Computational aspects of matching problems under preferences (1st talk)

Péter Biró
Institute of Economics
Hungarian Academy of Sciences
peter.biro@krtk.mta.hu

Summer school on matchings
Moscow
5-8 October 2015

Matching without preferences...

Outline of the first part:

- introduction to matching theory
- basics of computational complexity
- chess pairings (FIDE rules)
- kidney exchange programs (UK experience)
- matching with couples

A tale on matchings...

Once upon a time, King Arthur wanted to organise a party. He invited four men and four women. He knew which of his invitees had known each other. He wanted to prepare a dance schedule where no man and woman are matched to each other if they have never met before. He asked Merlin the wizard to help...

	A	B	C	D
K	1	1	0	1
L	0	1	1	0
M	0	1	0	0
N	0	0	1	0

Arthur: Could you find me such a pairing? Merlin:

A tale on matchings...

Once upon a time, King Arthur wanted to organise a party. He invited four men and four women. He knew which of his invitees had known each other. He wanted to prepare a dance schedule where no man and woman are matched to each other if they have never met before. He asked Merlin the wizard to help...

	A	B	C	D
K	1	1	0	1
L	0	1	1	0
M	0	1	0	0
N	0	0	1	0

Arthur: Could you find me such a pairing? Merlin: No, unfortunately not.

A tale on matchings...

Once upon a time, King Arthur wanted to organise a party. He invited four men and four women. He knew which of his invitees had known each other. He wanted to prepare a dance schedule where no man and woman are matched to each other if they have never met before. He asked Merlin the wizard to help...

	A	B	C	D
K	1	1	0	1
L	0	1	1	0
M	0	1	0	0
N	0	0	1	0

Arthur: Could you find me such a pairing?
Merlin: No, unfortunately not.
Arthur: Why? (tell me a good reason or you will be executed...) Merlin:

A tale on matchings...

Once upon a time, King Arthur wanted to organise a party. He invited four men and four women. He knew which of his invitees had known each other. He wanted to prepare a dance schedule where no man and woman are matched to each other if they have never met before. He asked Merlin the wizard to help...

	A	B	C	D
K	1	1	0	1
L	0	1	1	0
M	0	1	0	0
N	0	0	1	0

Arthur: Could you find me such a pairing?
Merlin: No, unfortunately not.
Arthur: Why? (tell me a good reason or you will be executed...) Merlin:

Cannot he just try every possible combination?

A tale on matchings...

Once upon a time, King Arthur wanted to organise a party. He invited four men and four women. He knew which of his invitees had known each other. He wanted to prepare a dance schedule where no man and woman are matched to each other if they have never met before. He asked Merlin the wizard to help...

	A	B	C	D
K	1	1	0	1
L	0	1	1	0
M	0	1	0	0
N	0	0	1	0

Arthur: Could you find me such a pairing?
Merlin: No, unfortunately not.
Arthur: Why? (tell me a good reason or you will be executed...) Merlin:

A tale on matchings...

Once upon a time, King Arthur wanted to organise a party. He invited four men and four women. He knew which of his invitees had known each other. He wanted to prepare a dance schedule where no man and woman are matched to each other if they have never met before. He asked Merlin the wizard to help...

	A	B	C	D
K	1	1	0	1
L	0	1	1	0
M	0	1	0	0
N	0	0	1	0

Arthur: Could you find me such a pairing?
Merlin: No, unfortunately not.
Arthur: Why? (tell me a good reason or you will be executed...) Merlin:

This would be $4 * 3 * 2 * 1=4!=24$ possibilities.

A tale on matchings...

Once upon a time, King Arthur wanted to organise a party. He invited four men and four women. He knew which of his invitees had known each other. He wanted to prepare a dance schedule where no man and woman are matched to each other if they have never met before. He asked Merlin the wizard to help...

	A	B	C	D
K	1	1	0	1
L	0	1	1	0
M	0	1	0	0
N	0	0	1	0

Arthur: Could you find me such a pairing?
Merlin: No, unfortunately not.
Arthur: Why? (tell me a good reason or you will be executed...) Merlin:
But what if next time Arthur invites 100 men and 100 women?
($n!$ is more than the number of atoms in the universe for $n \geq 61$)

A tale on matchings...

Once upon a time, King Arthur wanted to organise a party. He invited four men and four women. He knew which of his invitees had known each other. He wanted to prepare a dance schedule where no man and woman are matched to each other if they have never met before. He asked Merlin the wizard to help...

Arthur: Could you find me such a pairing?
Merlin: No, unfortunately not.
Arthur: Why? (tell me a good reason or you will be executed...) Merlin: Since without B, C and K we have no more possible pair, so we cannot create more than three pairs.

The Kőnig theorem (1931)

Def: For a graph $G(N, E)$, a set of nodes $X \subset N$ is a vertex-cover if every edge in E is incident to some node in X.

For every bipartite graph, minimum size of a vertex-cover = maximum size of a matching

Proof of Kőnig's theorem

We keep looking for alternating paths from unmatched women to unmatched men...

Proof of Kőnig's theorem

We keep looking for alternating paths from unmatched women to unmatched men...

- if we find one then we can enlarge the matching

Proof of Kőnig's theorem

We keep looking for alternating paths from unmatched women to unmatched men...

- if we find one then we can enlarge the matching
- if there is no augmenting path then we can find a vertex-cover of minimum size

Weighted and nonbipartite graphs: still tractable

Egerváry (1931): For every weighted bipartite graph, minimum value of a cover $=$ maximum weight of a matching

K	A	B	C	D	
	6	8	7	0	
L	8	10	7	7	
M	4	7	3	0	
N	4	0	4	5	3
	2	4	2	2	

Kuhn (1955): A maximum weight matching can be found efficiently (in strongly polynomial time) by the Hungarian method.

Weighted and nonbipartite graphs: still tractable

Egerváry (1931): For every weighted bipartite graph, minimum value of a cover $=$ maximum weight of a matching

	A	B	C	D	
K	6	8	7	0	5
L	8	10	7	7	6
M	4	7	3	0	3
N	4	0	4	5	3
	2	4	2	2	

Kuhn (1955): A maximum weight matching can be found efficiently (in strongly polynomial time) by the Hungarian method.

Edmonds (1967): For nonbipartite graphs, finding a maximum size or maximum weight matching is solvable efficiently.

Example for brute force matching: chess pairing

Example for brute force matching: chess pairing

Score brackets
Players with equal scores constitute a homogeneous score bracket. Players who remain unpaired after the
pairing of a score bracket will be moved down to the next score bracket, which will therefore be
heterogeneous. When pairing a heterogeneous score bracket these players moved down are always paired
first whenever possible, giving rise to a remainder score bracket which is always treated as a
homogeneous one.
A heterogeneous score bracket of which at least half of the players have come from a higher score
bracket is also treated as though it was homogeneous.

Dutch system

Example for brute force matching: chess pairing

ww.fide.com/fide/handbook.htm $10=167$ \&view=article

Order the players in Si_{1} and S
C. 6 Try to find the pairing

Pair the highest player of S1 against the highest one of S2, the second highest one of S1 against the second highest one of S 2 , etc. If now P pairings are obtained in compliance with the current requirements the pairing of this score bracket is considered complete.

- in case of a homogeneous or remainder score bracket: remaining players are moved down to the next score解解. With this score bracket restart at

Redefine $P=P 1$ - M1
Continue at C4 with the remainder group.

Exchange
a In case of a homogeneous (remainder) group: apply a new exchange between S1 and S2 according to D2 and restart at C5.
C. 9 Go back to the heterogeneous score bracket (only remainder)

Dutch system

Example for brute force matching: chess pairing

Dutch system

Example for brute force matching: chess pairing

Lim system

Example for brute force matching: chess pairing

Burstein system

the tale continues...

King Arthur decided to make the dance party more colorful, so he asked Merlin to pick a different color for each dancing couple such that the color is matching with the flags of the corresponding noble families. Suppose that we have as many available colors as dancing couples. Can Merlin find a suitable solution, or a good excuse for not being able to find a suitable solution?

the tale continues...

King Arthur decided to make the dance party more colorful, so he asked Merlin to pick a different color for each dancing couple such that the color is matching with the flags of the corresponding noble families. Suppose that we have as many available colors as dancing couples. Can Merlin find a suitable solution, or a good excuse for not being able to find a suitable solution?

