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Institute of Economics

Hungarian Academy of Sciences
peter.biro@krtk.mta.hu

Summer school on matchings
Moscow

5-8 October 2015



Matching without preferences...

Outline of the first part:

I introduction to matching theory

I basics of computational complexity

I chess pairings (FIDE rules)

I kidney exchange programs (UK experience)

I matching with couples



A tale on matchings...
Once upon a time, King Arthur wanted to organise a party. He
invited four men and four women. He knew which of his invitees
had known each other. He wanted to prepare a dance schedule
where no man and woman are matched to each other if they have
never met before. He asked Merlin the wizard to help...
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Arthur: Could you find me such a pairing?
Merlin:

No, unfortunately not.
Arthur: Why? (tell me a good reason or you will be executed...)
Merlin: Since without B, C and K we have no more possible pair,
so we cannot create more than three pairs.
Cannot he just try every possible combination?This would be 4 ∗ 3 ∗ 2 ∗ 1 = 4! = 24 possibilities.
But what if next time Arthur invites 100 men and 100 women?
(n! is more than the number of atoms in the universe for n ≥ 61)
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The Kőnig theorem (1931)

Def: For a graph G (N,E ), a set of nodes X ⊂ N is a vertex-cover
if every edge in E is incident to some node in X .

For every bipartite graph,
minimum size of a vertex-cover = maximum size of a matching
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Proof of Kőnig’s theorem

We keep looking for alternating paths from unmatched women to
unmatched men...

I if we find one then we can enlarge the matching

I if there is no augmenting path then we can find a vertex-cover
of minimum size
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Proof of Kőnig’s theorem

We keep looking for alternating paths from unmatched women to
unmatched men...

I if we find one then we can enlarge the matching

I if there is no augmenting path then we can find a vertex-cover
of minimum size



Weighted and nonbipartite graphs: still tractable

Egerváry (1931): For every weighted bipartite graph,
minimum value of a cover = maximum weight of a matching
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Kuhn (1955): A maximum weight matching can be found
efficiently (in strongly polynomial time) by the Hungarian method.

Edmonds (1967): For nonbipartite graphs, finding a maximum size
or maximum weight matching is solvable efficiently.
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Example for brute force matching: chess pairing

Dutch systemLim system
Burstein system
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the tale continues...

King Arthur decided to make the dance party more colorful, so he
asked Merlin to pick a different color for each dancing couple such
that the color is matching with the flags of the corresponding
noble families. Suppose that we have as many available colors as
dancing couples. Can Merlin find a suitable solution, or a good
excuse for not being able to find a suitable solution?

Now Merlin faces the 3D-matching problem:
Given three sets of items, A = {a1, . . . , an}, B = {b1, . . . , bn},
C = {c1, . . . , cn} and a set of possible triples:
F = {. . . , (ai , bj , ck), . . . }. The question is whether there exists a
set of disjoint triples, F ⊂ F , s.t. all items are covered.

Unfortunately this problem was shown to be NP-hard by Karp
(1972), so it is highly unlikely that Merlin would be able to find a
suitable solution, even if there exists one quickly, or give a good
excuse for not finding a suitable solution...
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NP-hard problems, complexity theory

For a decision problem Q, we say that Q∈P if there exists an
algorithm, implementable with a deterministic Turing machine,
which can decide in polynomial time in the input size for any
instance I ∈ Q whether I is a YES-instance.

Q∈NP if there exists an algorithm, implementable with a
non-deterministic Turing machine, which can decide in
polynomial time in the input size for any instance I ∈ Q whether I
is a YES-instance.

Alternative def: Q∈NP if for any instance I∈Q there is a proof T ,
polynomial size in I , that shows that I is a YES-instance and this
be verified in polynomial time.

Q∈Co-NP: if there exists an algorithm, implementable with a
non-deterministic Turing machine, which can decide in
polynomial time in the input size for any instance I ∈ Q whether I
is a NO-instance.



NP-hard problems, complexity theory

Polynomial-time reduction: problem A can be reduced to problem
B if for any instance I of A we can create another instance I ′ of B,
where

I the size of I ′ is polynomial in the size of I
I I is a YES-instance ⇐⇒ I ′ is a YES-instance.

A problem is NP-hard, if ANY problem in NP can be reduced to it.

NP-complete= NP ∩ NP-hard

Cook (1971): SAT is the first problem proved to be NP-complete.
Since then there are thousands of relevant problems showed to be
NP-complete.

NP
SAT 3-SAT

3DM PARTITION

VC
HC

CLIQUE



NP-hard problems, complexity theory

Most likely picture:

P

Co-NPNPNP-hard

NP-
complete

Although we still do not know whether P=NP?
or whether P=NP∩Co-NP?



NP-hard problems, complexity theory
So, if a problem is NP-hard then there exist no polynomial time
algorithm to solve it, unless P=NP. (If we could solve an NP-hard
problem in polynomial time then we could solve every problem in
NP in polynomial time. This is very unlikely...)

