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Matching without preferences...

Outline of the first part:

>

>

>

introduction to matching theory

basics of computational complexity

chess pairings (FIDE rules)

kidney exchange programs (UK experience)

matching with couples



A tale on matchings...
Once upon a time, King Arthur wanted to organise a party. He
invited four men and four women. He knew which of his invitees
had known each other. He wanted to prepare a dance schedule
where no man and woman are matched to each other if they have
never met before. He asked Merlin the wizard to help...
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Arthur: Could you find me such a pairing?
Merlin:
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Merlin: No, unfortunately not.

Arthur: Why? (tell me a good reason or you will be executed...)
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Once upon a time, King Arthur wanted to organise a party. He
invited four men and four women. He knew which of his invitees
had known each other. He wanted to prepare a dance schedule
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Arthur: Could you find me such a pairing?
Merlin: No, unfortunately not.

Arthur: Why? (tell me a good reason or you will be executed...)

Merlin:

Cannot he just try every possible combination?
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Once upon a time, King Arthur wanted to organise a party. He
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Arthur: Could you find me such a pairing?

Merlin: No, unfortunately not.

Arthur: Why? (tell me a good reason or you will be executed...)
Merlin:

This would be 4 x 3 %2 x 1 = 4! = 24 possibilities.



A tale on matchings...
Once upon a time, King Arthur wanted to organise a party. He
invited four men and four women. He knew which of his invitees
had known each other. He wanted to prepare a dance schedule
where no man and woman are matched to each other if they have
never met before. He asked Merlin the wizard to help...

A B C D
KI1]1]0(1
L{oj1|1fo0
MfO|1[0]O
N[OJO]|1l/(O

Arthur: Could you find me such a pairing?
Merlin: No, unfortunately not.
Arthur: Why? (tell me a good reason or you will be executed...)

Merlin:
But what if next time Arthur invites 100 men and 100 women?

(n! is more than the number of atoms in the universe for n > 61)



A tale on matchings...
Once upon a time, King Arthur wanted to organise a party. He
invited four men and four women. He knew which of his invitees
had known each other. He wanted to prepare a dance schedule
where no man and woman are matched to each other if they have
never met before. He asked Merlin the wizard to help...
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Arthur: Could you find me such a pairing?

Merlin: No, unfortunately not.

Arthur: Why? (tell me a good reason or you will be executed...)
Merlin: Since without B, C and K we have no more possible pair,
so we cannot create more than three pairs.



The Kénig theorem (1931)

Def: For a graph G(N, E), a set of nodes X C N is a vertex-cover
if every edge in E is incident to some node in X.

For every bipartite graph,
minimum size of a vertex-cover = maximum size of a matching
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Proof of Konig's theorem

We keep looking for alternating paths from unmatched women to
unmatched men...
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Proof of Konig's theorem

We keep looking for alternating paths from unmatched women to
unmatched men...

QO

> if we find one then we can enlarge the matching

> if there is no augmenting path then we can find a vertex-cover
of minimum size



Weighted and nonbipartite graphs: still tractable

Egervéry (1931): For every weighted bipartite graph,
minimum value of a cover = maximum weight of a matching

A B C D
Kle[g|7]|0]5
Lis|1wo|7]|7]6
Mla|7|3|0]3
Nl4fo|4]|5]3

2 2 2

Kuhn (1955): A maximum weight matching can be found
efficiently (in strongly polynomial time) by the Hungarian method.



Weighted and nonbipartite graphs: still tractable

Egervéry (1931): For every weighted bipartite graph,
minimum value of a cover = maximum weight of a matching

A B C D
Kle[g|7]|0]5
Lis|1wo|7]|7]6
Mla|7|3|0]3
Nl4fo|4]|5]3

2 2 2

Kuhn (1955): A maximum weight matching can be found
efficiently (in strongly polynomial time) by the Hungarian method.

Edmonds (1967): For nonbipartite graphs, finding a maximum size
or maximum weight matching is solvable efficiently.



Example for brute force matching: chess pairing
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Example for brute force matching: chess pairing

[ Handbook
<« c#H D I
A3 Score brackets
equal scores constitute a homogeneous score bracketMIdENIERW TN =Y EYL NG ET BTt T
pairing of a score bracket will be moved down to the next score bracket, which will therefore be
heterogeneous. When pairing a heterogeneous score bracket these players moved down are always paired f@
first whenever possible, giving rise to a remainder score bracket which is always treated as a =g
homogeneous one.
A heterogeneous score bracket of which at least half of the players have come from a higher score
bracket is also treated as though it was homogeneous. <
A4 Floats
By pairing a heterogeneous score bracket, players with unequal scores will be paired. To ensure that this I
will not happen to the same players again in the next two rounds this is written down on the pairing card.
The higher ranked player (called downfloater) receives a downfloat , the lower one (upfloater) an upfloat.
A5  Byes Ev
Should the total number of players be (or become) odd, one player ends up unpaired. This player receives
a bye: no opponent, no colour , 1 point or half point (as stated in the tournament regulations).
A.6 Subgroups - Definition of PO, MO Rules
a To make the pairing, each score bracket will be divided into two subgroups, to be called S1 and
S2, where S2 is equal or bigger than S1 (for details see C.2 to C.4)
S1 players are tentatively paired with S2 players. S
b PO is the maximum number of pairs that can be produced in each score bracket.
PN ic aanal tn tha niimhar of nlavare dividad hv fwa and ranndad dawnwards -

Dutch system




Example for brute force matching: chess pairing

e«>cad 6 I
C.5 oOrder the players in S1 and S2 B

According to A2.
C.6 Try to find the pairing

Pair the highest player of S1 against the highest one of S2, the second highest one of S1 against the second
highest one of S2, etc. If now P pairings are obtained in compliance with the current requirements the pairing of
this score bracket is considered complete.
o in case of a homogeneous or remainder score bracket: remaining players are moved down to the next score
bracket. With this score bracket restart at C1.
o in case of a heterogeneous score bracket: only M1 players moved down were paired so far. D
Mark the current transposition and the value of P (it may be useful later).
Redefine P = P1 - M1
Continue at C4 with the remainder group.
C.7 Transposition
Apply a new transposition of S2 according to D1 and restart at C6.
C.8 Exchange

a In case of a homogeneous (remainder) group: apply a new exchange between S1 and S2 according to D2
and restart at C5.

b In case of a heterogeneous group: if M1 is less than MO, choose another set of M1 players to put in S1
according to D3 and restart at C5

C.

©

Go back to the heterogeneous score bracket (only remainder)

Dutch system



Example for brute force matching: chess pairing

= ca D

D  Transposition and exchange procedures
D.1 Transpositions
D1.1  Homogeneous or remainder score brackets

Example: S1 contains 5 players 1, 2, 3,4, 5 (in this sequence)
S2 contains 6 players 6, 7, 8,9, 10, 11 (in this sequence)

Transpositions within S2 should start with the lowest player, with descending priority

6-7-8-9-10-11

1 6-7-8-9-11-10
2 6-7-8-10-9-11
3 6-7-8-10-11-9
4 6-7-8-11-9-10
5 6-7-8-11-10-9 [ ]
6 6-7-9-8-10-11
7 6-7-9-8-11-10
8 6-7-9-10-8-11
9. 6-7-9-10-11-38
10. 6-7-9-11-8-10
11, 6-7-9-11-10-8
12. 6-7-10-8-9-11
13. 6-7-10-8-11-9
14, 6-7-10-9-8-11
15. 6-7-10-9-11-8

Dutch system



Example for brute force matching: chess pairing

€« cH D i / ht

11.2 In the following example of a score-group with six players, and pairing downward, the attempt is first
made to find a compatible opponent for Player #1, the highest numbered player in the score-group.
Six players in a score-group with proposed pairings as follows:
iv4
2v5
3ve
If the pairing 1 v 4 is not compatible, for example, because the players had met in an earlier round,
the positions of Player #4 and Player #5 are exchanged so that we have:
1vs
2v4
3ve
If the pairing 1 v 5 is also not compatible, a further exchange is made. The original proposed pairing
and possible exchanges made to find a compatible opponent for Player #1 are as follows:

Proposed Pairing (col. 1) and Possible exchanges to find compatible opponent for #1

iv4 1v5 ive 1v3 iv2

2v5 2v4 2v4 2v5 3vS5 H
3vé 3v6 3v5 4v6e 4ve

11.3 After a compatible opponent, for example, #6, has been found for Player #1, the proposed pairing for
Player #2 is scrutinised. Exchanges to find a compatible opponent for Player #2 are as follows:
Proposed Pairing (col. 1) and Possible exchanges to find compatible opponent for #2

ive 1vé 1ve 1v3 1v2
2v4 2v5 2v3 2v6 3v5
3v5 3v4 4v5 4v5 4ve

Lim system




Example for brute force matching: chess pairing

T Handbook
€ > C (0w

.com/fide/handbook htmiZid=85&view=article

6. Paring procedures:
6.1 In each SG priority shall be given to pair the highest player (i.e. the player with the highest SB) with the
lowest player in that SG that he has not already played. The second highest player shall be paired with the
second lowest player, etc.