Now Merlin faces the 3D-matching problem: Given three sets of items, $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$, $C=\left\{c_{1}, \ldots, c_{n}\right\}$ and a set of possible triples:
$\mathcal{F}=\left\{\ldots,\left(a_{i}, b_{j}, c_{k}\right), \ldots\right\}$. The question is whether there exists a set of disjoint triples, $F \subset \mathcal{F}$, s.t. all items are covered.

the tale continues...

King Arthur decided to make the dance party more colorful, so he asked Merlin to pick a different color for each dancing couple such that the color is matching with the flags of the corresponding noble families. Suppose that we have as many available colors as dancing couples. Can Merlin find a suitable solution, or a good excuse for not being able to find a suitable solution?

Now Merlin faces the 3D-matching problem:
Given three sets of items, $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$, $C=\left\{c_{1}, \ldots, c_{n}\right\}$ and a set of possible triples:
$\mathcal{F}=\left\{\ldots,\left(a_{i}, b_{j}, c_{k}\right), \ldots\right\}$. The question is whether there exists a set of disjoint triples, $F \subset \mathcal{F}$, s.t. all items are covered.

Unfortunately this problem was shown to be NP-hard by Karp (1972), so it is highly unlikely that Merlin would be able to find a suitable solution, even if there exists one quickly, or give a good excuse for not finding a suitable solution...

NP-hard problems, complexity theory

For a decision problem Q, we say that $Q \in P$ if there exists an algorithm, implementable with a deterministic Turing machine, which can decide in polynomial time in the input size for any instance $I \in Q$ whether I is a YES-instance.
$Q \in N P$ if there exists an algorithm, implementable with a non-deterministic Turing machine, which can decide in polynomial time in the input size for any instance $I \in Q$ whether I is a YES-instance.

Alternative def: $Q \in N P$ if for any instance $I \in Q$ there is a proof T, polynomial size in I, that shows that I is a YES-instance and this be verified in polynomial time.

Q \in Co-NP: if there exists an algorithm, implementable with a non-deterministic Turing machine, which can decide in polynomial time in the input size for any instance $I \in Q$ whether I is a NO-instance.

NP-hard problems, complexity theory

Polynomial-time reduction: problem A can be reduced to problem B if for any instance I of A we can create another instance I^{\prime} of B, where

- the size of I^{\prime} is polynomial in the size of I
- I is a YES-instance $\Longleftrightarrow I^{\prime}$ is a YES-instance.

A problem is NP-hard, if ANY problem in NP can be reduced to it. NP-complete $=$ NP \cap NP-hard

Cook (1971): SAT is the first problem proved to be NP-complete. Since then there are thousands of relevant problems showed to be NP-complete.

NP-hard problems, complexity theory
Most likely picture:

Although we still do not know whether $\mathrm{P}=\mathrm{NP}$?
or whether $\mathrm{P}=\mathrm{NP} \cap \mathrm{Co}-\mathrm{NP}$?

NP-hard problems, complexity theory

 So, if a problem is NP-hard then there exist no polynomial time algorithm to solve it, unless $P=N P$. (If we could solve an NP-hard problem in polynomial time then we could solve every problem in NP in polynomial time. This is very unlikely...)
NP-hard problems, complexity theory

So, if a problem is NP-hard then there exist no polynomial time algorithm to solve it, unless $P=N P$. (If we could solve an NP-hard problem in polynomial time then we could solve every problem in NP in polynomial time. This is very unlikely...)

- M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the theory of NP-completeness. Macmillan Higher Education, 1979.

NP-hard problems, complexity theory

So, if a problem is NP-hard then there exist no polynomial time algorithm to solve it, unless $P=N P$. (If we could solve an NP-hard problem in polynomial time then we could solve every problem in NP in polynomial time. This is very unlikely...)

- M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the theory of NP-completeness. Macmillan Higher Education, 1979.

NP-hard problems, complexity theory

So, if a problem is NP-hard then there exist no polynomial time algorithm to solve it, unless $P=N P$. (If we could solve an NP-hard problem in polynomial time then we could solve every problem in NP in polynomial time. This is very unlikely...)

- M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the theory of NP-completeness. Macmillan Higher Education, 1979.

NP-hard problems, complexity theory

If a problem turns out to be NP-hard, then we can still

- specify the settings when the problem is still tractable (bipartite graphs, bounded length lists, etc.)
- give exact algorithm (exponential time, but terminating for small/sparse instances)
- give polynomial time algorithms with good approximation guarantees
- engineering (experimental) approach: construct heuristics with good performance on realistic instances
- use integer programming or other robust optimisation techniques

Kidney exchange problem

Given two incompatible patient-donor pairs (blood-type or tissue-type incompatibility). If they are compatible across, then a pairwise exchange is possible between them.

Kidney exchange problem

Given two incompatible patient-donor pairs (blood-type or tissue-type incompatibility). If they are compatible across, then a pairwise exchange is possible between them.

We consider these pairs as single vertices of a directed graph, $D(V, A)$.

D
D

Kidney exchange problem

Given two incompatible patient-donor pairs (blood-type or tissue-type incompatibility). If they are compatible across, then a pairwise exchange is possible between them.

We consider these pairs as single vertices of a directed graph, $D(V, A)$.
$(i, j) \in A$ iff the donor i is compatible with the patient j.

Kidney exchange problem

Given two incompatible patient-donor pairs (blood-type or tissue-type incompatibility). If they are compatible across, then a pairwise exchange is possible between them.

We consider these pairs as single vertices of a directed graph, $D(V, A)$.
$(i, j) \in A$ iff the donor i is compatible with the patient j.

The weight of an arc is the score of the corresponding donation (PRA, HLA-mismatch, age).

The basic optimisation problems:

A set of exchanges is a permutation of V, s.t. $i \neq \pi(i)$ implies $(i, \pi(i)) \in A(D)$.

The basic optimisation problems:

A set of exchanges is a permutation of V, s.t. $i \neq \pi(i)$ implies $(i, \pi(i)) \in A(D)$.

We say that a set of exchanges is optimal, if the sum of the weights is maximal. (i.e., when the total score is maximal.)

The basic optimisation problems:

A set of exchanges is a permutation of V, s.t. $i \neq \pi(i)$ implies $(i, \pi(i)) \in A(D)$.

We say that a set of exchanges is optimal, if the sum of the weights is maximal. (i.e., when the total score is maximal.)

We study 3 cases:

- Only 2-cycles are possible.
- Unrestricted length cycles.
- 2- and 3-cycles are allowed.

2-way exchanges \Longrightarrow matching problem

We transform the directed graph D to an undirected graph G.

A set of 2-way exchanges in D corresponds to a matching in G with the same weight, since $w(\{i, j\})=w(i, j)+w(j, i)$ for every edge $\{i, j\}$ of G.

The problem of finding a maximum weight matching in G can be solved by Edmonds' algorithm in polynomial time.

Optimal pairwise exchanges in two examples

Maximum cardinality pairwise exchange

Optimal pairwise exchanges in two examples

Maximum cardinality pairwise exchange
Maximum weight pairwise exchange

Unrestricted exchanges \Longrightarrow matching problem

We transform the directed graph D to an bipartite graph G.

With an edge of weight 0 , between each patient and his/her donor.
A set of exchanges in D corresponds to a complete matching in G with the same weight.

The problem of finding a maximum weight complete matching in G can be solved in polynomial time by the Hungarian method.