I M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the theory of NP-completeness.
Macmillan Higher Education, 1979.
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NP-hard problems, complexity theory

If a problem turns out to be NP-hard, then we can still

I specify the settings when the problem is still tractable
(bipartite graphs, bounded length lists, etc.)

I give exact algorithm (exponential time, but terminating for
small/sparse instances)

I give polynomial time algorithms with good approximation
guarantees

I engineering (experimental) approach: construct heuristics
with good performance on realistic instances

I use integer programming or other robust optimisation
techniques



Kidney exchange problem

P

D D’

P’

Given two incompatible patient-donor
pairs (blood-type or tissue-type in-
compatibility). If they are compati-
ble across, then a pairwise exchange
is possible between them.

We consider these pairs as single
vertices of a directed graph,
D(V ,A).

(i , j) ∈ A iff the donor i is com-
patible with the patient j .

The weight of an arc is the
score of the corresponding dona-
tion (PRA, HLA-mismatch, age).
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The basic optimisation problems:

A set of exchanges is a permutation of V , s.t. i 6= π(i) implies
(i , π(i)) ∈ A(D).

We say that a set of exchanges is optimal, if the sum of the
weights is maximal. (i.e., when the total score is maximal.)

We study 3 cases:

I Only 2-cycles are possible.

I Unrestricted length cycles.

I 2- and 3-cycles are allowed.
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2-way exchanges =⇒ matching problem

We transform the directed graph D to an undirected graph G .
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A set of 2-way exchanges in D corresponds to a matching in G
with the same weight, since w({i , j})= w(i , j) + w(j , i) for every
edge {i , j} of G .

The problem of finding a maximum weight matching in G can be
solved by Edmonds’ algorithm in polynomial time.



Optimal pairwise exchanges in two examples
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Unrestricted exchanges =⇒ matching problem

We transform the directed graph D to an bipartite graph G .
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With an edge of weight 0, between each patient and his/her donor.

A set of exchanges in D corresponds to a complete matching in
G with the same weight.

The problem of finding a maximum weight complete matching in
G can be solved in polynomial time by the Hungarian method.



The transformation in an example
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From a directed graph D,

maximum weight unrestricted exchanges

we create a bipartite graph G ,

maximum weight complete matching
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Optimal unrestricted exchanges in two examples

1 2 31

4 5

10

6 7

8 9

Maximum cardinality unrestricted exchanges

Maximum weight unrestricted exchanges



Optimal unrestricted exchanges in two examples
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Test results for large instances:

Pairwise exchange Unrestricted exchange

nodes size weight time size weight longest c. time

100 46 971 0.3s 52 1458 (52) 0.3s

200 86 2662 0.9s 95 3215 (43) 1.0s

300 150 4151 2.0s 169 5459 (136) 2.3s

400 194 6760 3.4s 208 7662 (124) 4.0s

500 256 8161 5.4s 268 9056 (169) 7.1s

600 322 10404 7.9s 343 11606 (213) 9.5s

700 368 12495 10.4s 374 13520 (152) 14.3s

800 418 14447 14.0s 450 15370 (323) 20.0s

900 458 15543 17.2s 487 16703 (230) 24.2s

1000 516 17508 21.3s 530 18552 (191) 32.5s



2- and 3-way exchanges: an NP-hard problem

The problem of finding a maximum size / weight set of 2- and
3-way exchanges is NP-hard (reduction from 3dm):

for each triple (ai , bj , ck) ∈ F we create the following gadget:

(ai , bj , ck) ∈ F ⇐⇒
(ai , bj , ck) /∈ F ⇐⇒

j

i
c

b

a
k

∃ complete 3D matching ⇐⇒ ∃ complete set of 3-way exchanges
————————————————

I D. J. Abraham, A. Blum and T. Sandholm, Clearing algorithms for barter-exchange markets: enabling
nationwide kidney exchanges, In Proc. EC’07: the Eighth ACM Conference on Electronic Commerce,
ACM, pp:295–304, 2007.
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2- and 3-way exchanges: approximation algorithms

The greedy algorithm provides a 3-approximation for the maximum
weight problem.

Biró-Manlove-Rizzi (2009): This can be improved to a
(2 + ε)-approximation algorithm for any ε > 0.

————————————————
I P. Biró, D.F. Manlove and R. Rizzi. Maximum weight cycle packing in directed graphs, with application to

kidney exchange programs. Discrete Mathematics, Algorithms and Applications 1(4), pp:499-517, 2009.



Exact algorithm: reducing the running time 1.
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If we knew the set of 3-cycles of an optimal set of 2- and 3-way
exchanges,
then we could find an optimal solution (by simply finding a
maximum weight matching in the rest of the digraph).



Reducing the running time 2.
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For an arc-set Y , maximum cardinality 2- and 3-way exchanges
We create an undirected graph GY , maximum weight matching

But it is enough to know only one arc from each 3-cycle, since we
can find an optimal 2- and 3-way exchange after a transformation!
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Let T be an arc set in D such that after removing T from D no
3-cycle remains.

T intersects every 3-cycle of D, so T intersects also the 3-cycles of
an optimal solution, thus Y can be chosen as a subset of T .