6.2 To illustrate the procedure, suppose there are six players in a SG, ordered 1 through 6 as described in rule
3.2. There will be 15 combinations of pairing within the group, in the following descending order of priority:

1*6 2%5 3*4

2 1*6 2*4 3*5
3 1*6 2*3 4*5
4 1*5 2%6 3*4
5 1*5 2%4 3%6
6 1*%5 2*3 4*6
7 1*4 2%6 3*5
8 1*4 2%5 3*%6
9 1*4 2*3 5%6
10 1*3 2%6 4*5
11 1*3 2%5 4%6
12 1*3 2*4 5%6
13 1*2 3%6 4*5

Burstein system



the tale continues...

King Arthur decided to make the dance party more colorful, so he
asked Merlin to pick a different color for each dancing couple such
that the color is matching with the flags of the corresponding
noble families. Suppose that we have as many available colors as
dancing couples. Can Merlin find a suitable solution, or a good
excuse for not being able to find a suitable solution?
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Now Merlin faces the 3D-matching problem:

Given three sets of items, A= {a1,...,a,}, B={b1,...,bn},

C ={c1,...,cn} and a set of possible triples:
F={...,(ai,bj,ck),... }. The question is whether there exists a
set of disjoint triples, F C F, s.t. all items are covered.
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King Arthur decided to make the dance party more colorful, so he
asked Merlin to pick a different color for each dancing couple such
that the color is matching with the flags of the corresponding
noble families. Suppose that we have as many available colors as
dancing couples. Can Merlin find a suitable solution, or a good
excuse for not being able to find a suitable solution?

Now Merlin faces the 3D-matching problem:

Given three sets of items, A= {a1,...,a,}, B={b1,...,bn},

C ={c1,...,cn} and a set of possible triples:
F={...,(ai,bj,ck),... }. The question is whether there exists a
set of disjoint triples, F C F, s.t. all items are covered.

Unfortunately this problem was shown to be NP-hard by Karp
(1972), so it is highly unlikely that Merlin would be able to find a
suitable solution, even if there exists one quickly, or give a good
excuse for not finding a suitable solution...



NP-hard problems, complexity theory

For a decision problem Q, we say that Q&P if there exists an
algorithm, implementable with a deterministic Turing machine,
which can decide in polynomial time in the input size for any
instance | € Q whether / is a YES-instance.

QENP if there exists an algorithm, implementable with a
non-deterministic Turing machine, which can decide in
polynomial time in the input size for any instance | € @ whether /
is a YES-instance.

Alternative def: QeNP if for any instance |€Q there is a proof T,
polynomial size in /, that shows that / is a YES-instance and this
be verified in polynomial time.

QeCo-NP: if there exists an algorithm, implementable with a
non-deterministic Turing machine, which can decide in
polynomial time in the input size for any instance | € @ whether /
is a NO-instance.



NP-hard problems, complexity theory

Polynomial-time reduction: problem A can be reduced to problem
B if for any instance | of A we can create another instance /” of B,
where

» the size of /” is polynomial in the size of /

» [ is a YES-instance <= [’ is a YES-instance.

A problem is NP-hard, if ANY problem in NP can be reduced to it.
NP-complete= NP N NP-hard

Cook (1971): SAT is the first problem proved to be NP-complete.
Since then there are thousands of relevant problems showed to be
NP-complete.

s HC
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NP-hard problems, complexity theory

I\/Iost likely picture:

complete

Although we still do not know whether P=NP?
or whether P=NPNCo-NP?



NP-hard problems, complexity theory
So, if a problem is NP-hard then there exist no polynomial time
algorithm to solve it, unless P=NP. (If we could solve an NP-hard
problem in polynomial time then we could solve every problem in
NP in polynomial time. This is very unlikely...)



NP-hard problems, complexity theory

So, if a problem is NP-hard then there exist no polynomial time
algorithm to solve it, unless P=NP. (If we could solve an NP-hard
problem in polynomial time then we could solve every problem in
NP in polynomial time. This is very unlikely...)
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behmd schedule You certainly don’t want to return to his office and re-

““I can’t find an efficient algorithm, I guess I'm just too dumb.”

- slel 7| - nas R

P M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the theory of NP-completeness.
Macmillan Higher Education, 1979.




NP-hard problems, complexity theory

So, if a problem is NP-hard then there exist no polynomial time
algorithm to solve it, unless P=NP. (If we could solve an NP-hard
problem in polynomial time then we could solve every problem in
NP in polynomial time. This is very unlikely...)
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herently intractable, that no algorithm could possibly solve it quickly. You
then could stride confidently into the boss’s office and proclaim:

““I can’t find an efficient algorithm, because no such algorithm is possible!”
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P M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the theory of NP-completeness.
Macmillan Higher Education, 1979.



NP-hard problems, complexity theory

So, if a problem is NP-hard then there exist no polynomial time
algorithm to solve it, unless P=NP. (If we could solve an NP-hard
problem in polynomial time then we could solve every problem in
NP in polynomial time. This is very unlikely...)
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““I can’t find an efficient algorithm, but neither can all these famous people.”
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P M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the theory of NP-completeness.
Macmillan Higher Education, 1979.



NP-hard problems, complexity theory

If a problem turns out to be NP-hard, then we can still

> specify the settings when the problem is still tractable
(bipartite graphs, bounded length lists, etc.)

> give exact algorithm (exponential time, but terminating for
small/sparse instances)

» give polynomial time algorithms with good approximation
guarantees

» engineering (experimental) approach: construct heuristics
with good performance on realistic instances

> use integer programming or other robust optimisation
techniques



Kidney exchange problem

m m Given two incompatible patient-donor
pairs (blood-type or tissue-type in-
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Kidney exchange problem

m m Given two incompatible patient-donor
pairs (blood-type or tissue-type in-
i><i compatibility). If they are compati-
ble across, then a pairwise exchange
w @ is possible between them.

We consider these pairs as single

vertices of a directed graph, k
D(V,A).

(i,j) € A iff the donor i is com- |
patible with the patient j. |
The weight of an arc is the \9 J

score of the corresponding dona-
tion (PRA, HLA-mismatch, age).



The basic optimisation problems:

A set of exchanges is a permutation of V/, s.t. i # 7(i) implies
(i,m(i)) € A(D).
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We say that a set of exchanges is optimal, if the sum of the
weights is maximal. (i.e., when the total score is maximal.)



The basic optimisation problems:

A set of exchanges is a permutation of V/, s.t. i # 7(i) implies
(i,m(i)) € A(D).

We say that a set of exchanges is optimal, if the sum of the
weights is maximal. (i.e., when the total score is maximal.)

We study 3 cases:

» Only 2-cycles are possible.
> Unrestricted length cycles.

> 2- and 3-cycles are allowed.



2-way exchanges = matching problem

We transform the directed graph D to an undirected graph G.

A set of 2-way exchanges in D corresponds to a matching in G

with the same weight, since w({i, j})= w(i,j) + w(j, i) for every
edge {i/,j} of G.

The problem of finding a maximum weight matching in G can be
solved by Edmonds’ algorithm in polynomial time.



Optimal pairwise exchanges in two examples

Maximum cardinality pairwise exchange



Optimal pairwise exchanges in two examples

Maximum cardinality pairwise exchange

Maximum weight pairwise exchange




Unrestricted exchanges = matching problem

We transform the directed graph D to an bipartite graph G.

PN SN

! I I
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With an edge of weight 0, between each patient and his/her donor.

A set of exchanges in D corresponds to a complete matching in
G with the same weight.

The problem of finding a maximum weight complete matching in
G can be solved in polynomial time by the Hungarian method.