The transformation in an example

From a directed graph D, we create a bipartite graph G,

The transformation in an example

From a directed graph D, maximum weight unrestricted exchanges we create a bipartite graph G, maximum weight complete matching

Optimal unrestricted exchanges in two examples

Maximum cardinality unrestricted exchanges

Optimal unrestricted exchanges in two examples

Maximum cardinality unrestricted exchanges
Maximum weight unrestricted exchanges

Test results for large instances:

	Pairwise exchange			Unrestricted exchange			
nodes	size	weight	time	size	weight	longest c.	time
100	46	971	0.3 s	52	1458	(52)	0.3 s
200	86	2662	0.9 s	95	3215	(43)	1.0 s
300	150	4151	2.0 s	169	5459	(136)	2.3 s
400	194	6760	3.4 s	208	7662	(124)	4.0 s
500	256	8161	5.4 s	268	9056	(169)	7.1 s
600	322	10404	7.9 s	343	11606	(213)	9.5 s
700	368	12495	10.4 s	374	13520	(152)	14.3 s
800	418	14447	14.0 s	450	15370	(323)	20.0 s
900	458	15543	17.2 s	487	16703	(230)	24.2 s
1000	516	17508	21.3 s	530	18552	(191)	32.5 s

2- and 3-way exchanges: an NP-hard problem

The problem of finding a maximum size / weight set of 2- and 3 -way exchanges is NP-hard (reduction from 3DM):
for each triple $\left(a_{i}, b_{j}, c_{k}\right) \in \mathcal{F}$ we create the following gadget:

\exists complete 3D matching $\Longleftrightarrow \exists$ complete set of 3-way exchanges

- D. J. Abraham, A. Blum and T. Sandholm, Clearing algorithms for barter-exchange markets: enabling nationwide kidney exchanges, In Proc. EC'07: the Eighth ACM Conference on Electronic Commerce, ACM, pp:295-304, 2007.

2- and 3-way exchanges: an NP-hard problem

The problem of finding a maximum size / weight set of 2- and 3 -way exchanges is NP-hard (reduction from 3DM):
for each triple $\left(a_{i}, b_{j}, c_{k}\right) \in \mathcal{F}$ we create the following gadget:

$$
\left(a_{i}, b_{j}, c_{k}\right) \in F \Longleftrightarrow
$$

\exists complete 3D matching $\Longleftrightarrow \exists$ complete set of 3-way exchanges

- D. J. Abraham, A. Blum and T. Sandholm, Clearing algorithms for barter-exchange markets: enabling nationwide kidney exchanges, In Proc. EC'07: the Eighth ACM Conference on Electronic Commerce, ACM, pp:295-304, 2007.

2- and 3-way exchanges: an NP-hard problem

The problem of finding a maximum size / weight set of 2- and 3 -way exchanges is NP-hard (reduction from 3DM):
for each triple $\left(a_{i}, b_{j}, c_{k}\right) \in \mathcal{F}$ we create the following gadget:

- D. J. Abraham, A. Blum and T. Sandholm, Clearing algorithms for barter-exchange markets: enabling nationwide kidney exchanges, In Proc. EC'07: the Eighth ACM Conference on Electronic Commerce, ACM, pp:295-304, 2007.

2- and 3-way exchanges: approximation algorithms

The greedy algorithm provides a 3-approximation for the maximum weight problem.
Biró-Manlove-Rizzi (2009): This can be improved to a $(2+\epsilon)$-approximation algorithm for any $\epsilon>0$.

- P. Biró, D.F. Manlove and R. Rizzi. Maximum weight cycle packing in directed graphs, with application to kidney exchange programs. Discrete Mathematics, Algorithms and Applications 1(4), pp:499-517, 2009.

Exact algorithm: reducing the running time 1.

If we knew the set of 3-cycles of an optimal set of 2- and 3-way exchanges, then we could find an optimal solution (by simply finding a maximum weight matching in the rest of the digraph).

Reducing the running time 2.

But it is enough to know only one arc from each 3-cycle, since we can find an optimal 2- and 3-way exchange after a transformation!

Reducing the running time 2.

For an arc-set Y,
We create an undirected graph G_{Y},

Reducing the running time 2.

For an arc-set Y, maximum cardinality 2 - and 3-way exchanges We create an undirected graph G_{Y}, maximum weight matching

Reducing the running time 3.

In a weighted graph:

For an arc-set Y,
We create an undirected graph G_{Y},

Reducing the running time 3.

In a weighted graph:

For an arc-set Y, maximum weight 2- and 3-way exchanges We create an undirected graph G_{Y}, maximum weight matching

Reducing the running time 4.

Let T be an arc set in D such that after removing T from D no 3-cycle remains.

Reducing the running time 4.

Let T be an arc set in D such that after removing T from D no 3-cycle remains.
T intersects every 3-cycle of D, so T intersects also the 3-cycles of an optimal solution, thus Y can be chosen as a subset of T.

Reducing the running time 4.

Let T be an arc set in D such that after removing T from D no 3-cycle remains.
T intersects every 3-cycle of D, so T intersects also the 3-cycles of an optimal solution, thus Y can be chosen as a subset of T.

Here, T has 6 disjoint subsets, that we shall probe, so we can find an optimal set of 2- and 3-way exchanges by transforming the graph and running Edmonds' algorithm 6 times.

Reducing the running time 5.

We shall choose a set T for which the number of independent subsets of T is minimal.

Reducing the running time 5.

We shall choose a set T for which the number of independent subsets of T is minimal.

Here, T has the following 5 independent subsets:
Y_{1},

Reducing the running time 5.

We shall choose a set T for which the number of independent subsets of T is minimal.

Here, T has the following 5 independent subsets:
Y_{1}, Y_{2},

Reducing the running time 5.

We shall choose a set T for which the number of independent subsets of T is minimal.

Here, T has the following 5 independent subsets:
$Y_{1}, Y_{2}, \quad Y_{3}$,

Reducing the running time 5.

We shall choose a set T for which the number of independent subsets of T is minimal.

Here, T has the following 5 independent subsets:
$Y_{1}, Y_{2}, Y_{3}, Y_{4}$,

Reducing the running time 5.

We shall choose a set T for which the number of independent subsets of T is minimal.

Here, T has the following 5 independent subsets:
$Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}$ (the emptyset).

Reducing the running time 5.

We shall choose a set T for which the number of independent subsets of T is minimal.

Here, T has the following 5 independent subsets:
$Y_{1}, Y_{2}, Y_{3}, Y_{4}, \quad Y_{5}$ (the emptyset).
Clearly $|T| \leq m / 2$, so the number of subsets that we need to check with Edmonds' algorithm is at most $2^{|T|} \leq 2^{\frac{m}{2}}$.

Optimal 2- and 3-way exchanges in two examples

Maximum cardinality 2- and 3-way exchanges

Optimal 2- and 3-way exchanges in two examples

Maximum cardinality 2- and 3-way exchanges
Maximum weight 2- and 3-way exchanges

Optimal 2- and 3-way exchanges in two examples

nodes	arcs	2-cycle	3-cycle	$\|T\|$	subsets of T	r. time
10	25	7	5	3	5	0.0 s
5	10	3	2	1	2	0.0 s

Test results for 2- and 3-way exchanges

nodes	arcs	2-cycle	3-cycle	$\|T\|$	subsets of T	r. time
10	22	2	0	0	0	0.0 s
15	45	7	13	3	6	0.1 s
20	101	7	5	2	3	0.0 s
25	125	16	37	5	6	0.1 s
30	239	16	36	8	40	0.4 s
35	339	32	111	16	656	7.2 s
40	354	25	145	17	296	3.8 s
45	541	48	185	22	1792	28.8 s
50	502	46	257	21	336	6.2 s
55	609	59	151	19	992	18.9 s
60	696	51	164	25	5172	121.4 s
65	993	89	620	52	1841364	55387.1 s
70	1164	133	778	55	555624	17665.4 s

Comparing the settings: two examples

	Pairwise		2- and 3-way			Unrestricted		
nodes	size	weight	size	weight	3-c.	size	weight	longest c.
10	8	8	9	9	1	10	10	(4)
5	2	5	5	8	1	4	9	(4)

Comparing the settings: two examples

	Pairwise		2- and 3-way			Unrestricted		
nodes	size	weight	size	weight	3-c.	size	weight	longest c.
10	$\mathbf{8}$	$\mathbf{8}$	9	9	1	10	10	(4)
5	2	5	5	8	1	4	9	(4)

Comparing the settings: two examples

	Pairwise		2- and 3-way			Unrestricted		
nodes	size	weight	size	weight	3-c.	size	weight	longest c.
10	8	8	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{1}$	10	10	(4)
5	2	5	5	8	1	4	9	(4)

Comparing the settings: two examples

	Pairwise		2- and 3-way			Unrestricted		
nodes	size	weight	size	weight	3-c.	size	weight	longest c.
10	8	8	9	9	1	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{(4)}$
5	2	5	5	8	1	4	9	(4)

