Sugeno integral of simple functions

t

Gµ,f (t)
µ(X )

a1 a2 a3 a4

µ(A2)

µ(A3)

µ(A4)

× ⊗

×

×

t

Gµ,f (t)
µ(X )

a1 a2 a3 a4

µ(A2)

µ(A3)

µ(A4)

× ×

×

⊗
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The Choquet integral on finite sets

◮ X = {x1, . . . , xn}

◮ f : X → R+, fi = f (xi )

◮ Choose a permutation σ on X s.t. fσ(1) 6 fσ(2) 6 · · · 6 fσ(n).

◮ A↑
σ(i) = {xσ(i), xσ(i+1), . . . , xσ(n)} (i = 1, . . . , n)

◮ From the case of simple functions, we obtain directly

∫

f dµ =

n
∑

i=1

(fσ(i) − fσ(i−1))µ(A↑
σ(i))

∫

f dµ =

n
∑

i=1

fσ(i)

(

µ(A↑
σ(i)) − µ(A↑

σ(i + 1))
)

with the conventions fσ(0) = 0 and A↑
σ(n + 1) = ∅.
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The Sugeno integral on finite sets

With the same notations we obtain

−

∫

f dµ =

n
∨

i=1

(

fσ(i) ∧ µ(A↑
σ(i))

)

−

∫

f dµ =

n
∧

i=0

(

fσ(i) ∨ µ(A↑
σ(i + 1))

)
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Example: workers in a factory (ctd)

◮ X = {x1, . . . , xn} set of workers
◮ Each worker starts at 8:00, works continuously but they leave

at different times. We denote by f (xi ) the number of worked
hours for xi , and label the workers so that
f (x1) 6 f (x2) 6 · · · 6 f (xn).

◮ The productivity per hour of a group A ⊆ X is given by µ(A).
◮ The total number of goods produced in a day is given by:

◮ The entire group X has worked f (x1) hours;
◮ Then x1 leaves and the group X \ {x1} = {x2, . . . , xn} works in

addition f (x2) − f (x1) hours;
◮ Then x2 leaves and the group X \ {x1, x2} = {x3, . . . , xn}

works in addition f (x3) − f (x2), etc.,
◮ Finally only xn remains and he works f (xn) − f (xn−1) hours.

Then the total production is
f (x1)µ(X ) + (f (x2) − f (x1))µ({x2, . . . , xn}) + (f (x3) −
f (x2))µ({x3, . . . , xn}) + · · · + (f (xn) − f (xn−1))µ({xn}) =
∫

f dµ.
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Basic properties of the Choquet integral

◮ Positive homogeneity:
∫

αf dv = α

∫

f dv (α > 0)

◮ Monotonicity w.r.t. the integrand: for any capacity µ,

f 6 f ′ ⇒

∫

f dµ 6

∫

f ′ dµ (f , f ′ ∈ B(F))

◮ Monotonicity w.r.t. the game for nonnegative integrands: if
f > 0,

v 6 v ′ ⇒

∫

f dv 6

∫

f dv ′ (v , v ′ ∈ BV(F))

◮ Linearity w.r.t. the game:
∫

f d(v+αv ′) =

∫

f dv+α

∫

f dv ′ (v , v ′ ∈ BV(F), α ∈ R)
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Basic properties of the Choquet integral

◮ Boundaries: inf f and sup f are attained:

inf f =

∫

f dµmin, sup f =

∫

f dµmax,

with µmin(A) = 0 for all A ⊂ X , A ∈ F , µmin(X ) = 1, and
µmax(A) = 1 for all nonempty A ∈ F (see Section ??);

◮ Boundaries: for any normalized capacity µ,

ess infµf 6

∫

f dµ 6 ess supµf

◮ Continuity
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Basic properties of the Sugeno integral

Let f be a function in B+(F), and µ a capacity on (X ,F).

◮ Positive ∧-homogeneity:

−

∫

(α1X ∧ f )dµ = α ∧ −

∫

f dµ (α > 0)

◮ Positive ∨-homogeneity if ess supµf 6 µ(X ):

−

∫

(α1X ∨ f )dµ = α ∨−

∫

f dµ (α ∈ [0, ess supµf ]).

◮ Hat function: for every α > 0 and for every A ∈ F ,

−

∫

α1A dµ = α ∧ µ(A)

◮ Monotonicity w.r.t. the integrand:

f 6 f ′ ⇒ −

∫

f dµ 6 −

∫

f ′ dµ (f , f ′ ∈ B+(F))
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Basic properties of the Sugeno integral

◮ Monotonicity w.r.t. the capacity:

µ 6 µ′ ⇒ −

∫

f dµ ≤ −

∫

f dµ′ (µ, µ′ on (X ,F))

◮ Max-min linearity w.r.t. the capacity:

−

∫

f d(µ∨(α∧µ′)) = −

∫

f dµ ∨
(

α∧

∫

f dµ′
)

(µ, µ′ capacities on (

◮ Boundaries: inf f and sup f are attained:

inf f = −

∫

f dµmin, sup f = −

∫

f dµmax,

with µmin(A) = 0 for all A ⊂ X , A ∈ F , and µmax(A) = 1 for
all nonempty A ∈ F ;

◮ Boundaries:

ess infµf 6 −

∫

f dµ 6 (ess supµf ) ∧ µ(X )
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Comonotonic functions