The transformation in an example

From a directed graph D,
we create a bipartite graph G,




The transformation in an example

From a directed graph D, maximum weight unrestricted exchanges
we create a bipartite graph G, maximum weight complete matching




Optimal unrestricted exchanges in two examples

Maximum cardinality unrestricted exchanges



Optimal unrestricted exchanges in two examples

Maximum cardinality unrestricted exchanges

Maximum weight unrestricted exchanges




Test results for large instances:

Pairwise exchange Unrestricted exchange
nodes|| size \ weight\ time \ size \ weight\ longest c. \ time
100 46 | 971 0.3s || 52 | 1458 | (52) 0.3s
200 86 | 2662 | 09s |[95 | 3215 | (43) 1.0s
300 150 | 4151 | 2.0s || 169 | 5459 | (136) 2.3s
400 194 | 6760 | 3.4s | 208 | 7662 | (124) 4.0s
500 256 | 8161 | 5.4s || 268 | 9056 | (169) 7.1s
600 322 | 10404 | 7.9s || 343 | 11606 | (213) 9.5s
700 368 | 12495 | 10.4s || 374 | 13520 | (152) 14.3s
800 418 | 14447 | 14.0s || 450 | 15370 | (323) 20.0s
900 458 | 15543 | 17.2s || 487 | 16703 | (230) 24.2s
1000 || 516 | 17508 | 21.3s || 530 | 18552 | (191) 32.5s




2- and 3-way exchanges: an NP-hard problem

The problem of finding a maximum size / weight set of 2- and
3-way exchanges is NP-hard (reduction from 3DM):

for each triple (aj, bj, cx) € F we create the following gadget:

b;
3 complete 3D matching <= 3 complete set of 3-way exchanges

P D. J. Abraham, A. Blum and T. Sandholm, Clearing algorithms for barter-exchange markets: enabling
nationwide kidney exchanges, In Proc. EC'07: the Eighth ACM Conference on Electronic Commerce,
ACM, pp:295-304, 2007.
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2- and 3-way exchanges: an NP-hard problem

The problem of finding a maximum size / weight set of 2- and
3-way exchanges is NP-hard (reduction from 3DM):

for each triple (aj, bj, cx) € F we create the following gadget:

(a,-,bj,ck) ¢ F <—

b;
3 complete 3D matching <= 3 complete set of 3-way exchanges

P D. J. Abraham, A. Blum and T. Sandholm, Clearing algorithms for barter-exchange markets: enabling
nationwide kidney exchanges, In Proc. EC'07: the Eighth ACM Conference on Electronic Commerce,
ACM, pp:295-304, 2007.



2- and 3-way exchanges: approximation algorithms

The greedy algorithm provides a 3-approximation for the maximum
weight problem.

Biré6-Manlove-Rizzi (2009): This can be improved to a
(2 + €)-approximation algorithm for any € > 0.

P P.Biré, D.F. Manlove and R. Rizzi. Maximum weight cycle packing in directed graphs, with application to
kidney exchange programs. Discrete Mathematics, Algorithms and Applications 1(4), pp:499-517, 2009.



Exact algorithm: reducing the running time 1.

If we knew the set of 3-cycles of an optimal set of 2- and 3-way

exchanges,
then we could find an optimal solution (by simply finding a
maximum weight matching in the rest of the digraph).



Reducing the running time 2.

But it is enough to know only one arc from each 3-cycle, since we
can find an optimal 2- and 3-way exchange after a transformation!



Reducing the running time 2.

For an arc-set Y,
We create an undirected graph Gy,




Reducing the running time 2.

For an arc-set Y, maximum cardinality 2- and 3-way exchanges
We create an undirected graph Gy, maximum weight matching




Reducing the running time 3.
In a weighted graph:

For an arc-set Y,
We create an undirected graph Gy,




Reducing the running time 3.
In a weighted graph:

For an arc-set Y, maximum weight 2- and 3-way exchanges
We create an undirected graph Gy, maximum weight matching




Reducing the running time 4.

Let T be an arc set in D such that after removing T from D no
3-cycle remains.



Reducing the running time 4.

Let T be an arc set in D such that after removing T from D no
3-cycle remains.

T intersects every 3-cycle of D, so T intersects also the 3-cycles of
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Reducing the running time 4.

Let T be an arc set in D such that after removing T from D no
3-cycle remains.

T intersects every 3-cycle of D, so T intersects also the 3-cycles of
an optimal solution, thus Y can be chosen as a subset of T.

Here, T has 6 disjoint subsets, that we shall probe, so we can find
an optimal set of 2- and 3-way exchanges by transforming the
graph and running Edmonds’ algorithm 6 times.
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Reducing the running time 5.

We shall choose a set T for which the number of independent
subsets of T is minimal.

Here, T has the following 5 independent subsets:
Yi, Yo, Y3, Ya, Y (the emptyset).

Clearly | T| < m/2, so the number of subsets that we need to
check with Edmonds’ algorithm is at most 2/ 71 < 27
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Maximum cardinality 2- and 3-way exchanges

Maximum weight 2- and 3-way exchanges




Optimal 2- and 3-way exchanges in two_examples

nodes| arcs | 2-cycle | 3-cycle | |T| | subsets of T || r. time
10 25 |7 5 3 |5 0.0s
5 10 0.0s




Test results for 2- and 3-way exchanges

|

nodes\ arcs \ 2-cycle \

3-cycle | |T| | subsetsof T [ r. time

10 22 2 0 0 0 0.0s

15 45 7 13 3 6 0.1s

20 101 |7 5 2 3 0.0s

25 125 | 16 37 5 6 0.1s

30 239 | 16 36 8 40 0.4s

35 339 | 32 111 16 | 656 7.2s

40 354 | 25 145 17 | 296 3.8s

45 541 | 48 185 22 | 1792 28.8s

50 502 | 46 257 21 | 336 6.2s

55 609 | 59 151 19 | 992 18.9s

60 696 | 51 164 25 | 5172 121.4s
65 993 | 89 620 52 | 1841364 55387.1s
70 1164 | 133 778 55 | 555624 17665.4s
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Comparing the settings: two examples

Pairwise 2- and 3-way Unrestricted
nodes|| size | weight|| size | weight| 3-c. || size | weight| longest c.
10 8 10 (4)
5 2 9 (4)




Comparing the settings: test results

Pairwise 2- and 3-way Unrestricted
nodes size‘ Weight‘ size‘ Weight‘ 3-c. ‘ size‘ Weight‘ longest c.
10 2 24 2 24 0 2 24 (2)
15 6 140 6 170 2 6 170 (6)
20 6 230 7 282 1 7 282 (3)
25 6 162 6 162 0 6 162 (4)
30 12 | 656 15 | 956 3 15 | 956 (8)
35 16 | 562 18 | 820 2 19 | 866 (7)
40 12 | 574 15 | 960 3 16 | 1006 | (7)
45 20 | 1092 || 23 | 1298 | 3 23 | 1298 | (19)
50 14 | 466 17 | 762 3 20 | 966 (15)
55 20 | 1098 || 23 | 1334 | 3 25 | 1524 | (11)
60 18 | 1216 || 23 | 1576 | b 23 | 1722 | (21)
65 26 | 994 29 | 1402 |5 31 | 1510 | (28)
70 26 | 1174 || 31 | 1470 | 7 31 | 1470 | (31)
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14 P. Bird, D.F. Manlove and R. Rizzi

Matching 2008 2009
run Apr [ Jul | Oct | Jan [ Apr | Jul | Oct
# pairs 76 | 85 | 123 | 126 | 122 | 95 | 97
# possible donations 287 [ 235 | 704 | 576 | 760 | 1212 | 866
Total # 2cycles | 5 | 2 | 14 | 16 | 20 | 54 | 4
Beycles | 5 | 0 | 109 | 65 | 68 | 164 | 4
Pairwise | #2-cycles | 2 | 1 | 6 5 5 0 | 2
exchanges sze | 4 | 2 | 12 | 10 | 10 | 20 | 4
weight || 91 | 6 | 499 | 264 | 388 | 730 | 222
<3-way Hrocles | 2 [ 1 | 2 1 2 2 0
exchanges | #3cycles | 4 | 0 | 7 | 5 5 9 2
size | 16 | 2 | 25 | 17 | 19 | 31 6
weight || 620 | 6 | 1122 | 633 | 757 | 1300 | 300
theexact | sizeof S| 5 | 0 | 18 | 13 | 14 | 25 | 3
algorithm | #Y C S | 24 | 0 | 3480 | 588 | 1440 | 67824 | 6
Running time (sec) 03 | 00 | 660 | 7.5 | 19.2 | 14943 | 2.0
Unbounded size | 22 | 2 [ 33 | 28 | 28 | 40 | 6
weight || 857 | 6 | 1546 | 1134 | 1275 | 1894 | 300
longestc. | 20 | 2 | 27 | 19 | 23 | 28 | 3 H
Closen #2odes][ 2 [ 1| 6 5 5 1 1 =
solution #3cycles | 4 | 0 | 3 1 2 7 1
(NHSBT) size | 16 | 2 | 21 | 13 | 16 | 20 5
weight || 620 | 6 | 030 | 422 | 618 | 1168 | 288

Table 1. Results arising from matching runs from April 2008 to October 2009.

We also used our exact algorithm to find optimal exchanges for NHSBT for the
quarterly matching runs of the NMSPD from April 2008 to October 2009 inclusive,
and the results ding to these input datasets are contained in Table 1. The
@ tnbox - Outr. (@ [lerminall (@ [design - Def.. | taks B ckesor O ) reminal ) ¢ iComputatio.. ) 2 amaa revpar )

» P Biré, D.F. Manlove and R. Rizzi. Maximum weight cycle packing in directed graphs, with application to
kidney exchange programs. Discrete Mathematics, Algorithms and Applications 1(4), pp:499-517, 2009.
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Three-way kidney transplant success

By Graharn Satchell [%
BBC News Breakfast reporter

Step back to nine in the
morning on 4 December 2009.