Comparing the settings: two examples

	Pairwise		2- and 3-way			Unrestricted		
nodes	size	weight	size	weight	3-c.	size	weight	longest c.
10	8	8	9	9	1	10	10	(4)
5	$\mathbf{2}$	$\mathbf{5}$	5	8	1	4	9	(4)

Comparing the settings: two examples

	Pairwise		2- and 3-way			Unrestricted		
nodes	size	weight	size	weight	3-c.	size	weight	longest c.
10	8	8	9	9	1	10	10	(4)
5	2	5	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{1}$	4	9	(4)

Comparing the settings: two examples

	Pairwise		2- and 3-way			Unrestricted		
nodes	size	weight	size	weight	3-c.	size	weight	longest c.
10	8	8	9	9	1	10	10	(4)
5	2	5	5	8	1	$\mathbf{4}$	$\mathbf{9}$	$\mathbf{(4)}$

Comparing the settings: test results

	Pairwise		2- and 3-way			Unrestricted		
nodes	size	weight	size	weight	3-c.	size	weight	longest c.
10	2	24	2	24	0	2	24	(2)
15	6	140	6	170	2	6	170	(6)
20	6	230	7	282	1	7	282	(3)
25	6	162	6	162	0	6	162	(4)
30	12	656	15	956	3	15	956	(8)
35	16	562	18	820	2	19	866	(7)
40	12	574	15	960	3	16	1006	(7)
45	20	1092	23	1298	3	23	1298	(19)
50	14	466	17	762	3	20	966	(15)
55	20	1098	23	1334	3	25	1524	(11)
60	18	1216	23	1576	5	23	1722	(21)
65	26	994	29	1402	5	31	1510	(28)
70	26	1174	31	1470	7	31	1470	(31)

Matching run		2008			2009			
		Apr	Jul	Oct	Jan	Apr	Jul	Oct
\# pairs		76	85	123	126	122	95	97
\# possible donations		287	235	704	576	760	1212	866
Total \#	2-cycles	5	2	14	16	20	54	4
	3 cycles	5	0	109	65	68	164	4
Pairwise exchanges	\#2-cycles	2	1	6	5	5	10	2
	size	4	2	12	10	10	20	4
	weight	91	6	499	264	388	739	222
$\leq 3 \text {-way }$ exchanges	\#2-cycles	2	1	2	1	2	2	0
	\#3-cycles	4	0	7	5	5	9	2
	size	16	2	25	17	19	31	6
	weight	620	6	1122	633	757	1300	300
the exact algorithm	size of S	5	0	18	13	14	25	3
	$\# Y \subseteq S$	24	0	3480	588	1440	67824	6
Running time (sec)		0.3	0.0	66.0	7.5	19.2	1494.3	2.0
Unbounded exchanges	size	22	2	33	28	28	40	6
	weight	857	6	1546	1134	1275	1894	300
	longest c.	20	2	27	19	23	28	3
Chosen solution (NHSBT)	\#2-cycles	2	1	6	5	5	4	1
	\#3-cycles	4	0	3	1	2	7	1
	size	16	2	21	13	16	29	5
	weight	620	6	930	422	618	1168	288

Table 1. Results arising from matching runs from April 2008 to October 2009.

We also used our exact algorithm to find optimal exchanges for NHSBT for the quarterly matching runs of the NMSPD from April 2008 to October 2009 inclusive, and the results corresponding to these input datasets are contained in Table 1. The
湅最 [Inbox - Out1... [Terminal] [design - Defi... D talks

D cakes_pr

- emacs@shor... \square [Terminal]
[Computatio...
P. Biró, D.F. Manlove and R. Rizzi. Maximum weight cycle packing in directed graphs, with application to kidney exchange programs. Discrete Mathematics, Algorithms and Applications 1(4), pp:499-517, 2009. exchange kidneys

By Luke Salkeld
THEY were both in desperate need of a kidney donor, and both had relatives who were willing to sacriflce an organ.
But without a family match. strangers Donald Plamer and Margaret Wearn instead entered into an extraordinary pact,
Mr Ptanner's daughter donated her kldncy to Mrs Wearn, whose Planner.
The operations took place 170 miles apart in synchronlsed pro. ocdures with the organs transported by ambulances travelling in opposite directions between

'Completely amazing': Donald Planner with hls daughter Suzanne
Margaret and Roger Wearn: 'No different to a direct donation
arean or he would die. His lly reliant on the dialysis

B B C Mobile

Alternative method: integer linear programming

We create an integer program as follows:

- we list all the possible exchanges: $C_{1}, C_{2}, \ldots, C_{m}$
- we use binary variables $x_{1}, x_{2}, \ldots, x_{m}$ where $x_{i}=1$ iff C_{i} is part of optimal solution x
- we build matrix A of dimensions $n \times m$ where $n=|V|$ and $A_{i, j}=1$ iff v_{i} is incident to C_{j}
- let b be $n \times 1$ vector of 1 s
- let c be $1 \times m$ vector of values according to what we want to optimise, e.g. c_{j} could be weight of C_{j}
Then solve $\max c x$ s.t. $A x \leq b$
\rightarrow D. J. Abraham, A. Blum and T. Sandholm, Clearing algorithms for barter-exchange markets: enabling nationwide kidney exchanges, In Proc. EC'07: the Eighth ACM Conference on Electronic Commerce, ACM, pp:295-304, 2007.

Alternative method: integer linear programming

```
max cx
s.t. }Ax\leq
and }\mp@subsup{x}{i}{}\in{0,1
```

where

$$
A=\left[\begin{array}{llll|lll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right], b=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right] \text { and }
$$

$$
c_{s}=\left[\begin{array}{llll|ll}
2 & 2 & 2 & 2 & 3 & 3
\end{array}\right] \text { if maximum size }
$$

Alternative method: integer linear programming

$$
\begin{aligned}
& \max c x \\
& \text { s.t. } A x \leq b \\
& \text { and } x_{i} \in\{0,1\}
\end{aligned}
$$

where

$$
A=\left[\begin{array}{llll|lll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right], b=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], x=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \text { and }
$$

$$
c_{s}=\left[\begin{array}{llll|lll}
2 & 2 & 2 & 2 & 3 & 3 & 3
\end{array}\right] \text { if maximum size } \max c_{s} x=5
$$

Alternative method: integer linear programming

```
max cx
s.t. }Ax\leq
and}\mp@subsup{x}{i}{}\in{0,1
```

where

$$
A=\left[\begin{array}{llll|lll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right], b=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right] \text { and }
$$

$c_{w}=\left[\begin{array}{llll|lll}5 & 2 & 2 & 6 & 5 & 6 & 4\end{array}\right]$ if maximum weight

Alternative method: integer linear programming

```
max cx
s.t. }Ax\leq
and }\mp@subsup{x}{i}{}\in{0,1
```

where

$$
A=\left[\begin{array}{llll|lll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right], b=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], x=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \text { and }
$$

$c_{w}=\left[\begin{array}{llll|lll}5 & 2 & 2 & 6 & 5 & 6 & 4\end{array}\right]$ if maximum weight $\max c_{w} x=11$

Alternative method: integer linear programming

```
max cx
s.t. }Ax\leq
and }\mp@subsup{x}{i}{}\in{0,1
```

where

$$
A=\left[\begin{array}{llll|lll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right], b=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right] \text { and }
$$

$c_{o}=c_{s} \cdot M+c_{w}$ if max weight max size

Alternative method: integer linear programming

$$
\begin{aligned}
& \max c x \\
& \text { s.t. } A x \leq b \\
& \text { and } x_{i} \in\{0,1\}
\end{aligned}
$$

where

$$
A=\left[\begin{array}{llll|lll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right], b=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], x=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right] \text { and }
$$

$$
c_{o}=c_{s} \cdot M+c_{w} \text { if max weight max size } \max c_{o} x=5 M+8
$$

Changing the optimisation criteria in the UK program

D.F. Manlove and G. O'Malley. Paired and altruistic kidney donation in the UK: Algorithms and experimentation. In Proceedings of SEA 2012, vol. 7276 of LNCS, pp 271-282.

Changing the optimisation criteria in the UK program

best (maximum weight maximum size) set of 2-way exchanges,
D.F. Manlove and G. O'Malley. Paired and altruistic kidney donation in the UK: Algorithms and experimentation. In Proceedings of SEA 2012, vol. 7276 of LNCS, pp 271-282.