◮ Two functions f , g : X → R are comonotonic if there is no
x , x ′ ∈ X such that f (x) < f (x ′) and g(x) > g(x ′)

◮ Equivalently when X is finite, f , g are comonotonic if there
exists a permutation σ on X such that fσ(1) 6 · · · 6 fσ(n) and
gσ(1) 6 · · · 6 gσ(n)

Theorem
Let f , g be comonotonic functions on X (finite). Then for any
game v, the Choquet integral is comonotonically additive, and the
Sugeno integral is comonotonically maxitive and minitive for any
capacity µ:

∫

(f + g)dv =

∫

f dv +

∫

g dv

−

∫

(f ∨ g)dµ = −

∫

f dµ ∨ −

∫

g dµ

−

∫

(f ∧ g)dµ = −

∫

f dµ ∧ −

∫

g dµ.
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Supermodular capacities

For any game v , the following conditions are equivalent:

1. v is supermodular;

2. The Choquet integral is superadditive, that is,
∫

(f + g)dv >

∫

f dv +

∫

g dv

for all f , g : X → R

3. The Choquet integral is supermodular, that is,
∫

(f ∨ g)dv +

∫

(f ∧ g)dv >

∫

f dv +

∫

g dv

for all f , g : X → R;

4. The Choquet integral is concave, that is,
∫

(λf + (1 − λ)g)dv >

∫

λf dv + (1 − λ)

∫

g dv

for all λ ∈ [0, 1], f , g : X → R.
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Supermodular capacities

5. The Choquet integral yields the lower expected value on the
core of v :

∫

f dv = min
φ∈core(v)

∫

f dφ, (4)

where core(v) is the set of additive games φ on X such that
φ(X ) = v(X ) and φ(S) > v(S) for all S ∈ 2X .
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Maxitivity and minitivity of the Sugeno integral

Theorem
The following holds:

1. −
∫

(f ∨ g)dµ = −
∫

f dµ ∨ −
∫

g dµ for all f , g if and only if µ is
maxitive;

2. −
∫

(f ∧ g)dµ = −
∫

f dµ ∧ −
∫

g dµ for all f , g if and only if µ is
minitive.
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The Choquet integral in terms of the Möbius transform

Let X be finite, v be a game, and f : X → R. Then

∫

f dv =
∑

A⊆X

mv(A)
∧

i∈A

fi .

where mv is the Möbius transform of v .
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Characterization of the Choquet integral

Theorem
(Schmeidler 1986) Let I : B(F) → R be a functional. Define the
set function v(A) = I (1A) on F . The following propositions are
equivalent:

1. I is monotone and comonotonically additive;

2. v is a capacity, and for all f ∈ B(F), I (f ) =
∫

f dv .
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Characterization of the Sugeno integral

Theorem
Let |X | = n, F = 2X , and let I : (R+)X → R+ be a functional.
Define the set function µ(A) = I (1A), A ⊆ X. The following
propositions are equivalent:

1. I is comonotonically maxitive, satisfies I (α1A) = α ∧ I (1A) for
every α > 0 and A ⊆ X (hat function property), and
I (1X ) = 1;

2. µ is a normalized capacity on X and I (f ) = −
∫

f dµ.
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The concave integral (Lehrer 2009)

We consider |X | = n, F = 2X .

Definition
Let f : X → R+ and µ be a capacity. The concave integral of f
w.r.t. µ is given by:

∫

cav

f dµ = sup







∑

S⊆X

αSµ(S) :
∑

S⊆X

αS1S = f , αS > 0,∀S ⊆ X







.

(5)

Nota: “sup” can be replaced by “max”.
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The example of workers in a factory revisited

◮ X = {1, 2, 3}, let µ on X be defined by
µ(1) = µ(2) = µ(3) = 0.2, µ(12) = 0.9, µ(13) = 0.8,
µ(23) = 0.5 and µ(123) = 1

◮ Each worker is given an amount of time: f1 = 1 for worker 1,
f2 = 0.4 and f3 = 0.6 for workers 2 and 3

◮ How should the workers organize themselves in teams so as to
maximize the total production while not exceeding their
alloted time?

◮ The answer is given by the concave integral: team {1, 2} is
working 0.4 unit of time and team {1, 3} is working 0.6 unit
of time, which yields

0.9 · 0.4 + 0.8 · 0.6 = 0.84
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The example of workers in a factory revisited

◮ By contrast, the Choquet integral computes the total
productivity under the constraint that the teams form a
specific chain, in this case the teams are {1, 2, 3}, {1, 3} and
{1} for durations 0.4, 0.2 and 0.4 respectively, yielding

0.4 + 0.8 · 0.2 + 0.2 · 0.4 = 0.64
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Properties

The following properties hold for the concave integral:

1. For every capacity µ, the concave integral
∫

cav

·dµ is a
concave and positively homogeneous functional, and satisfies
∫

cav

1S dµ > µ(S) for all S ∈ 2X ;
2. For every f ∈ R

X
+ and capacity µ,

∫

cav

f dµ = min
{

I (f ) | I : R
X
+ → R concave,

positively homogeneous, and such that I (1S ) > µ(S),∀S ⊆ X
}

3. For every f ∈ R
X
+ and capacity µ,
∫

cav

f dµ = min
P additive ,P>µ

∫

f dP

4. For every f ∈ R
X
+ and capacity µ,

∫

f dµ 6

∫

cav

f dµ,

and equality holds for every f ∈ R
X
+ if and only if µ is

supermodular.
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