Here, T has 6 disjoint subsets, that we shall probe, so we can find
an optimal set of 2- and 3-way exchanges by transforming the
graph and running Edmonds’ algorithm 6 times.
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We shall choose a set T for which the number of independent
subsets of T is minimal.

Here, T has the following 5 independent subsets:
Y1, Y2, Y3, Y4, Y5 (the emptyset).

Clearly |T | ≤ m/2, so the number of subsets that we need to
check with Edmonds’ algorithm is at most 2|T | ≤ 2

m
2 .
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Test results for 2- and 3-way exchanges

nodes arcs 2-cycle 3-cycle |T | subsets of T r. time

10 22 2 0 0 0 0.0s

15 45 7 13 3 6 0.1s

20 101 7 5 2 3 0.0s

25 125 16 37 5 6 0.1s

30 239 16 36 8 40 0.4s

35 339 32 111 16 656 7.2s

40 354 25 145 17 296 3.8s

45 541 48 185 22 1792 28.8s

50 502 46 257 21 336 6.2s

55 609 59 151 19 992 18.9s

60 696 51 164 25 5172 121.4s

65 993 89 620 52 1841364 55387.1s

70 1164 133 778 55 555624 17665.4s
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Comparing the settings: test results

Pairwise 2- and 3-way Unrestricted

nodes size weight size weight 3-c. size weight longest c.

10 2 24 2 24 0 2 24 (2)

15 6 140 6 170 2 6 170 (6)

20 6 230 7 282 1 7 282 (3)

25 6 162 6 162 0 6 162 (4)

30 12 656 15 956 3 15 956 (8)

35 16 562 18 820 2 19 866 (7)

40 12 574 15 960 3 16 1006 (7)

45 20 1092 23 1298 3 23 1298 (19)

50 14 466 17 762 3 20 966 (15)

55 20 1098 23 1334 3 25 1524 (11)

60 18 1216 23 1576 5 23 1722 (21)

65 26 994 29 1402 5 31 1510 (28)

70 26 1174 31 1470 7 31 1470 (31)



————————————————
I P. Biró, D.F. Manlove and R. Rizzi. Maximum weight cycle packing in directed graphs, with application to

kidney exchange programs. Discrete Mathematics, Algorithms and Applications 1(4), pp:499-517, 2009.







Alternative method: integer linear programming

We create an integer program as follows:

I we list all the possible exchanges: C1,C2, . . . ,Cm

I we use binary variables x1, x2, . . . , xm
where xi = 1 iff Ci is part of optimal solution x

I we build matrix A of dimensions n ×m where n = |V | and
Ai ,j = 1 iff vi is incident to Cj

I let b be n × 1 vector of 1s

I let c be 1×m vector of values according to what we want to
optimise, e.g. cj could be weight of Cj

Then solve max cx s.t. Ax ≤ b
————————————————

I D. J. Abraham, A. Blum and T. Sandholm, Clearing algorithms for barter-exchange markets: enabling
nationwide kidney exchanges, In Proc. EC’07: the Eighth ACM Conference on Electronic Commerce,
ACM, pp:295–304, 2007.



Alternative method: integer linear programming

max cx
s.t. Ax ≤ b
and xi ∈ {0, 1}

where
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A =


1 1 0 0 1 1 0
1 0 1 0 1 0 1
0 1 0 0 0 1 0
0 0 0 1 1 1 1
0 0 1 1 0 0 1

 , b =
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and

cs =
[

2 2 2 2 3 3 3
]

if maximum size

max csx = 5
cw =

[
5 2 2 6 5 6 4

]
if maximum weight

max cwx = 11

co = cs ·M + cw if max weight max size

max cox = 5M + 8
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Changing the optimisation criteria in the UK program
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2-way exchanges. (July 2009: We could replace eight from the ten
2-way exchanges by 3-way exchanges with embedded 2-way
exchanges.)

————————————————I D.F. Manlove and G. O’Malley. Paired and altruistic kidney donation in the UK: Algorithms and
experimentation. In Proceedings of SEA 2012, vol. 7276 of LNCS, pp 271-282.
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Matching couples with 0-1 preferences

We have 2n people, containing some couples, and n double rooms.

I each couple has to be accommodated
in a double room

I two single persons can be placed in
one double room

I every single person and couple has a
list of suitable rooms

Is it possible to accommodate everybody?
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Motivation: matching couples, scheduling jobs
I allocating singles and couples

by maximising the size

I multiprocessor scheduling: allocating
jobs (of length 1 or 2) to processors
by minimising the makespan

I bin packing: allocating
items of size 0.5 or 1 to bins (of size 1)
by minimising the number of bins used

————————————————
I P.A. Robards. Applying two-sided matching processes to the United States Navy enlisted assignment

process, Master’s Thesis, Naval Postgraduate School, Monterey, California, 2001.

I W. Yang, J.A. Giampapa, K. Sycara, Two-sided matching for the US Navy Detailing Process with market
complication, Technical Report CMU-RI-TR-03-49, Robotics Institute, Carnegie-Mellon University, 2003.