Changing the optimisation criteria in the UK program

best (maximum weight maximum size) set of 2-way exchanges, best set of 2-way exchanges with extra 3-way exchanges
D.F. Manlove and G. O'Malley. Paired and altruistic kidney donation in the UK: Algorithms and experimentation. In Proceedings of SEA 2012, vol. 7276 of LNCS, pp 271-282.

Changing the optimisation criteria in the UK program

best (maximum weight maximum size) set of 2-way exchanges, best set of 2 -way exchanges with extra 3-way exchanges best set of 2-way exchanges and 3-way exchanges with embedded 2-way exchanges.

- D.F. Manlove and G. O'Malley. Paired and altruistic kidney donation in the UK: Algorithms and experimentation. In Proceedings of SEA 2012, vol. 7276 of LNCS, pp 271-282.

Changing the optimisation criteria in the UK program

best (maximum weight maximum size) set of 2-way exchanges, best set of 2 -way exchanges with extra 3-way exchanges best set of 2-way exchanges and 3-way exchanges with embedded 2-way exchanges. (July 2009: We could replace eight from the ten 2-way exchanges by 3-way exchanges with embedded 2-way exchanges.)
D.F. Manlove and G. O'Malley. Paired and altruistic kidney donation in the UK: Algorithms and experimentation. In Proceedings of SEA 2012, vol. 7276 of LNCS, pp 271-282.

Matching couples with 0-1 preferences

We have $2 n$ people, containing some couples, and n double rooms.

\square

Matching couples with 0-1 preferences

We have $2 n$ people, containing some couples, and n double rooms.

- each couple has to be accommodated in a double room

Matching couples with 0-1 preferences

We have $2 n$ people, containing some couples, and n double rooms.

- each couple has to be accommodated in a double room
- two single persons can be placed in one double room

Matching couples with $0-1$ preferences

We have $2 n$ people, containing some couples, and n double rooms.

- each couple has to be accommodated in a double room
- two single persons can be placed in one double room
- every single person and couple has a list of suitable rooms

Matching couples with 0-1 preferences

We have $2 n$ people, containing some couples, and n double rooms.

- each couple has to be accommodated in a double room
- two single persons can be placed in one double room
- every single person and couple has a list of suitable rooms

Is it possible to accommodate everybody?

Motivation: matching couples, scheduling jobs

- allocating singles and couples by maximising the size
- P.A. Robards. Applying two-sided matching processes to the United States Navy enlisted assignment process, Master's Thesis, Naval Postgraduate School, Monterey, California, 2001.
- W. Yang, J.A. Giampapa, K. Sycara, Two-sided matching for the US Navy Detailing Process with market complication, Technical Report CMU-RI-TR-03-49, Robotics Institute, Carnegie-Mellon University, 2003.

Motivation: matching couples, scheduling jobs

- allocating singles and couples by maximising the size
- multiprocessor scheduling: allocating jobs (of length 1 or 2) to processors by minimising the makespan
- bin packing: allocating items of size 0.5 or 1 to bins (of size 1) by minimising the number of bins used
- P.A. Robards. Applying two-sided matching processes to the United States Navy enlisted assignment process, Master's Thesis, Naval Postgraduate School, Monterey, California, 2001.
- W. Yang, J.A. Giampapa, K. Sycara, Two-sided matching for the US Navy Detailing Process with market complication, Technical Report CMU-RI-TR-03-49, Robotics Institute, Carnegie-Mellon University, 2003.
- C.A. Glass and H. Kellerer. Parallel machine scheduling with job assignment restrictions, Naval Research Logistics. A Journal Dedicated to Advances in Operations and Logistics Research 54(3), pp:250-257, 2007.
- P. Biró and E. McDermid. Matching with sizes (or scheduling with processing set restrictions). Discrete Applied Mathematics 164(1), pp:61-67, 2014.

The NP-hardness proof

Glass-Kellerer (2007), Biró-McDermid (2014):
We reduce from 3DM:

The NP-hardness proof

Glass-Kellerer (2007), Biró-McDermid (2014):
We reduce from 3DM:

The NP-hardness proof

Glass-Kellerer (2007), Biró-McDermid (2014):
We reduce from 3DM:

The NP-hardness proof

Glass-Kellerer (2007), Biró-McDermid (2014):
We reduce from 3DM:

\exists complete 3D-matching $\Longleftrightarrow \exists$ complete matching with couples

The NP-hardness proof

Glass-Kellerer (2007), Biró-McDermid (2014):
We reduce from 3DM:

\exists complete 3D-matching $\Longleftrightarrow \exists$ complete matching with couples
\Longrightarrow Suppose that we have a complete matching $F \ldots$

The NP-hardness proof

Glass-Kellerer (2007), Biró-McDermid (2014):
We reduce from 3DM:

\exists complete 3D-matching $\Longleftrightarrow \exists$ complete matching with couples
\Longrightarrow Suppose that we have a complete matching $F \ldots$

The NP-hardness proof

Glass-Kellerer (2007), Biró-McDermid (2014):
We reduce from 3DM:

\exists complete 3D-matching $\Longleftrightarrow \exists$ complete matching with couples
\Longleftarrow similarly...

Matching under preferences

Stable marriage problem by Gale and Shapley [1962]

"College admission and the stability of marriage"

"Each person ranks those of the opposite sex in accordance with his or her preferences for a marriage partner."

Stable marriage problem by Gale and Shapley [1962]

"College admission and the stability of marriage"

A set of marriages is stable, if there is no "blocking pair": a man and a woman who are not married to each other but prefer each other to their actual mates.

(C,F) blocking pair

Stable marriage problem by Gale and Shapley [1962]

"College admission and the stability of marriage"

A set of marriages is stable, if there is no "blocking pair": a man and a woman who are not married to each other but prefer each other to their actual mates.

(C,F) blocking pair

Gale-Shapley 1962: The deferred-acceptance algorithm finds a stable matching.

Stable marriage problem by Gale and Shapley [1962]

"College admission and the stability of marriage"

A set of marriages is stable, if there is no "blocking pair": a man and a woman who are not married to each other but prefer each other to their actual mates.

(C,F) blocking pair

Gale-Shapley 1962: The deferred-acceptance algorithm finds a stable matching.

Stable marriage problem by Gale and Shapley [1962]

"College admission and the stability of marriage"

A set of marriages is stable, if there is no "blocking pair": a man and a woman who are not married to each other but prefer each other to their actual mates.

(C,F) blocking pair

Gale-Shapley 1962: The deferred-acceptance algorithm finds a stable matching.

Stable marriage problem by Gale and Shapley [1962]

"College admission and the stability of marriage"

A set of marriages is stable, if there is no "blocking pair": a man and a woman who are not married to each other but prefer each other to their actual mates.

(C,F) blocking pair

Gale-Shapley 1962: The deferred-acceptance algorithm finds a stable matching.

Stable marriage problem by Gale and Shapley [1962]

"College admission and the stability of marriage"

A set of marriages is stable, if there is no "blocking pair": a man and a woman who are not married to each other but prefer each other to their actual mates.

(C,F) blocking pair

Gale-Shapley 1962: The deferred-acceptance algorithm finds a stable matching.

Stable marriage problem by Gale and Shapley [1962]

"College admission and the stability of marriage"

A set of marriages is stable, if there is no "blocking pair": a man and a woman who are not married to each other but prefer each other to their actual mates.

(C,F) blocking pair

Gale-Shapley 1962: The deferred-acceptance algorithm finds a stable matching. This matching is man-optimal.

SM + quotas: College Admissions (CA)

The solution by the Gale-Shapley mechanism is

- fair: an application is rejected by a college only if its quota is filled with better applicants (i.e., the matching is stable).
- student-optimal: no student could be admitted to a better college in any other fair solution.

SM + quotas: College Admissions (CA)

The solution by the Gale-Shapley mechanism is

- fair: an application is rejected by a college only if its quota is filled with better applicants (i.e., the matching is stable).
- student-optimal: no student could be admitted to a better college in any other fair solution.

The automated procedure based on the Gale-Shapley algorithm is

- fast: the running time is linear in the number of applications (10 seconds in Hungary, would be ~ 1 minutes in the UK and ~ 15 minutes in China).
- strategy-proof: no student can be better off by cheating.