Six patients are ready for surgery
at three different hospitals across
the UK.

It is the culmination of months of
preparation and a remarkable
event in the history of live organ
donation in this country.

Chris Brent with his sister Lisa Burton

This is a three-way kidney swap
between couples who've never met,

In Aherdeen, S4-year-old Andrea 6
Mullen suffered sudden kidney
failure three years ago.

It's a threefold thing
really so it's a real good
feelgood factor all round

It had a devastating impact on her ”
Lo Cle b ol lialicic s L

Burton wha donated a lidn,

SEE ALSO

» Three-way transplant brings hope
0& Mar 10 | Health

RELATED BBC LINKS

» Kidney transplant
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» Human Tissue Authority

» Hammersmith hospital

» Guy's and St Thomas' hospital

» Edinburgh Raoyal Infirmary

The BBC iz not respansible for the content of s

internet sites

TOP HEALTH STORIES

» Stem cell method put to the test

» Hospitals ‘eyeing private market'

» Low witamin D ‘Parkinson's link'

B | Mews feeds




Alternative method: integer linear programming

We create an integer program as follows:

>

>

we list all the possible exchanges: C1, G, ..., Cp

we use binary variables xy, x2, ..., Xm
where x; = 1 iff C; is part of optimal solution x

we build matrix A of dimensions n x m where n = |V/| and
A;j = 1iff v; is incident to C;
let b be n x 1 vector of 1s

let ¢ be 1 x m vector of values according to what we want to
optimise, e.g. ¢;j could be weight of C;

Then solve max cx s.t. Ax < b

>

D. J. Abraham, A. Blum and T. Sandholm, Clearing algorithms for barter-exchange markets: enabling
nationwide kidney exchanges, In Proc. EC'07: the Eighth ACM Conference on Electronic Commerce,
ACM, pp:295-304, 2007.
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Alternative method: integer linear programming

max cx
st. Ax<b
andx,-e{O,l}
where
1
11001 10 1 0
1 01 0|1 01 1 0
A=]10 1 0 0{0 1 O0|,b=|1]|,x=1|11] and
000 1|1 11 1 0
0 011|001 1 0
0

cw=1[5 22 6[5 6 4] if maximum weight max c,x =11



Alternative method: integer linear programming

max cx
st. Ax<b
and x; € {0,1}
where
1 100|110
1 01 0|1 01
A=|[0 1 0 0|0 1 0|,b=
0 00 1|1 11
0 01 1/0 01

Co = Cs - M + ¢, if max weight max size
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Alternative method: integer linear programming

max cx
st. Ax<b
andx,-e{O,l}
where
0
11001 10 1 0
1 01 0|1 01 1 1
A=]10 1 0 0j{0 1 O0|,b=|1]|,x=10] and
000 1|1 11 1 0
0 01 1|0 01 1 1
0

Co = Cs - M + ¢, if max weight max size max c,x =5M + 8



Changing the optimisation criteria in the UK program

P D.F. Manlove and G. O’Malley. Paired and altruistic kidney donation in the UK: Algorithms and
experimentation. In Proceedings of SEA 2012, vol. 7276 of LNCS, pp 271-282.



Changing the optimisation criteria in the UK program

best (maximum weight maximum size) set of 2-way exchanges,

» D.F. Manlove and G. O’'Malley. Paired and altruistic kidney donation in the UK: Algorithms and
experimentation. In Proceedings of SEA 2012, vol. 7276 of LNCS, pp 271-282.



Changing the optimisation criteria in the UK program

best (maximum weight maximum size) set of 2-way exchanges,
best set of 2-way exchanges with extra 3-way exchanges

» D.F. Manlove and G. O’'Malley. Paired and altruistic kidney donation in the UK: Algorithms and
experimentation. In Proceedings of SEA 2012, vol. 7276 of LNCS, pp 271-282.



Changing the optimisation criteria in the UK program

best (maximum weight maximum size) set of 2-way exchanges,
best set of 2-way exchanges with extra 3-way exchanges

best set of 2-way exchanges and 3-way exchanges with embedded
2-way exchanges.

» D.F. Manlove and G. O’'Malley. Paired and altruistic kidney donation in the UK: Algorithms and
experimentation. In Proceedings of SEA 2012, vol. 7276 of LNCS, pp 271-282.



Changing the optimisation criteria in the UK program

best (maximum weight maximum size) set of 2-way exchanges,
best set of 2-way exchanges with extra 3-way exchanges

best set of 2-way exchanges and 3-way exchanges with embedded
2-way exchanges. (July 2009: We could replace eight from the ten
2-way exchanges by 3-way exchanges with embedded 2-way
exchanges.)

» D.F. Manlove and G. O’'Malley. Paired and altruistic kidney donation in the UK: Algorithms and
experimentation. In Proceedings of SEA 2012, vol. 7276 of LNCS, pp 271-282.
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Matching couples with 0-1 preferences

We have 2n people, containing some couples, and n double rooms.

» each couple has to be accommodated
in a double room

> two single persons can be placed in
one double room

> every single person and couple has a
list of suitable rooms

Is it possible to accommodate everybody?



Motivation: matching couples, scheduling jobs

» allocating singles and couples
by maximising the size

P P.A. Robards. Applying two-sided matching processes to the United States Navy enlisted assignment
process, Master's Thesis, Naval Postgraduate School, Monterey, California, 2001.

> w. Yang, J.A. Giampapa, K. Sycara, Two-sided matching for the US Navy Detailing Process with market
complication, Technical Report CMU-RI-TR-03-49, Robotics Institute, Carnegie-Mellon University, 2003.



Motivation: matching couples, scheduling jobs

O:::\——-:]D » allocating singles and couples
O,,—J*Z:’ by maximising the size

__/,:?|:| » multiprocessor scheduling: allocating
Q- jobs (of length 1 or 2) to processors

by minimising the makespan

]
3 > bin packing: allocating
@ ] items of size 0.5 or 1 to bins (of size 1)

O~ by minimising the number of bins used

P P.A. Robards. Applying two-sided matching processes to the United States Navy enlisted assignment
process, Master's Thesis, Naval Postgraduate School, Monterey, California, 2001.

> w. Yang, J.A. Giampapa, K. Sycara, Two-sided matching for the US Navy Detailing Process with market
complication, Technical Report CMU-RI-TR-03-49, Robotics Institute, Carnegie-Mellon University, 2003.

P C.A. Glass and H. Kellerer. Parallel machine scheduling with job assignment restrictions, Naval Research
Logistics. A Journal Dedicated to Advances in Operations and Logistics Research 54(3), pp:250-257, 2007.

P P.Biré and E. McDermid. Matching with sizes (or scheduling with processing set restrictions). Discrete
Applied Mathematics 164(1), pp:61-67, 2014.
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The NP-hardness proof

Glass-Kellerer (2007), Bir6-McDermid (2014):
We reduce from 3DM:
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The NP-hardness proof

Glass-Kellerer (2007), Bir6-McDermid (2014):
We reduce from 3DM:

3 complete 3D-matching <= 3 complete matching with couples

<= similarly...



Matching under preferences
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“College admission and the stability of marriage”

A B C D| “Each person ranks those of
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Stable marriage problem by Gale and Shapley [1962]

“College admission and the stability of marriage”

A B C D| “Each person ranks those of
the opposite sex in accordance
with his or her preferences for a
marriage partner.”

A set of marriages is stable, if there
is no “blocking pair’: a man and a
woman who are not married to each
other but prefer each other to their
actual mates.

(C,F) blocking pair

Gale-Shapley 1962: The deferred-acceptance algorithm finds a
stable matching. This matching is man-optimal.



SM + quotas: College Admissions (CA)

The solution by the Gale-Shapley mechanism is
» fair: an application is rejected by a college only if its quota is
filled with better applicants (i.e., the matching is stable).

» student-optimal: no student could be admitted to a better
college in any other fair solution.



SM + quotas: College Admissions (CA)
The solution by the Gale-Shapley mechanism is
» fair: an application is rejected by a college only if its quota is

filled with better applicants (i.e., the matching is stable).

» student-optimal: no student could be admitted to a better
college in any other fair solution.

The automated procedure based on the Gale-Shapley algorithm is

» fast: the running time is linear in the number of applications
(10 seconds in Hungary, would be ~1 minutes in the UK and
~15 minutes in China).

» strategy-proof: no student can be better off by cheating.



The Gale—Shapley algorithm in practice
Allocating residents to positions:

> National Resident Matching Program since 1952!