I C.A. Glass and H. Kellerer. Parallel machine scheduling with job assignment restrictions, Naval Research
Logistics. A Journal Dedicated to Advances in Operations and Logistics Research 54(3), pp:250–257, 2007.

I P. Biró and E. McDermid. Matching with sizes (or scheduling with processing set restrictions). Discrete
Applied Mathematics 164(1), pp:61–67, 2014.
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The NP-hardness proof

Glass-Kellerer (2007), Biró-McDermid (2014):
We reduce from 3dm:
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∃ complete 3D-matching ⇐⇒ ∃ complete matching with couples

=⇒ Suppose that we have a complete matching F ...
⇐= similarly...
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Matching under preferences



Stable marriage problem by Gale and Shapley [1962]

“College admission and the stability of marriage”
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E F G

“Each person ranks those of
the opposite sex in accordance
with his or her preferences for a
marriage partner.”

A set of marriages is stable, if there
is no “blocking pair”: a man and a
woman who are not married to each
other but prefer each other to their
actual mates.

Gale-Shapley 1962: The deferred-acceptance algorithm finds a
stable matching.

This matching is man-optimal.
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SM + quotas: College Admissions (CA)

The solution by the Gale-Shapley mechanism is

I fair: an application is rejected by a college only if its quota is
filled with better applicants (i.e., the matching is stable).

I student-optimal: no student could be admitted to a better
college in any other fair solution.

The automated procedure based on the Gale-Shapley algorithm is

I fast: the running time is linear in the number of applications
(10 seconds in Hungary, would be ∼1 minutes in the UK and
∼15 minutes in China).

I strategy-proof: no student can be better off by cheating.
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The Gale–Shapley algorithm in practice

Allocating residents to positions:

I National Resident Matching Program since 1952!

I and many other professions in the US and other countries...
(e.g., Scottish Foundation Allocation Scheme)

Admission systems in education:

I New York high schools since 2004,
Boston high schools since 2005

I Higher education admissions in Spain (1998)

I Higher education admissions in Hungary since 1996

I Secondary school admissions in Hungary since 2000
(Original Gale–Shapley model and algorithm!)
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Matching under preferences...

List of hard problems to be discussed:

I finding weakly stable matchings as large as possible

I finding large matchings as stable as possible

I finding a matching that is the most likely to be stable

I stable cyclic 3D-matchings, stable exchanges

I special features in college admissions: paired applications,
lower and common quotas

I resident allocation problem with couples



Finding maximum size weakly stable matchings

Scottish Foundation Allocation Scheme
Hospitals can have ties in their rankings...

Applicants: Adam Bill
1st application: Glasgow Glasgow
2nd application: Edinburgh

the ranking of SG Glasgow Hospital: [Adam, Bill]
the ranking of Royal Edinburgh Hospital: Adam

Weakly stable matchings can have different sizes.

Iwama, Manlove et. al. (1999): Finding a maximum size weakly
stable matching is NP-hard (reduction from exact-mm: finding a
maximal matching of given size).
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Restrictions, approximability, inapproximability

The problem is NP-hard even if ties occur on one side only, each
preference list is strictly ordered or is a single tie, and

I Manlove et al. (2002): each tie is of length 2

I Irving-Manlove-O’Malley (2009): length of pref. lists ≤ 3

I Irving-Manlove-Scott (2008): master lists on both sides

McDermid (2009): max smti is approximable within 3
2 .

Yanagisawa (2007): max smti is not approximable within 33
29

unless P=NP.

Manlove-Irving (2009): Experiments with heuristics for random
and real instances.

————————————————
I D.F. Manlove, R.W. Irving. Finding large stable matchings. ACM Journal of Experimental Algorithmics,

volume 14, section 1, article 2, 30 pages, 2009.
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IPs on MAX-SMTI (David Manlove’s talk)

————————————————
I A. Kwanashie and D.F. Manlove. An Integer Programming approach to the Hospitals / Residents problem

with Ties. To appear in Proceedings of OR 2013: the International Conference on Operations Research,
Springer, 2014.



Finding ’almost stable’ maximum size matchings

In many practical applications the first objective is to find a
maximum size or complete matchings, and then they are concern
with stability. e.g. for:

I US Navy

I United Nations World Food Programme

————————————————
I P.A. Robards, Applying two-sided matching processes to the United States Navy enlisted assignment

process, Master’s Thesis, Naval Postgraduate School, Monterey, California, 2001.

I W. Yang, J.A. Giampapa, K. Sycara, Two-sided matching for the US Navy Detailing Process with market
complication, Technical Report CMU-RI-TR-03-49, Robotics Institute, Carnegie-Mellon University, 2003.

I M. Soldner. Optimization and measurement in humanitarian operations: addressing practical needs. PhD
Dissertation, 2014-07-02, Georgia Institute of Technology.



Finding ’almost stable’ maximum size matchings

Biró-Manlove-Mittal (2010):

I Given a instance of stable marriage problem, finding a
complete matching where the number of blocking pairs is
minimised is NP-hard, and it is not approximable within n1−ε

for any ε > 0 unless P=NP.