The Gale-Shapley algorithm in practice

Allocating residents to positions:

- National Resident Matching Program since 1952!
- and many other professions in the US and other countries... (e.g., Scottish Foundation Allocation Scheme)

The Gale-Shapley algorithm in practice

Allocating residents to positions:

- National Resident Matching Program since 1952!
- and many other professions in the US and other countries... (e.g., Scottish Foundation Allocation Scheme)

Admission systems in education:

- New York high schools since 2004, Boston high schools since 2005
- Higher education admissions in Spain (1998)
- Higher education admissions in Hungary since 1996
- Secondary school admissions in Hungary since 2000 (Original Gale-Shapley model and algorithm!)

Matching under preferences...

List of hard problems to be discussed:

- finding weakly stable matchings as large as possible
- finding large matchings as stable as possible
- finding a matching that is the most likely to be stable
- stable cyclic 3D-matchings, stable exchanges
- special features in college admissions: paired applications, lower and common quotas
- resident allocation problem with couples

Finding maximum size weakly stable matchings

Scottish Foundation Allocation Scheme Hospitals can have ties in their rankings...

Applicants:	Adam	Bill
1st application:	Glasgow	Glasgow
2nd application:	Edinburgh	

the ranking of SG Glasgow Hospital: [Adam, Bill] the ranking of Royal Edinburgh Hospital: Adam

Finding maximum size weakly stable matchings
Scottish Foundation Allocation Scheme Hospitals can have ties in their rankings...

Applicants:	Adam	Bill
1st application:	Glasgow	Glasgow
2nd application:	Edinburgh	

the ranking of SG Glasgow Hospital: [Adam, Bill] the ranking of Royal Edinburgh Hospital: Adam

Finding maximum size weakly stable matchings

Scottish Foundation Allocation Scheme Hospitals can have ties in their rankings...

Applicants:	Adam	Bill
1st application:	Glasgow	Glasgow
2nd application:	Edinburgh	

the ranking of SG Glasgow Hospital: [Adam, Bill] the ranking of Royal Edinburgh Hospital: Adam

Weakly stable matchings can have different sizes.

Finding maximum size weakly stable matchings

Scottish Foundation Allocation Scheme

Hospitals can have ties in their rankings...

Applicants:	Adam	Bill
1st application:	Glasgow	Glasgow
2nd application:	Edinburgh	

the ranking of SG Glasgow Hospital: [Adam, Bill] the ranking of Royal Edinburgh Hospital: Adam

Weakly stable matchings can have different sizes.
Iwama, Manlove et. al. (1999): Finding a maximum size weakly stable matching is NP-hard (reduction from EXACT-MM: finding a maximal matching of given size).

Restrictions, approximability, inapproximability

The problem is NP-hard even if ties occur on one side only, each preference list is strictly ordered or is a single tie, and

- Manlove et al. (2002): each tie is of length 2
- Irving-Manlove-O'Malley (2009): length of pref. lists ≤ 3
- Irving-Manlove-Scott (2008): master lists on both sides
- D.F. Manlove, R.W. Irving. Finding large stable matchings. ACM Journal of Experimental Algorithmics, volume 14, section 1, article 2, 30 pages, 2009.

Restrictions, approximability, inapproximability

The problem is NP-hard even if ties occur on one side only, each preference list is strictly ordered or is a single tie, and

- Manlove et al. (2002): each tie is of length 2
- Irving-Manlove-O'Malley (2009): length of pref. lists ≤ 3
- Irving-Manlove-Scott (2008): master lists on both sides

McDermid (2009): MAX SMTI is approximable within $\frac{3}{2}$.
D.F. Manlove, R.W. Irving. Finding large stable matchings. ACM Journal of Experimental Algorithmics, volume 14, section 1, article 2, 30 pages, 2009.

Restrictions, approximability, inapproximability

The problem is NP-hard even if ties occur on one side only, each preference list is strictly ordered or is a single tie, and

- Manlove et al. (2002): each tie is of length 2
- Irving-Manlove-O'Malley (2009): length of pref. lists ≤ 3
- Irving-Manlove-Scott (2008): master lists on both sides

McDermid (2009): MAX SMTI is approximable within $\frac{3}{2}$.
Yanagisawa (2007): MAX SMTI is not approximable within $\frac{33}{29}$ unless $\mathrm{P}=\mathrm{NP}$.

[^0]
Restrictions, approximability, inapproximability

The problem is NP-hard even if ties occur on one side only, each preference list is strictly ordered or is a single tie, and

- Manlove et al. (2002): each tie is of length 2
- Irving-Manlove-O'Malley (2009): length of pref. lists ≤ 3
- Irving-Manlove-Scott (2008): master lists on both sides

McDermid (2009): MAX SMTI is approximable within $\frac{3}{2}$.
Yanagisawa (2007): MAX SMTI is not approximable within $\frac{33}{29}$ unless $\mathrm{P}=\mathrm{NP}$.

Manlove-Irving (2009): Experiments with heuristics for random and real instances.

- D.F. Manlove, R.W. Irving. Finding large stable matchings. ACM Journal of Experimental Algorithmics, volume 14, section 1, article 2, 30 pages, 2009.

IPs on MAX-SMTI (David Manlove's talk)

University of Glasgow

Integer Programming for MAX HRT

- Model developed by Augustine Kwanashie (2012)
- Solved using CPLEX IP solver
- IP models of HRT instances with tie density of about 85% are the most likely to be computationally hard
- Figure below shows median computation times for increasing sizes of 10 HRT instances each with 85% tie density (all preference lists of length 5)

\#Residents	\#hospitals	Median Matching Size	Median Runtime
450	31	450	11.82 sec
500	35	500	31.20 sec
550	38	550	22.10 sec
600	42	600	44.15 sec
650	45	650	84.41 sec

- Real world SFAS datasets were also solved using the IP model.

Year	\#Residents	\#hospitals	Tie density	Matching Size	Runtime
$2005 / 2006$	759	53	92%	758	92.96 sec
$2006 / 2007$	781	53	76%	746	21.78 sec
$2007 / 2008$	748	52	81%	709	75.50 sec

- A. Kwanashie and D.F. Manlove. An Integer Programming approach to the Hospitals / Residents problem with Ties. To appear in Proceedings of OR 2013: the International Conference on Operations Research, Springer, 2014.

Finding 'almost stable' maximum size matchings

In many practical applications the first objective is to find a maximum size or complete matchings, and then they are concern with stability. e.g. for:

- US Navy
- United Nations World Food Programme
- P.A. Robards, Applying two-sided matching processes to the United States Navy enlisted assignment process, Master's Thesis, Naval Postgraduate School, Monterey, California, 2001.
- W. Yang, J.A. Giampapa, K. Sycara, Two-sided matching for the US Navy Detailing Process with market complication, Technical Report CMU-RI-TR-03-49, Robotics Institute, Carnegie-Mellon University, 2003.
- M. Soldner. Optimization and measurement in humanitarian operations: addressing practical needs. PhD Dissertation, 2014-07-02, Georgia Institute of Technology.

Finding 'almost stable' maximum size matchings

Biró-Manlove-Mittal (2010):

- Given a instance of stable marriage problem, finding a complete matching where the number of blocking pairs is minimised is NP-hard, and it is not approximable within $n^{1-\epsilon}$ for any $\epsilon>0$ unless $\mathrm{P}=\mathrm{NP}$.
- For preference lists of length at most 3 on both sides, the problem is not approximable within $\frac{3557}{3556+2032 \epsilon}$ for any ϵ, ($0<\epsilon<\frac{1}{2032}$) unless $\mathrm{P}=\mathrm{NP}$.
- In the agents on one side has preference lists of size at most two then the problem is solvable in $O(n)$ time, where n is the number of men in the market.
P. Biró, D.F. Manlove and S. Mittal, Size versus stability in the Marriage problem. Theoretical Computer Science 411, pp: 1828-1841, 2010.

Matching under uncertain preferences

Suppose that the preferences of the agents are uncertain.

We may want to find a matching

- that is most likely to be stable
- where the expected number of blocking pairs is minimised
- P. Biró and B. Rastegari. Matching under uncertain preference. Working paper, 2014.

Matching under uncertain preferences

Suppose that the preferences of the agents are uncertain.