» and many other professions in the US and other countries...
(e.g., Scottish Foundation Allocation Scheme)



The Gale—Shapley algorithm in practice
Allocating residents to positions:

> National Resident Matching Program since 1952!
» and many other professions in the US and other countries...
(e.g., Scottish Foundation Allocation Scheme)
Admission systems in education:
» New York high schools since 2004,
Boston high schools since 2005
» Higher education admissions in Spain (1998)
» Higher education admissions in Hungary since 1996

» Secondary school admissions in Hungary since 2000
(Original Gale—Shapley model and algorithm!)



Matching under preferences...

List of hard problems to be discussed:

>

>

>

finding weakly stable matchings as large as possible
finding large matchings as stable as possible

finding a matching that is the most likely to be stable
stable cyclic 3D-matchings, stable exchanges

special features in college admissions: paired applications,
lower and common quotas

resident allocation problem with couples



Finding maximum size weakly stable matchings

Scottish Foundation Allocation Scheme

Hospitals can have ties in their rankings...

Applicants: Adam Bill
1st application: Glasgow Glasgow
2nd application: Edinburgh

the ranking of SG Glasgow Hospital: [Adam, Bill]
the ranking of Royal Edinburgh Hospital: Adam
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Finding maximum size weakly stable matchings

Scottish Foundation Allocation Scheme
Hospitals can have ties in their rankings...

Applicants: Adam Bill
1st application: Glasgow Glasgow
2nd application: Edinburgh

the ranking of SG Glasgow Hospital: [Adam, Bill]
the ranking of Royal Edinburgh Hospital: Adam

Weakly stable matchings can have different sizes.

lwama, Manlove et. al. (1999): Finding a maximum size weakly
stable matching is NP-hard (reduction from EXACT-MM: finding a
maximal matching of given size).



Restrictions, approximability, inapproximability
The problem is NP-hard even if ties occur on one side only, each
preference list is strictly ordered or is a single tie, and
» Manlove et al. (2002): each tie is of length 2
» Irving-Manlove-O'Malley (2009): length of pref. lists <3
» Irving-Manlove-Scott (2008): master lists on both sides

P D.F. Manlove, R.W. Irving. Finding large stable matchings. ACM Journal of Experimental Algorithmics,
volume 14, section 1, article 2, 30 pages, 2009.
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Restrictions, approximability, inapproximability
The problem is NP-hard even if ties occur on one side only, each
preference list is strictly ordered or is a single tie, and
» Manlove et al. (2002): each tie is of length 2
» Irving-Manlove-O'Malley (2009): length of pref. lists <3
» Irving-Manlove-Scott (2008): master lists on both sides

McDermid (2009): MAX SMTTI is approximable within 3.

Yanagisawa (2007): MAX SMTI is not approximable within 33
unless P=NP.

P D.F. Manlove, R.W. Irving. Finding large stable matchings. ACM Journal of Experimental Algorithmics,
volume 14, section 1, article 2, 30 pages, 2009.



Restrictions, approximability, inapproximability
The problem is NP-hard even if ties occur on one side only, each
preference list is strictly ordered or is a single tie, and
» Manlove et al. (2002): each tie is of length 2
» Irving-Manlove-O'Malley (2009): length of pref. lists <3
» Irving-Manlove-Scott (2008): master lists on both sides

McDermid (2009): MAX SMTTI is approximable within 3.

33

Yanagisawa (2007): MAX SMTI is not approximable within 33

unless P=NP.

Manlove-Irving (2009): Experiments with heuristics for random
and real instances.

P D.F. Manlove, R.W. Irving. Finding large stable matchings. ACM Journal of Experimental Algorithmics,
volume 14, section 1, article 2, 30 pages, 2009.



IPs on MAX-SMTI (David Manlove's talk)

University Integer Programming for MAX HRT

of Glasgow

e Model developed by Augustine Kwanashie (2012)

e Solved using CPLEX IP solver

e |P models of HRT instances with tie density of about 85% are the most likely to
be computationally hard

e Figure below shows median computation times for increasing sizes of 10 HRT
instances each with 85% tie density (all preference lists of length 5)

450 31 450 11.82 sec
500 35 500 31.20 sec
550 38 550 22.10sec
600 a2 600 44.15 sec
650 45 650 84.41 sec

e Real world SFAS datasets were also solved using the IP model.

#Residents  #hospitals  Tiedensity MatchingSize  Runtime

2005/2006 | 759 53 92% 758 92.96 sec
2006/2007 | 781 53 76% 746 21.78 sec
2007/2008 | 748 52 81% 709 75.50 sec

P A. Kwanashie and D.F. Manlove. An Integer Programming approach to the Hospitals / Residents problem
with Ties. To appear in Proceedings of OR 2013: the International Conference on Operations Research,
Springer, 2014.



Finding 'almost stable’ maximum size matchings

In many practical applications the first objective is to find a
maximum size or complete matchings, and then they are concern
with stability. e.g. for:

» US Navy
United Nations World Food Programme

v

P> P.A. Robards, Applying two-sided matching processes to the United States Navy enlisted assignment
process, Master’'s Thesis, Naval Postgraduate School, Monterey, California, 2001.

P W. Yang, J.A. Giampapa, K. Sycara, Two-sided matching for the US Navy Detailing Process with market
complication, Technical Report CMU-RI-TR-03-49, Robotics Institute, Carnegie-Mellon University, 2003.

P M. Soldner. Optimization and measurement in humanitarian operations: addressing practical needs. PhD
Dissertation, 2014-07-02, Georgia Institute of Technology.



Finding 'almost stable’ maximum size matchings
Biré-Manlove-Mittal (2010):

» Given a instance of stable marriage problem, finding a
complete matching where the number of blocking pairs is
minimised is NP-hard, and it is not approximable within n'~
for any € > 0 unless P=NP.

€

» For preference lists of length at most 3 on both sides, the
problem is not approximable within % for any ¢,
(0 < € < 5g55) unless P=NP.

» In the agents on one side has preference lists of size at most
two then the problem is solvable in O(n) time, where n is the
number of men in the market.

P P. Biré, D.F. Manlove and S. Mittal, Size versus stability in the Marriage problem. Theoretical Computer
Science 411, pp: 1828-1841, 2010.



Matching under uncertain preferences

Suppose that the preferences of the agents are uncertain.

We may want to find a matching
> that is most likely to be stable

» where the expected number of blocking pairs is minimised

P> P Biré and B. Rastegari. Matching under uncertain preference. Working paper, 2014.
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We may want to find a matching
> that is most likely to be stable
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Matching under uncertain preferences

Suppose that the preferences of the agents are uncertain.

P({AK, BL, CM} is stable)=0.36
P({AL,BM, CK} is stable)=0.4

We may want to find a matching
> that is most likely to be stable

> where the expected number of blocking pairs is minimised

Biré-Rastegari (2014): Finding a matching that is most likely to be
stable is NP-hard, even is uncertainty is resolved with uniform
tie-breakings. (Implied by the inapproximability of MAX SMTI.)

P P.Biré and B. Rastegari. Matching under uncertain preference. Working paper, 2014.
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Knuth (1976):
“Problem 11. Can the stable-matching problem be generalized to
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- a matching is stable is there exists no blocking family

(that is preferred by all of its members to their current families)



3D Stable Matching problem (3DSM)

Knuth (1976):
“Problem 11. Can the stable-matching problem be generalized to
three sets of objects (for example men, women and dogs)?”

Problem description:

- each agent has preference over all pairs from the two other sets.
- a matching is a set of disjoint families

- a matching is stable is there exists no blocking family

(that is preferred by all of its members to their current families)

Alkan (1988): Stable matching may not exist.
Ng and Hirschberg (1991): This problem is NP-complete.
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Ng and Hirschberg (1991): “cyclic preferences”
Men only care about women,

women only care about dogs and

dogs only care about men.
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Conjecture: If [M| = |W| = |D| and the lists are complete, then
stable matching always exists.



Cyclic 3DSM

Ng and Hirschberg (1991): “cyclic preferences”
Men only care about women,

women only care about dogs and

dogs only care about men.

Conjecture: If [M| = |W| = |D| and the lists are complete, then
stable matching always exists.

Boros et al. (2004): This is true for 3 x 3 players.

Eriksson et al. (2006): True for 3 x 4 players as well...



Cyclic 3DSMI: cyclic 3DSM with incomplete lists

Stable matching may not exist!
A counterexample for 3 x 6 players: R6
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Cyclic 3DSMI: cyclic 3DSM with incomplete lists

Stable matching may not exist!
A counterexample for 3 x 6 players: R6

Wl~\ d

’

» At least one inner
player is unmatched

» and is involved in a
blocking cycle.
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Cyclic 3DSMI is NP-complete

Sketch of the proof: COM SMTI = cyclic 3DSMI

{a,-, bk} € E(G) < (m,-, Wk,dk7,') e F
{ai,b}} € E(G) <= (mj,w/,d]) e F
M C E(G) matching <= F C F 3D matching
weakly stable <= stable
M weakly stable and complete <= F stable



Summary of results

Bir6-McDermid (2010): cycLic 3psMI is NP-complete.