I For preference lists of length at most 3 on both sides, the
problem is not approximable within 3557

3556+2032ε for any ε,

(0 < ε < 1
2032 ) unless P=NP.

I In the agents on one side has preference lists of size at most
two then the problem is solvable in O(n) time, where n is the
number of men in the market.

————————————————
I P. Biró, D.F. Manlove and S. Mittal, Size versus stability in the Marriage problem. Theoretical Computer

Science 411, pp: 1828-1841, 2010.



Matching under uncertain preferences

Suppose that the preferences of the agents are uncertain.

A B C

K L M

0.6
0.4 0.6

0.4

P({AK ,BL,CM} is stable)=0.36
P({AL,BM,CK} is stable)=0.4

We may want to find a matching

I that is most likely to be stable

I where the expected number of blocking pairs is minimised

Biró-Rastegari (2014): Finding a matching that is most likely to be
stable is NP-hard, even is uncertainty is resolved with uniform
tie-breakings. (Implied by the inapproximability of max smti.)

————————————————
I P. Biró and B. Rastegari. Matching under uncertain preference. Working paper, 2014.
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Biró-Rastegari (2014): Finding a matching that is most likely to be
stable is NP-hard, even is uncertainty is resolved with uniform
tie-breakings. (Implied by the inapproximability of max smti.)

————————————————
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Biró-Rastegari (2014): Finding a matching that is most likely to be
stable is NP-hard, even is uncertainty is resolved with uniform
tie-breakings. (Implied by the inapproximability of max smti.)

————————————————
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3D Stable Matching problem (3DSM)

Knuth (1976):
“Problem 11. Can the stable-matching problem be generalized to
three sets of objects (for example men, women and dogs)?”

Problem description:
- each agent has preference over all pairs from the two other sets.
- a matching is a set of disjoint families
- a matching is stable is there exists no blocking family
(that is preferred by all of its members to their current families)

Alkan (1988): Stable matching may not exist.

Ng and Hirschberg (1991): This problem is NP-complete.
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Cyclic 3DSM

Ng and Hirschberg (1991): “cyclic preferences”
Men only care about women,
women only care about dogs and
dogs only care about men.

Conjecture: If |M| = |W | = |D| and the lists are complete, then
stable matching always exists.

Boros et al. (2004): This is true for 3× 3 players.

Eriksson et al. (2006): True for 3× 4 players as well...
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Cyclic 3DSMI: cyclic 3DSM with incomplete lists

Stable matching may not exist!
A counterexample for 3× 6 players: R6
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Cyclic 3DSMI is NP-complete

Sketch of the proof: com smti =⇒ cyclic 3dsmi

{ai , bk} ∈ E (G ) ⇐⇒ (mi ,wk , dk,i ) ∈ F
{ai , b′l} ∈ E (G ) ⇐⇒ (mi ,w

′
l , d
′
l ) ∈ F

M ⊆ E (G ) matching ⇐⇒ F ⊆ F 3D matching
weakly stable ⇐⇒ stable

M weakly stable and complete ⇐⇒ F stable
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Summary of results

Biró-McDermid (2010): cyclic 3dsmi is NP-complete.

A matching is strongly stable, if there exists no weakly blocking
family (one player is strictly better off and nobody is worse off).

Biró-McDermid (2010): cyclic 3dsm is NP-complete under
strong stability.

Summary of results:

complete lists incomplete lists

(weak) stability

??? NP-complete

strong stability

NP-complete (NP-complete)

————————————————
I P. Biró and E. McDermid. Three-sided stable matchings with cyclic preferences. Algorithmica 58, pp:

5–18, 2010.
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Stable 3-way exchanges problem is NP-complete

stable 3-way exchanges for a tripartite graph = cyclic 3dsmi

M

W C

V = M ∪W ∪ D (i.e. men, women and dogs)
every arc (i , j) ∈ A is from either
W ×M or D ×W or M × D.

So the stable 2- and 3-way exchanges problem is also
NP-complete.

This situation can occur in the application: The set of M, W and
D can correspond to patient-donor pairs with blood groups B-A,
A-O and O-B, respectively.
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Complexity of exchange problems: summary

exchanges
pairwise

2-3-way

maximum does exist? yes

yes

size/weight hard to find?

P NP-hard

stable does exist?

may not may not

hard to find?

P NPc

Edmonds (1967): Polynomial time algorithms for maximum size /
maximum weight matching problem.

stable pairwise exchange = stable roommates
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Gale and Shapley (1962):
Stable matching may not exist!

Irving (1985): A stable matching can be found
in linear time, if one exists.

Abraham-Biró-Manlove (2006): The problem of minimising the
number of blocking pairs is NP-hard.

Abraham et al.; B.-Manlove-Rizzi: The problem of finding a
maximum size/weight 2-3-way exchange is NP-complete.

Biró-Manlove-Rizzi: An O(2
m
2 )-time exact algorithm.

Implemented for UK Transplant.