$P(\{A K, B L, C M\}$ is stable $)=0.36$

We may want to find a matching

- that is most likely to be stable
- where the expected number of blocking pairs is minimised

[^1]
Matching under uncertain preferences

Suppose that the preferences of the agents are uncertain.

$P(\{A K, B L, C M\}$ is stable $)=0.36$ $P(\{A L, B M, C K\}$ is stable $)=0.4$

We may want to find a matching

- that is most likely to be stable
- where the expected number of blocking pairs is minimised
- P. Biró and B. Rastegari. Matching under uncertain preference. Working paper, 2014.

Matching under uncertain preferences

Suppose that the preferences of the agents are uncertain.

$P(\{A K, B L, C M\}$ is stable $)=0.36$ $P(\{A L, B M, C K\}$ is stable $)=0.4$

We may want to find a matching

- that is most likely to be stable
- where the expected number of blocking pairs is minimised

Biró-Rastegari (2014): Finding a matching that is most likely to be stable is NP-hard, even is uncertainty is resolved with uniform tie-breakings. (Implied by the inapproximability of MAX SMTI.)

- P. Biró and B. Rastegari. Matching under uncertain preference. Working paper, 2014.

3D Stable Matching problem (3DSM)

Knuth (1976):
"Problem 11. Can the stable-matching problem be generalized to three sets of objects (for example men, women and dogs)?"

3D Stable Matching problem (3DSM)

Knuth (1976):
"Problem 11. Can the stable-matching problem be generalized to three sets of objects (for example men, women and dogs)?"

Problem description:

- each agent has preference over all pairs from the two other sets.
- a matching is a set of disjoint families
- a matching is stable is there exists no blocking family
(that is preferred by all of its members to their current families)

3D Stable Matching problem (3DSM)

Knuth (1976):
"Problem 11. Can the stable-matching problem be generalized to three sets of objects (for example men, women and dogs)?"

Problem description:

- each agent has preference over all pairs from the two other sets.
- a matching is a set of disjoint families
- a matching is stable is there exists no blocking family
(that is preferred by all of its members to their current families)
Alkan (1988): Stable matching may not exist.
Ng and Hirschberg (1991): This problem is NP-complete.

Cyclic 3DSM

Ng and Hirschberg (1991): "cyclic preferences"
Men only care about women, women only care about dogs and dogs only care about men.

Cyclic 3DSM

Ng and Hirschberg (1991): "cyclic preferences"
Men only care about women, women only care about dogs and dogs only care about men.

Conjecture: If $|M|=|W|=|D|$ and the lists are complete, then stable matching always exists.

Cyclic 3DSM

Ng and Hirschberg (1991): "cyclic preferences"
Men only care about women,
women only care about dogs and dogs only care about men.

Conjecture: If $|M|=|W|=|D|$ and the lists are complete, then stable matching always exists.

Boros et al. (2004): This is true for 3×3 players.
Eriksson et al. (2006): True for 3×4 players as well...

Cyclic 3DSMI: cyclic 3DSM with incomplete lists

Stable matching may not exist!
A counterexample for 3×6 players: $R 6$

Cyclic 3DSMI: cyclic 3DSM with incomplete lists

Stable matching may not exist!
A counterexample for 3×6 players: $R 6$

- At least one inner player is unmatched

Cyclic 3DSMI: cyclic 3DSM with incomplete lists

Stable matching may not exist!
A counterexample for 3×6 players: $R 6$

- At least one inner player is unmatched
- and is involved in a blocking cycle.

Cyclic 3DSMI is NP-complete

Sketch of the proof: COM SMTI \Longrightarrow cyclic 3DSMI

Cyclic 3DSMI is NP-complete

Sketch of the proof: COM SMTI \Longrightarrow cyclic 3DSMI

Cyclic 3DSMI is NP-complete

Sketch of the proof: COM SMTI \Longrightarrow cyclic 3DSMI

Cyclic 3DSMI is NP-complete

Sketch of the proof: COM SMTI \Longrightarrow cyclic 3DSmi

$$
\left\{a_{i}, b_{k}\right\} \in E(G) \Longleftrightarrow\left(m_{i}, w_{k}, d_{k, i}\right) \in \mathcal{F}
$$

$$
\left\{a_{i}, b_{l}^{\prime}\right\} \in E(G) \Longleftrightarrow\left(m_{i}, w_{l}^{\prime}, d_{l}^{\prime}\right) \in \mathcal{F}
$$

$M \subseteq E(G)$ matching $\Longleftrightarrow F \subseteq \mathcal{F}$ 3D matching

Cyclic 3DSMI is NP-complete

Sketch of the proof: COM SMTI \Longrightarrow cyclic 3DSMI

Cyclic 3DSMI is NP-complete

Sketch of the proof: COM SMTI \Longrightarrow cyclic 3DSMI

Cyclic 3DSMI is NP-complete

Sketch of the proof: COM SMTI \Longrightarrow cyclic 3DSMI

M weakly stable and complete $\Longleftrightarrow F$ stable

Summary of results

Biró-McDermid (2010): cYCLIC 3DSMI is NP-complete.

- P. Biró and E. McDermid. Three-sided stable matchings with cyclic preferences. Algorithmica 58, pp: 5-18, 2010.

Summary of results

Biró-McDermid (2010): cyclic 3DSMI is NP-complete.
A matching is strongly stable, if there exists no weakly blocking family (one player is strictly better off and nobody is worse off).

Biró-McDermid (2010): CYCLIC 3DSM is NP-complete under strong stability.

- P. Biró and E. McDermid. Three-sided stable matchings with cyclic preferences. Algorithmica 58, pp: 5-18, 2010.

Summary of results

Biró-McDermid (2010): cyclic 3DSMI is NP-complete.
A matching is strongly stable, if there exists no weakly blocking family (one player is strictly better off and nobody is worse off).

Biró-McDermid (2010): CYCLIC 3DSM is NP-complete under strong stability.

Summary of results:

	complete lists	incomplete lists
(weak) stability	???	NP-complete
strong stability	NP-complete	(NP-complete)

- P. Biró and E. McDermid. Three-sided stable matchings with cyclic preferences. Algorithmica 58, pp: 5-18, 2010.

Stable 3-way exchanges problem is NP-complete

stable 3-way exchanges for a tripartite graph = CYCLIC 3DSMI

$$
V=M \cup W \cup D \text { (i.e. men, women and dogs) }
$$ every arc $(i, j) \in A$ is from either $W \times M$ or $D \times W$ or $M \times D$.

Stable 3-way exchanges problem is NP-complete

stable 3-way exchanges for a tripartite graph $=$ CYCLIC 3DSMI

$$
\begin{aligned}
& V=M \cup W \cup D \text { (i.e. men, women and dogs) } \\
& \text { every arc }(i, j) \in A \text { is from either } \\
& W \times M \text { or } D \times W \text { or } M \times D
\end{aligned}
$$

So the stable 2- and 3-way exchanges problem is also NP-complete.

Stable 3-way exchanges problem is NP-complete

stable 3 -way exchanges for a tripartite graph $=$ CYCLIC 3DSMI

$$
\begin{aligned}
& V=M \cup W \cup D \text { (i.e. men, women and dogs) } \\
& \text { every arc }(i, j) \in A \text { is from either } \\
& W \times M \text { or } D \times W \text { or } M \times D \text {. }
\end{aligned}
$$

So the stable 2- and 3-way exchanges problem is also NP-complete.

This situation can occur in the application: The set of M, W and D can correspond to patient-donor pairs with blood groups B-A, A-O and O-B, respectively.

Complexity of exchange problems: summary

		exchanges		
		pairwise		
maximum size/weight	does exist?	yes		
	hard to find?			
stable	does exist?			
	hard to find?			

Complexity of exchange problems: summary

		exchanges		
		pairwise		
maximum size/weight	does exist?	yes		
	hard to find?	\mathbf{P}		
stable	does exist?			
	hard to find?			

Edmonds (1967): Polynomial time algorithms for maximum size / maximum weight matching problem.

Complexity of exchange problems: summary

		exchanges		
		pairwise		
maximum size/weight	does exist?	yes		
	hard to find?	P		
stable	does exist?	may not		
	hard to find?			

stable pairwise exchange $=$ stable roommates

Gale and Shapley (1962):
Stable matching may not exist!