P P. Biré and E. McDermid. Three-sided stable matchings with cyclic preferences. Algorithmica 58, pp:
5-18, 2010.



Summary of results

Bir6-McDermid (2010): cycLic 3psMI is NP-complete.

A matching is strongly stable, if there exists no weakly blocking
family (one player is strictly better off and nobody is worse off).

Biré-McDermid (2010): cycLIC 3DsM is NP-complete under
strong stability.

P P. Biré and E. McDermid. Three-sided stable matchings with cyclic preferences. Algorithmica 58, pp:
5-18, 2010.



Summary of results
Bir6-McDermid (2010): cycLic 3psMI is NP-complete.

A matching is strongly stable, if there exists no weakly blocking
family (one player is strictly better off and nobody is worse off).

Biré-McDermid (2010): cycLIC 3DsM is NP-complete under
strong stability.

Summary of results:
complete lists | incomplete lists

(weak) stability 77 NP-complete
strong stability NP-complete | (NP-complete)

P P. Biré and E. McDermid. Three-sided stable matchings with cyclic preferences. Algorithmica 58, pp:
5-18, 2010.



Stable 3-way exchanges problem is NP-complete
stable 3-way exchanges for a tripartite graph = CYCLIC 3DSMI
V=MUWUD (i.e. men, women and dogs)

every arc (i,j) € A is from either
W x Mor Dx W orMxD.
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Stable 3-way exchanges problem is NP-complete

stable 3-way exchanges for a tripartite graph = CYCLIC 3DSMI

V=MUWUD (i.e. men, women and dogs)
every arc (i,j) € A is from either
W x Mor Dx W orMxD.

So the stable 2- and 3-way exchanges problem is also
NP-complete.

This situation can occur in the application: The set of M, W and
D can correspond to patient-donor pairs with blood groups B-A,
A-O and O-B, respectively.
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Complexity of exchange problems: summary

exchanges
pairwise
maximum does exist? yes
size/weight | hard to find? | P

stable does exist?

hard to find?

Edmonds (1967): Polynomial time algorithms for maximum size /
maximum weight matching problem.
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Complexity of exchange problems: summary

exchanges
pairwise
maximum does exist? yes
size/weight | hard to find? | P
stable does exist? may not
hard to find? | P

stable pairwise exchange = stable roommates

Gale and Shapley (1962):

Stable matching may not exist!
Irving (1985): A stable matching can be found
in linear time, if one exists.

Abraham-Biré-Manlove (2006): The problem of minimising the
number of blocking pairs is NP-hard.




Complexity of exchange problems: summary

exchanges
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hard to find?
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Complexity of exchange problems: summary

exchanges
pairwise 2-3-way
maximum | does exist? yes yes
size/weight | hard to find? | P NP-hard

stable does exist? may not

hard to find? P

Abraham et al.; B.-Manlove-Rizzi: The problem of finding a
maximum size/weight 2-3-way exchange is NP-complete.

Biré-Manlove-Rizzi: An O(27 )-time exact algorithm.
Implemented for UK Transplant.



Complexity of exchange problems: summary

exchanges
pairwise 2-3-way
maximum | does exist? yes yes
size/weight | hard to find? | P NP-hard
stable does exist? may not may not
hard to find? | P NPc

Abraham et al.; B.-Manlove-Rizzi: The problem of finding a
maximum size/weight 2-3-way exchange is NP-complete.

Biré-Manlove-Rizzi: An O(27 )-time exact algorithm.
Implemented for UK Transplant.

B.-McDermid (2010): Stable 2-3-way exchange may not exist, and
the related problem is NP-complete, even for tripartite graphs.
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Graph Theory folklore: The problem of finding a maximum
size/weight (unbounded) exchange is P-time solvable.



Complexity of exchange problems: summary

exchanges
pairwise 2-3-way unbounded
maximum does exist? yes yes yes
size/weight | hard to find? | P NPc P
stable does exist? may not may not yes
hard to find? P NPc P

Graph Theory folklore: The problem of finding a maximum
size/weight (unbounded) exchange is P-time solvable.

Scarf-Shapley (1972): Stable exchange always exists. A solution
can be found by the Top Trading Cycle algorithm of Gale.



Hungarian higher education matching scheme

Special features:
1. ties
2. lower quotas
3. common quotas

4. paired applications

Theory: Each of the 2.-4. features makes the problem of finding a
'good’ solution NP-hard, so heuristics are used...

» P Biré, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and
common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

P P.Bir6 and S. Kiselgof. College admissions with stable score-limits. To appear in Central European Journal
of Operations Research, 2015.

P P.Biré, and |. McBride. Integer programming methods for special college admissions problems. In
Proceedings of COCOA 2014: the 8th Annual International Conference on Combinatorial Optimization and
Applications, volume 8881 of LNCS, pages 429-443, Springer, 2014.



Stable matchings and score-limits
Basic admission mechanism (used in many countries):

» colleges set their quotas (over their programmes)

v

applicants submit their strict preferences over the colleges
> colleges rank their applicants according to their scores

» central coordinator announces the score-limits

» induced matching: each student is admitted to the first
college in her list where she achieved the score-limit

A set of score-limits is stable IFF the induced matching is stable



Score-limits in Spain
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Central Applications Office
Tower House, Eglinton Street, Galway, Ireland
Tel. +353-(0)91-509800 Fax +353-(0)91-562344

Welcome to web site of the Central Applications Office (CA0)

The higher education institutions in the Republic of Ireland have delegated
ta CAO the task of pracessing centrally applications ta their first year
undergraduate courses

The participating institutions retain the function of making decisions on
admissions
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Offer of Places

[Basis of Admissio:

Mirimum Entry Requirements

Vo russt meet minimum entry e quisements before Fou
may be considered for entry 0 your chosen courses.
You should consult HET Hterature for information o
miniman eney requirements before applying for any
course. Eligible applicants are those applicants who meet
the minimum entey tequirements

Orier of merit

Eligible applicamts will be placed in an order of mesit list
for each coutse to which they have applied.

For those presenting ltish Leaving Certificate only, this
will nosmally be determined by a points score based on
examinstion tesults (see table on Fage 10).

For each course to which you have applied, your Leaving
Certificate results are checked to see if you meet the
minimum entzy requirements for the course.

Points will be caloulated ony afterit has been determined
that the results on your CAO file mest the minimum entry
sequitements for the causse,

HEIs may also deternine an appropriste points score in the
case ofmatuse applicants, those presenting o

avinations,or s the el of ther testa ot velustion
pmmuus

The greater your points scors, the higher you will appear

i b merlas 2 i Yish £ s crasera Dlaras vl b

is of

dmission (Continuet

Points-Scoring System

The information here and on Fage 20 is a summary which
is given forthe convenience of those whose applications
will be evaluated on the basis of the resuls of the Republic
of lteland Leaving Centificate Examination.

Enuisies about the methods of evaluation of results of
examinations and qualifications other than the Republic of
Izeland Leaving Certificate Exsmination should be
addressed o the Admissions Office of the appropriate
HEL

Examination Rechecks

The State Examinations Commission automatisally
notifies CAO of AL changes in grades

These changes are then notified to the HELs.

Garda Vetting

& Tntermet
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ADMISSION DATA 2011
Level 8
The details given are for general information only and do not form part of any
contract. They are not intended for use in determining whether any individual
applicant is or is not entitled to an offer of a higher education place.
* lEot all on this points score were offered places |
o Matriculated i are i but ission is on
the basis of performance in the music test and interview.
- Applicants are ranked as for other courses but the final
ision depends on per in interview.
# Test / Interview / Portfolio etc.
AQA All qualified applicants
Notes: The final points column shows the lowest points score achieved by an
who received an offer of a place on the course. The mid point is the points
core of the applicant in the middle of a list of offerees placed in points score order.
|Applicants who are offered places might not necessarily accept a place. In most
cases, the points scores shown here are based on performance in the Leaving
Certificate. Applicants offered on mature grounds are not accounted for in this chart,
with the of for Mature Code nursing courses.
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Score-limits in Ireland
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CK209 lgommerce (International) with Irish
CK210 Government
CK211 Commerce (International) with Chinese Studies
CK301 Law
CK302 Law and French

CK304 Law and Irish
CK305 Law (Clinical)
CK306 Law (International)
Computer Science

CK402

Biological and Chemical Sciences

CK404
CK405

Environmental and Earth System Sciences

Genetics

CK406 Chemical
CK407 Mi i

CK408

|Physics and Astrophysics

CK502 Food Marketing and Entrepreneurship
CK504 Nutritional Sci

CK505

Food Science

CK506

International D and Food Policy

CKs01

Process and Chemical Engineering

CK602

Civil and Environmental Engineering

CK603 Energy Engineering
CK605 Electrical and Electronic Engineering

CK606 Architecture - Joint UCC and CIT programme
CK701 Me: & - (Undergraduate Entry)

CK702 Dentistry
CK703 Pharmacy
CK704 Occupational Therapy
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Score-limits in Turkey
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prefers the matching selected by ¢ to the matching selected by .