B.-McDermid (2010): Stable 2-3-way exchange may not exist, and
the related problem is NP-complete, even for tripartite graphs.
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Complexity of exchange problems: summary

exchanges
pairwise 2-3-way unbounded

maximum does exist? yes yes yes
size/weight hard to find? P NPc

P

stable does exist? may not may not

yes

hard to find? P NPc

P

Graph Theory folklore: The problem of finding a maximum
size/weight (unbounded) exchange is P-time solvable.

Scarf-Shapley (1972): Stable exchange always exists. A solution
can be found by the Top Trading Cycle algorithm of Gale.
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Hungarian higher education matching scheme

Special features:

1. ties

2. lower quotas

3. common quotas

4. paired applications

Theory: Each of the 2.-4. features makes the problem of finding a
’good’ solution NP-hard, so heuristics are used...

————————————————
I P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and

common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

I P. Biró and S. Kiselgof. College admissions with stable score-limits. To appear in Central European Journal
of Operations Research, 2015.

I P. Biró, and I. McBride. Integer programming methods for special college admissions problems. In
Proceedings of COCOA 2014: the 8th Annual International Conference on Combinatorial Optimization and
Applications, volume 8881 of LNCS, pages 429-443, Springer, 2014.



Stable matchings and score-limits

Basic admission mechanism (used in many countries):

I colleges set their quotas (over their programmes)

I applicants submit their strict preferences over the colleges

I colleges rank their applicants according to their scores

I central coordinator announces the score-limits

I induced matching: each student is admitted to the first
college in her list where she achieved the score-limit

A set of score-limits is stable IFF the induced matching is stable



Score-limits in Spain



Score-limits in Spain



Score-limits in Ireland



Score-limits in Ireland



Score-limits in Ireland



Score-limits in Ireland



Score-limits in Turkey

————————————————I M. Balinski and T. Sönmez. A Tale of Two Mechanisms: Student Placement. Journal of Economic Theory
84, 73-94 (1999)



Score-limits in Hungary



Basic IP model for the College Admissions problem

Feasibility constraints:∑
j :(ai ,cj )∈E

xij ≤ 1 for each ai ∈ A

∑
i :(ai ,cj )∈E

xij ≤ uj for each cj ∈ C

Stability constraints: ∑
k:rik≤rij

xik

 · uj +
∑

h:(ah,cj )∈E ,shj>sij

xhj ≥ uj for each (ai , cj) ∈ E

Where xij is a binary variable representing the application (ai , cj),
rij is the rank of the application to cj in ai ’s list, and
sij is the score of ai at cj .



Basic IP for the College Admissions problem

Remark 1: We can get an applicant-optimal (resp. an
applicant-pessimal) stable solution by setting the objective function
of the IP as the minimum (resp. maximum) of the following term:∑

(ai ,cj )∈E

rij · xij

Remark 2: When we have ties in the priorities (due to equal
scores), then the following modified stability constraints (together
with the feasibility constraints) lead to weakly stable matchings: ∑

k:rik≤rij

xik

 · uj +
∑

h:(ah,cj )∈E ,shj≥sij

xhj ≥ uj for each (ai , cj) ∈ E



Alternative stability conditions with score-limits

In addition to the feasibility constraints, we define a score-limit
0 ≤ tj ≤ s̄ + 1 for each college cj , and we link these score-limits to
the matching with the following constraints:

tj ≤ (1− xij) · (s̄ + 1) + sij for each (ai , cj) ∈ E

and

sij + 1 ≤ tj +

 ∑
k:rik≤rij

xik

 · (s̄ + 1) for each (ai , cj) ∈ E

Implying that each applicant is assigned to the best college
where she achieved the score-limit

The stability condition can be replaced by either of the followings:
1. each unfilled college has score-limit zero
2. no college can decrease its score-limit without violating its quota
3. adding the following objective function:

min
∑

j=1...m

tj
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Special feature 1: ties with equal treatment policy.

1 1 2

K

A B

L

I Students with the same score at some college

I Either all or none of them are admitted

I Stable score-limits: No score-limit can be
decreased at any college without violating its
quota. (So the last tied group is rejected!)

Biró (2007): The generalised student / college-oriented GS
algorithms produce student-optimal / pessimal stable score-limits
efficiently.

In Hungary the college-oriented version has been replaced by the
applicant-oriented version in 2007.

————————————————
I P. Biró. Student Admissions in Hungary as Gale and Shapley Envisaged. Technical Report. Dept of

Computing Science, University of Glasgow, TR-2008-291.
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Stable score-limits under different policies

I higher stable: equal treatment,
where no quota is violated
(used in Hungary)

I breaking ties with lottery

I lower stable: equal treatment,
where the quota may be
violated with the last tied group
(used in Chile)

lHA

lHC

lLC

lLA

————————————————
I P. Biró and S. Kiselgof. College admissions with stable score-limits. To appear in Central European Journal

of Operations Research, 2015.

I I. Rios, T. Larroucau, G. Parra and R. Cominetti. College Admissions Problem with Ties and Flexible
Quotas. Working paper, 2014.

I T. Fleiner and Zs. Jankó. Choice Function-Based Two-Sided Markets: Stability, Lattice Property, Path
Independence and Algorithms. Algorithms 7(1), 32-59 (2014)



College Admissions with ties: stable score-limits

In addition to the feasibility constraints, we define a score-limit
0 ≤ tj ≤ s̄ + 1 for each college cj , and the following constraints:

tj ≤ (1− xij) · (s̄ + 1) + sij for each (ai , cj) ∈ E

and

sij + 1 ≤ tj +

 ∑
k:rik≤rij

xik

 · (s̄ + 1) for each (ai , cj) ∈ E

together with a set of constraints implying that no college can
decrease its score-limit without violating its quota.

OR with the following objective function:

min
∑

j=1...m

tj
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Special feature 2: lower quotas

Suppose that college cj has lower quota lj and upper quota uj .

A solution is a matching, where each college cj has either
- no assignees (“closed college”) or
- at least lj and at most uj assignees (“open college”).

A matching is stable is there exist no
- “blocking pair”, consisting of an open college and an unsatisfied
applicant,
- “blocking coalition”, consisting of a closed college cj and lj
unsatisfied applicants.
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Special feature 2: lower quotas

Studies: Saxophone Trumpet
lower and upper quotas 1 ≤ · · · ≤ 1 2 ≤ · · · ≤ 2

1st applicant: Adam Adam
2nd applicant: Bill Bill

Adam’s list: Trumpet, Saxophone
Bill’s list: Saxophone, Trumpet

B.-Fleiner-Irving-Manlove (2010): Stable matching may not exist,
and the related decision problem is NP-complete.

A natural heuristic is used in Hungary.

————————————————I P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and
common quotas. Theoretical Computer Science 411, 3136-3153 (2010).
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————————————————I P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and
common quotas. Theoretical Computer Science 411, 3136-3153 (2010).



Special feature 2: lower quotas

Studies: Saxophone Trumpet
lower and upper quotas 1 ≤ · · · ≤ 1 2 ≤ · · · ≤ 2

1st applicant: Adam Adam
2nd applicant: Bill Bill

Adam’s list: Trumpet, Saxophone
Bill’s list: Saxophone, Trumpet

B.-Fleiner-Irving-Manlove (2010): Stable matching may not exist,
and the related decision problem is NP-complete.

A natural heuristic is used in Hungary.
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College Admissions with lower quotas: IP model

oj ∈ {0, 1} is the indicator variable showing whether cj is open.
New feasibility constraint:

oj · lj ≤
∑

i :(ai ,cj )∈E

xij ≤ oj · uj for each cj ∈ C

Pairwise stability for open colleges: ∑
k:rik≤rij

xik

 ·uj +
∑

h:(ah,cj )∈E ,shj>sij

xhj ≥ oj ·uj for each (ai , cj) ∈ E

group-stability for closed colleges:

∑
i :(ai ,cj )∈E

1−
∑

k:rik<rij

xik

 ≤ (1−oj) ·(lj−1)+oj ·n for each cj ∈ C



Some lemmas that can speed up the solver

c1, c2, . . . , cm−k , cm−k+1, . . . , cm

Lemma 1: The colleges that reach their lower quotas in the stable
solutions of a College Admissions problem with no lower quotas
must be open in every stable solution where lower quotas are
respected.

Lemma 2: Suppose that X is the set of colleges that do not reach
their lower quotas in the stable solutions with no lower quotas.
Given a college cj of X , if all the colleges in X but cj are closed
and cj still does not achieve its lower quota then cj must be closed
in any stable solution with lower quotas.

and then we can repeat this filtering process...



Special feature 3: common quotas

Some set of colleges may have a common quota.
No common quota may be exceeded in a feasible matching.

The stability of a matching:
If an applicant ai is not matched to a college cj , then
– either ai is matched to a better college
– or cj has filled its quota with better applicants than ai
– or there is a set of colleges Cp such that cj ∈ Cp and Cp filled its
quota with better applicants.
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Special feature 3: common quotas

Studies: p. CSBME s. CSBME . . . s. CSGD . . .

c. quotas: CS national quota: ≤3000

quotas: ≤ 50 ≤ 450 . . . ≤ 400 . . .

2004: 49 (78p) 474 (113p) . . . 336 (74p) . . .
2005: 51 (90p) 423 (126p) . . . 369 (77p) . . .
2006: 41 (80p) 443 (125p) . . . 321 (78p) . . .
2007: 51 (100p) 478 (120p) . . . 246 (79p) . . .

Studies: p. CSBME s. CSBME . . . s. CSGD . . .

c. quotas: CS national quota: ≤3000

c. quotas: faculty quota: ≤500 . . . ≤ 400 . . .