2In practice ties are rare but possible. Whenever there are ties they are broken by the
Turkish placement office on the basis of additional criteria such as student age
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Score-limits in Hungary
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| Budapesti Miszaki és
Karvalaszto:
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Ewalaszto:

[20100

Egyetem (EME)

Budapesti Miiszal

és Gazdasagtudomanyi Eqyetem
és a anyi Egy

»Budapesti Miiszal jetem i icai Kar
A
B S22k, szakpar KNF Seleiniieack - Felvettek isszesen Ponthatar
Gsszesen Els5 helyen

2010/ mémakinformatikus ANA 1686 805 T2 a7
2010/ mémikinformatikus ANK 215 27 2 384
20106 vilamosmémaki AN 1407 604 478 370
2010/ vilamosmémaki ANK 151 19 18 307
2010/ eaészsglior mémaki WA 64 28 25 &0
20104 eaészségioyi mémoki MINK 15 2 0 ni
20104 gazdaséginformatikus WA 80 s 12 72 =
2010/ gazdaségintormatikus MK 18 3 1 ]
2010/ mémakinformatikus WA 148 a7 60 2
2010/ mémakinformatikus MNK 2 2 1 70
20106 vilamosmémaki WA 145 121 3 2
2010/ vilamosmémaki MK 16 1 0 ni

Jelmagyarizats
2008/K: 2008 februdridban induld képzések felvételi eljdrasa

& Tntermet




Basic IP model for the College Admissions problem

Feasibility constraints:

Z xjj <1 for each a; € A
j:(a,-,cj)EE

Z xjj < uj for each ¢j € C
i:(aj,cj)€E

Stability constraints:

Z Xi | - up+ Z xpj > uj for each (aj,¢j) € E

kiry <rij h:(ap,c;)EE spi>sj

Where xj; is a binary variable representing the application (a;, ¢;),
rij is the rank of the application to ¢; in a;’s list, and
sij is the score of a; at ¢;.



Basic IP for the College Admissions problem

Remark 1: We can get an applicant-optimal (resp. an
applicant-pessimal) stable solution by setting the objective function
of the IP as the minimum (resp. maximum) of the following term:

E I’,:,”X,'j

(ai,q)€E

Remark 2: When we have ties in the priorities (due to equal
scores), then the following modified stability constraints (together
with the feasibility constraints) lead to weakly stable matchings:

Z xi | - uj+ Z xpj > uj for each (aj,¢j) € E

k:rikgrij h:(ah,cJ-)EE,shjzsij



Alternative stability conditions with score-limits

In addition to the feasibility constraints, we define a score-limit
0 < t; <5+ 1 for each college ¢;, and we link these score-limits to
the matching with the following constraints:

ti < (1—xj)-(5+1)+sj for each (aj,¢j) € E
and

si+1<t+ Z xik | - (54 1) for each (aj,¢j) € E

kirg<rj

Implying that each applicant is assigned to the best college
where she achieved the score-limit



Alternative stability conditions with score-limits

In addition to the feasibility constraints, we define a score-limit
0 < t; <5+ 1 for each college ¢;, and we link these score-limits to
the matching with the following constraints:

ti < (1—xj)-(5+1)+sj for each (aj,¢j) € E
and

si+1<t+ Z xik | - (54 1) for each (aj,¢j) € E

kirg<rj

The stability condition can be replaced by either of the followings:
1. each unfilled college has score-limit zero
2. no college can decrease its score-limit without violating its quota
3. adding the following objective function:

min Z t;

j=1l..m



Special feature 1: ties with equal treatment policy.

» Students with the same score at some college

» Either all or none of them are admitted

P P.Biré. Student Admissions in Hungary as Gale and Shapley Envisaged. Technical Report. Dept of
Computing Science, University of Glasgow, TR-2008-291.
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Special feature 1: ties with equal treatment policy.
» Students with the same score at some college
> Either all or none of them are admitted

» Stable score-limits: No score-limit can be
decreased at any college without violating its
quota. (So the last tied group is rejected!)

P P.Biré. Student Admissions in Hungary as Gale and Shapley Envisaged. Technical Report. Dept of
Computing Science, University of Glasgow, TR-2008-291.



Special feature 1: ties with equal treatment policy.
» Students with the same score at some college
> Either all or none of them are admitted

» Stable score-limits: No score-limit can be
decreased at any college without violating its
quota. (So the last tied group is rejected!)

Biré (2007): The generalised student / college-oriented GS
algorithms produce student-optimal / pessimal stable score-limits
efficiently.

P P.Biré. Student Admissions in Hungary as Gale and Shapley Envisaged. Technical Report. Dept of
Computing Science, University of Glasgow, TR-2008-291.



Special feature 1: ties with equal treatment policy.
» Students with the same score at some college
> Either all or none of them are admitted

» Stable score-limits: No score-limit can be
decreased at any college without violating its
quota. (So the last tied group is rejected!)

Biré (2007): The generalised student / college-oriented GS
algorithms produce student-optimal / pessimal stable score-limits
efficiently.

In Hungary the college-oriented version has been replaced by the
applicant-oriented version in 2007.

P P.Biré. Student Admissions in Hungary as Gale and Shapley Envisaged. Technical Report. Dept of
Computing Science, University of Glasgow, TR-2008-291.



Stable

score-limits under different policies

H
I
. C
> higher stable: equal treatment, »
where no quota is violated \
(used in Hungary) )
» breaking ties with lottery H L
Ia lc
» |ower stable: equal treatment,
where the quota may be \
violated with the last tied group \
(used in Chile)
IL
A
P> P.Biréand S. Kiselgof. College admissions with stable score-limits. To appear in Central European Journal

of Operations Research, 2015.

I. Rios, T. Larroucau, G. Parra and R. Cominetti. College Admissions Problem with Ties and Flexible
Quotas. Working paper, 2014.

T. Fleiner and Zs. Janké. Choice Function-Based Two-Sided Markets: Stability, Lattice Property, Path
Independence and Algorithms. Algorithms 7(1), 32-59 (2014)



College Admissions with ties: stable score-limits

In addition to the feasibility constraints, we define a score-limit
0 < tj <5+ 1 for each college ¢;, and the following constraints:

t; < (1—x;) - (5+1)+sj for each (aj,¢) € E

and

S,'J'—l-l

IN

tj + Z Xik | - (5 +1) for each (aj,¢;) € E

k:rikgr,-j

together with a set of constraints implying that no college can
decrease its score-limit without violating its quota.



College Admissions with ties: stable score-limits

In addition to the feasibility constraints, we define a score-limit
0 < tj <5+ 1 for each college ¢;, and the following constraints:

t; < (1—x;) - (5+1)+sj for each (aj,¢) € E

and

si+1<t+ Z Xik | - (5 +1) for each (aj,¢;) € E

k:rikgr,-j

together with a set of constraints implying that no college can
decrease its score-limit without violating its quota.

OR with the following objective function:

min Z t

j=1l..m



Special feature 2: lower quotas

Suppose that college ¢; has lower quota /; and upper quota u;.

A solution is a matching, where each college ¢; has either
- no assignees (“closed college”) or
- at least /; and at most u; assignees (“open college™).



Special feature 2: lower quotas

Suppose that college ¢; has lower quota /; and upper quota u;.

A solution is a matching, where each college ¢; has either
- no assignees (“closed college”) or
- at least /; and at most u; assignees (“open college™).

A matching is stable is there exist no

- "blocking pair”, consisting of an open college and an unsatisfied
applicant,

- "blocking coalition”, consisting of a closed college ¢; and /;
unsatisfied applicants.



Special feature 2: lower quotas

Studies: Saxophone Trumpet
lower and upper quotas 1<...<1 2<... <2
1st applicant: Adam Adam

2nd applicant: Bill Bill

Adam’s list: Trumpet, Saxophone
Bill’s list: Saxophone, Trumpet

» P Bir, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and
common quotas. Theoretical Computer Science 411, 3136-3153 (2010).
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Special feature 2: lower quotas

Studies: Saxophone Trumpet
lower and upper quotas 1<-..<1 2<---<K2
1st applicant: Adam Adam

2nd applicant: Bill Bill

Adam’s list: Trumpet, Saxophone
Bill’s list: Saxophone, Trumpet

B.-Fleiner-Irving-Manlove (2010): Stable matching may not exist,
and the related decision problem is NP-complete.