2008: 8 (365p) 492 (366p) . . . 165 (160p) . . .
2009: 16 (365p) 583 (373p) . . . 183 (224p) . . .
2010: 23 (384p) 572 (370p) . . . 241 (206p) . . .
2011: 24 (372p) 573 (370p) . . . 356 (200p) . . .
2012: 35 (396p) 578 (370p) . . . 40 (240p) . . .
2013: 42 (382p) 519 (370p) . . . 33 (240p) . . .
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CA with common quotas: theoretical findings

B.-Fleiner-Irving-Manlove (2010): For nested set systems, stable
matching always exists and it can be obtained by generalised
Gale-Shapley type algorithms. Moreover, the applicant / college
-oriented versions produce the best / worst possible stable
matchings for the applicants.

Otherwise, stable matching may not exist, and the related decision
problem is NP-complete.

The set system had been nested in Hungary until 2007, but
became non-nested in 2008 with the possibility that no stable
solution exists, and the related decision problem being NP-hard.
So, heuristics are used...

————————————————
I P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and

common quotas. Theoretical Computer Science 411, 3136-3153 (2010).
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I P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and
common quotas. Theoretical Computer Science 411, 3136-3153 (2010).



IP for CA with common quotas

Let up be a common upper quota for Cp and tp a corresponding
score-limit. Additional feasibility constraint:∑

i :(ai ,cj )∈E ,cj∈Cp

xij ≤ up for each Cp ⊆ C

Stability:

tp ≤ (1− xij) · (s̄ + 1) + sij for each (ai , cj) ∈ E and cj ∈ Cp

and

sij + 1 ≤ tp +

 ∑
k:rik≤rij

xik + yp
i

 · (s̄ + 1) for each (ai , cj) ∈ E and cj ∈ Cp

with ∑
p:cj∈Cp

yp
i ≤ qj − 1 for each (ai , cj) ∈ E

where yp
i ∈ {0, 1} and qj is the number of sets cj is involved in.



Special feature 4: paired applications

Students may apply for pair of programmes (these are special
programmes for teachers). In 2010: 5,578 students applied for
teachers’ programmes, and 2,091 of them applied for pair of
programmes...

This is like the Hospitals Residents problems with couples!
Ronn’s 1990 theorem implies NP-hardness here as well.



Integer programming techniques used for market design
Many papers on auctions and allocation problems

I N. Nisan. Bidding and allocation in combinatorial auctions. In Proceedings of ACM-EC 2000.

I E. Budish, A. Othman and T. Sandholm. Finding Approximate Competitive Equilibria: Efficient and Fair
Course Allocation. In Proceedings of AAMAS 2010.

I N. Garg, T. Kavitha, A. Kumar, K. Mehlhorn, and J. Mestre. Assigning Papers to Referees. Algorithmica,
58(1):119-136 (2010).

Most kidney exchange applications are based on IP techniques
I A.E. Roth, T. Sönmez and M.U. Ünver. Efficient Kidney Exchange: Coincidence of Wants in Markets with

Compatibility-Based Preferences. American Economic Review, 97(3), 828-851 (2007).

I D. Abraham, A. Blum and T. Sandholm. Clearing Algorithms for Barter-Exchange Markets: Enabling
Nationwide Kidney Exchanges. In Proceedings of ACM-EC 2007.

I D.F. Manlove and G. O’Malley. Paired and altruistic kidney donation in the UK: Algorithms and
experimentation. In Proceedings of SEA 2012.

Recent papers on IP methods for stable matching problems
I A. Kwanashie and D.F. Manlove. An Integer Programming approach to the Hospitals / Residents problem

with Ties. Proceedings of OR 2013, Springer, pp: 263–269, 2014.

I P. Biró, I. McBride and D.F. Manlove. The Hospitals / Residents problem with Couples: Complexity and
Integer Programming models. Proceedings of SEA 2014, vol. 8504 of LNCS, pp: 10–21, 2014.



Integer programming for solving the Hungarian case

What we have done in this paper:

I We formulated IPs to solve the problems for each of the four
special features

I We investigated some combination of these special features

I We established new lemmas to speed up the solutions

Future plans:

I To integrate the IPs into a single one that can be used to
solve the real application

I Implement and test the IPs on a real data from 2008, Hungary

I Other applications? E.g.
- resident allocation with regional caps
- controlled school choice

————————————————
I P. Biró, and I. McBride. Integer programming methods for special college admissions problems. In

Proceedings of COCOA 2014: the 8th Annual International Conference on Combinatorial Optimization and
Applications, volume 8881 of LNCS, pages 429-443, Springer, 2014



Computational complexity in mechanism design

Why is this aspect interesting?

I because the computational complexity of the underlying
matching problems is crucial in the solvability of practical
applications

I sometimes we can avoid the computationally hard problems
when designing the market

I if we cannot avoid the hard problems,
algorithm/optimisation theory still provides many tools to
analyse and solve them...



Further references

New book on the algorithmic aspects:
David F. Manlove: Algorithmics of matching under preferences.
World Scientific, 2013.

Summer school talks by Manlove and others:
http://econ.core.hu/english/res/MatchingSchool.html

COST Action on Computational Social Choice:
http://www.illc.uva.nl/COST-IC1205/

The Matching in Practice network website:
http://www.matching-in-practice.eu/

My research website:
http://www.cs.bme.hu/∼pbiro/research.html