» P Bir, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and
common quotas. Theoretical Computer Science 411, 3136-3153 (2010).




Special feature 2: lower quotas

Studies: Saxophone Trumpet
lower and upper quotas 1<...<1 2<... <2
1st applicant: Adam Adam

2nd applicant: Bill Bill

Adam’s list: Trumpet, Saxophone
Bill’s list: Saxophone, Trumpet

B.-Fleiner-Irving-Manlove (2010): Stable matching may not exist,
and the related decision problem is NP-complete.

A natural heuristic is used in Hungary.

» P Bir, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and
common quotas. Theoretical Computer Science 411, 3136-3153 (2010).




College Admissions with lower quotas: IP model

oj € {0,1} is the indicator variable showing whether ¢; is open.
New feasibility constraint:

0j-1; < Z xjj < oj-uj foreach ¢; € C
i:(a,-,cj)EE

Pairwise stability for open colleges:

Z Xik | - uj+ Z Xpj > 0j-uj for each (aj, ¢j) € E

kerp<rj h:(ap,c;)EE spi>sj

group-stability for closed colleges:

Z 1-— Z Xik | < (1—=0j)-(li=1)40j-n for each ¢; € C

i:(a,—,cj)EE k:r,-k<r,-j



Some lemmas that can speed up the solver

C1,C2, -y Cm—kr Cm—k+15---5Cm

Lemma 1: The colleges that reach their lower quotas in the stable
solutions of a College Admissions problem with no lower quotas
must be open in every stable solution where lower quotas are
respected.

Lemma 2: Suppose that X is the set of colleges that do not reach
their lower quotas in the stable solutions with no lower quotas.
Given a college ¢; of X, if all the colleges in X but ¢; are closed
and ¢; still does not achieve its lower quota then ¢; must be closed
in any stable solution with lower quotas.

and then we can repeat this filtering process...



Special feature 3: common quotas

Some set of colleges may have a common quota.
No common quota may be exceeded in a feasible matching.



Special feature 3: common quotas

Some set of colleges may have a common quota.
No common quota may be exceeded in a feasible matching.

The stability of a matching:

If an applicant a; is not matched to a college ¢j, then

— either a; is matched to a better college

—or ¢; has filled its quota with better applicants than a;

— or there is a set of colleges C, such that ¢; € C, and C, filled its
quota with better applicants.



Special feature 3: common quotas

Studies: p. CSpvE s. CSgnE . \ s. CS¢p \
C. quotas: CS national quota: <3000
quotas: <50 < 450 < 400

2004: 49 (78p) 474 (113p) 336 (74p)

2005: 51 (90p) 423 (126p) 369 (77p)

2006: 41 (80p) 443 (125p) 321 (78p)

2007: 51 (100p) 478 (120p) 246 (79p)




Special feature 3: common quotas

Studies: p. CSpvE s. CSguE \ \ s. CS¢p \
C. quotas: CS national quota: <3000
quotas: <50 < 450 < 400

2004: 49 (78p) 474 (113p) 336 (74p)

2005: 51 (90p) 423 (126p) 369 (77p)

2006: 41 (80p) 443 (125p) 321 (78p)

2007: 51 (100p) 478 (120p) | ... | 246 (79p)
Studies: p. CSgrE s. CSguE ‘ ce ‘ s. CS¢p ‘ ce
c. quotas: CS national quota: <3000

C. quotas: faculty quota: <500 <400

2008: 8 (365p) 492 (366p) 165 (160p)
20009: 16 (365p) 583 (373p) 183 (224p)
2010: 23 (384p) 572 (370p) 241 (206p)
2011: 24 (372p) 573 (370p) 356 (200p)
2012: 35 (396p) 578 (370p) 40 (240p)

2013: 42 (382p) 519 (370p) 33 (240p)




CA with common quotas: theoretical findings

B.-Fleiner-Irving-Manlove (2010): For nested set systems, stable
matching always exists and it can be obtained by generalised
Gale-Shapley type algorithms. Moreover, the applicant / college
-oriented versions produce the best / worst possible stable
matchings for the applicants.

Otherwise, stable matching may not exist, and the related decision
problem is NP-complete.

P P.Bir, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and
common quotas. Theoretical Computer Science 411, 3136-3153 (2010).



CA with common quotas: theoretical findings

B.-Fleiner-Irving-Manlove (2010): For nested set systems, stable
matching always exists and it can be obtained by generalised
Gale-Shapley type algorithms. Moreover, the applicant / college
-oriented versions produce the best / worst possible stable
matchings for the applicants.

Otherwise, stable matching may not exist, and the related decision
problem is NP-complete.

The set system had been nested in Hungary until 2007, but
became non-nested in 2008 with the possibility that no stable
solution exists, and the related decision problem being NP-hard.
So, heuristics are used...

P P.Bir, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and
common quotas. Theoretical Computer Science 411, 3136-3153 (2010).



IP for CA with common quotas

Let u, be a common upper quota for C, and t, a corresponding
score-limit. Additional feasibility constraint:

Z xjj < up for each C, C C
i:(ai,¢)€E,eC,
Stability:
tp < (1 —x;)-(5+1)+s; for each (aj,¢;) € E and ¢j € G,

and

si+1<t,+ Z xik + ¥ | - (53+1) for each (a;,¢;) € E and ¢ € C,
kir,'kSI’,'j

with Z yP < qj — 1 for each (aj,¢;) € E

p:c;eC,

where y € {0,1} and g; is the number of sets ¢; is involved in.



Special feature 4: paired applications

Students may apply for pair of programmes (these are special
programmes for teachers). In 2010: 5,578 students applied for
teachers' programmes, and 2,091 of them applied for pair of
programmes...

This is like the Hospitals Residents problems with couples!
Ronn’s 1990 theorem implies NP-hardness here as well.



Integer programming techniques used for market design
Many papers on auctions and allocation problems

P> N. Nisan. Bidding and allocation in combinatorial auctions. In Proceedings of ACM-EC 2000.

P E. Budish, A. Othman and T. Sandholm. Finding Approximate Competitive Equilibria: Efficient and Fair
Course Allocation. In Proceedings of AAMAS 2010.

> N Garg, T. Kavitha, A. Kumar, K. Mehlhorn, and J. Mestre. Assigning Papers to Referees. Algorithmica,
58(1):119-136 (2010).

Most kidney exchange applications are based on IP techniques

P AE. Roth, T. Sénmez and M.U. Unver. Efficient Kidney Exchange: Coincidence of Wants in Markets with
Compatibility-Based Preferences. American Economic Review, 97(3), 828-851 (2007).

P D. Abraham, A. Blum and T. Sandholm. Clearing Algorithms for Barter-Exchange Markets: Enabling
Nationwide Kidney Exchanges. In Proceedings of ACM-EC 2007.

P D.F. Manlove and G. O’Malley. Paired and altruistic kidney donation in the UK: Algorithms and
experimentation. In Proceedings of SEA 2012.

Recent papers on IP methods for stable matching problems

P A. Kwanashie and D.F. Manlove. An Integer Programming approach to the Hospitals / Residents problem
with Ties. Proceedings of OR 2013, Springer, pp: 263-269, 2014.

P P.Biré, I. McBride and D.F. Manlove. The Hospitals / Residents problem with Couples: Complexity and
Integer Programming models. Proceedings of SEA 2014, vol. 8504 of LNCS, pp: 10-21, 2014.



Integer programming for solving the Hungarian case

What we have done in this paper:

» We formulated IPs to solve the problems for each of the four
special features

» We investigated some combination of these special features

> We established new lemmas to speed up the solutions

Future plans:
» To integrate the IPs into a single one that can be used to
solve the real application
> Implement and test the IPs on a real data from 2008, Hungary
» Other applications? E.g.

- resident allocation with regional caps
- controlled school choice

P P.Birg, and |. McBride. Integer programming methods for special college admissions problems. In
Proceedings of COCOA 2014: the 8th Annual International Conference on Combinatorial Optimization and
Applications, volume 8881 of LNCS, pages 429-443, Springer, 2014



Computational complexity in mechanism design

Why is this aspect interesting?

> because the computational complexity of the underlying
matching problems is crucial in the solvability of practical
applications

» sometimes we can avoid the computationally hard problems
when designing the market

» if we cannot avoid the hard problems,
algorithm/optimisation theory still provides many tools to
analyse and solve them...



Further references

New book on the algorithmic aspects:
David F. Manlove: Algorithmics of matching under preferences.
World Scientific, 2013.

Summer school talks by Manlove and others:
http://econ.core.hu/english/res/MatchingSchool.html

COST Action on Computational Social Choice:
http://www.illc.uva.nl/COST-IC1205/

The Matching in Practice network website:
http://www.matching-in-practice.eu/

My research website:
http://www.cs.bme.hu/~pbiro/research.html