Complexity of exchange problems: summary

		exchanges		
		pairwise		
maximum size/weight	does exist?	yes		
	hard to find?	P		
stable	does exist?	may not		
	hard to find?	\mathbf{P}		

stable pairwise exchange $=$ stable roommates

Gale and Shapley (1962):
Stable matching may not exist!
Irving (1985): A stable matching can be found in linear time, if one exists.

Complexity of exchange problems: summary

		exchanges		
		pairwise		
maximum size/weight	does exist?	yes		
	hard to find?	P		
stable	does exist?	may not		
	hard to find?	P		

stable pairwise exchange $=$ stable roommates

Gale and Shapley (1962):
Stable matching may not exist!
Irving (1985): A stable matching can be found in linear time, if one exists.

Abraham-Biró-Manlove (2006): The problem of minimising the number of blocking pairs is NP-hard.

Complexity of exchange problems: summary

		exchanges		
		pairwise	2-3-way	
maximum size/weight	does exist?	yes	yes	
	hard to find?	P		
stable	does exist?	may not		
	hard to find?	P		

Complexity of exchange problems: summary

		exchanges		
		pairwise	2-3-way	
maximum size/weight	does exist?	yes	yes	
	hard to find?	P	NP-hard	
stable	does exist?	may not		
	hard to find?	P		

Abraham et al.; B.-Manlove-Rizzi: The problem of finding a maximum size/weight 2-3-way exchange is NP-complete.
Biró-Manlove-Rizzi: An $O\left(2^{\frac{m}{2}}\right)$-time exact algorithm. Implemented for UK Transplant.

Complexity of exchange problems: summary

		exchanges		
		pairwise	2-3-way	
maximum size/weight	does exist?	yes	yes	
	hard to find?	P	NP-hard	
stable	does exist?	may not	may not	
	hard to find?	P	NPc	

Abraham et al.; B.-Manlove-Rizzi: The problem of finding a maximum size/weight 2-3-way exchange is NP-complete.
Biró-Manlove-Rizzi: An $O\left(2^{\frac{m}{2}}\right)$-time exact algorithm. Implemented for UK Transplant.
B.-McDermid (2010): Stable 2-3-way exchange may not exist, and the related problem is NP-complete, even for tripartite graphs.

Complexity of exchange problems: summary

		exchanges		
		pairwise	$2-3-$ way	unbounded
maximum size/weight	does exist?	yes	yes	yes
	hard to find?	P	NPc	
stable	does exist?	may not	may not	
	hard to find?	P	NPc	

Complexity of exchange problems: summary

		exchanges		
		pairwise	$2-3-$ way	unbounded
maximum size/weight	does exist?	yes	yes	yes
	hard to find?	P	NPc	P
stable	does exist?	may not	may not	
	hard to find?	P	NPc	

Graph Theory folklore: The problem of finding a maximum size/weight (unbounded) exchange is P -time solvable.

Complexity of exchange problems: summary

		exchanges		
		pairwise	$2-3-$-way	unbounded
maximum size/weight	does exist?	yes	yes	yes
	hard to find?	P	NPc	P
stable	does exist?	may not	may not	yes
	hard to find?	P	NPc	P

Graph Theory folklore: The problem of finding a maximum size/weight (unbounded) exchange is P -time solvable.

Scarf-Shapley (1972): Stable exchange always exists. A solution can be found by the Top Trading Cycle algorithm of Gale.

Hungarian higher education matching scheme

Special features:

1. ties
2. lower quotas
3. common quotas
4. paired applications

Theory: Each of the 2.-4. features makes the problem of finding a 'good' solution NP-hard, so heuristics are used...

- P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and common quotas. Theoretical Computer Science 411, 3136-3153 (2010).
- P. Biró and S. Kiselgof. College admissions with stable score-limits. To appear in Central European Journal of Operations Research, 2015.
- P. Biró, and I. McBride. Integer programming methods for special college admissions problems. In Proceedings of COCOA 2014: the 8th Annual International Conference on Combinatorial Optimization and Applications, volume 8881 of LNCS, pages 429-443, Springer, 2014.

Stable matchings and score-limits

Basic admission mechanism (used in many countries):

- colleges set their quotas (over their programmes)
- applicants submit their strict preferences over the colleges
- colleges rank their applicants according to their scores
- central coordinator announces the score-limits
- induced matching: each student is admitted to the first college in her list where she achieved the score-limit

A set of score-limits is stable IFF the induced matching is stable

Score-limits in Spain

C Oferta de titulaciones - Ministerio de Educación, Cultura y Deporte - Microsoft Internet Explorer													- 므
Fäi Szerkestés Nézzet Kedvencek Eszközök Sugó													輰
													Hivatkozások
Y DROKTE SECREIARLA DEESTADOOE EDUCACGN FORM/CIÓN PIOFESIONAL Y UNIVESSIDADES													\wedge
Está usted en: Portada Educación Universidades Oterts de titulaciones Oferta de titulaciones													
Consulta relativa a: COMUNIDAD AUTÓNOMA DE CATALUÑA - Barcelona * Tipo de Estudio: Grado * Tipo de acceso: Universidad *No de Ensen̆anzas Seleccionadas: 449 Ordenar por: \square													
Oferta de plazas 201272013	Notas de corte 2011 no12 PaU	Enseñanza		Ciclo/Tipo	Айо del Plan	Universidad	Tipode Universidad	Centro		Provincia	Localidad	Vnculación	
110	5	Graduado o Gaduada en Diseño por la Universidad Autónona de Barcelona (1)		Grado Veriticado(1)	2009	Universidad Autónoma de Earcelona	Universidad Pública	Eina. Escuela de Diseño y Arte		Barcelicna	Barcelona	Adscrto	
65	7.075	Graduado o Graduada en Gestión Aeronáutica		Graco Oficial	2009	Universidad Autònoma de Earcelona	Lhiversidad Pública	Escuela de Ingenieria		Barcelcna	Cerdanyola del Valles	Propio	
80	5	Graduado o Gaduada en Ingeriería de sistemas de Teecorrunicación por la		Grado	2009	Universidad Autónoma de	Uhiversidad	Escuela de ingenieria		Barcelcna	Cerdanyola	Propio	
H) Start	Q 3 Microsoft Inte... -		[0ther Linux - MM...		$\square 2$ Windows Intézón		- Sy ascore - vnware -...		2,3 Wredt 6.0-[cil...				

Score-limits in Spain

Score-limits in Ireland

Fájl Szerkesztés Nézet Kedvencek Eszközök Súgó
\square
Cim Zithtr: ///www.cao.ie/
\vee
Ulorás
Hivatkozások

Central Applications Office

Tower House, Eglinton Street, Galway, Ireland
Tel. $+353-(0) 91-509800 \mathrm{Fax}+353-(0) 91-562344$

An Lároifig Iontrála

Teach an Túir, Sráid Eglinton, Gaillimh, Éire
Teil. +353 -(0)91-509800 Facs +353 -(0)91-562344

Welcome to web site of the Central Applications Offioe (CAO).

The higher education institutions in the Republic of Ireland have delegated to CAO the task of processing oentrally applications to their first year undergraduate courses.
The participating institutions retain the function of making decisions on admissions.
CAO is required to deal with applications in an efficient and fair manner.
CAO is a not-for-profit company registered in Ireland.

Enter Site

 Copyrighte 2010 Central Applications office. All rights reserved; no part of this website may bereproduced or transmitted in any form or by any means without prior permission from the Central Applications Office. The information on this Website is intended to act as a guide to persons eeking admission to undergraduate courses at third level institutions in Ireland and shall not be deemed to constitute a contract between the CAO or any third party. Whilst every reasonable effor
has been made to ensure that the information on the Official Information pages is correct at the tim has been made to ensure that the information on the (fficial Information pages is correct at the tim
of compiation, Central Applications office, Galuay ($C A O$) is not bound by any error in, or omission from, the material published. The CAO reserves the right to amend, change or delete any information included at any time and it shall notbe bound by any errors or omissions and cannot accopt liability in respact thoreof. Applicants should rafarence both the CAO Handbook and the institution prospectus.

Fáilte chuig láithreán gréasáin na Lár-Oifige Iontrála (CAO),
Tá an obair a ghabhann le próiseáil lárnach na n-iarratas ar chúrsaí chéad bhliana fochéime fhorais oideachais Phoblacht na hÉireann tugtha don CAO ag na forais sin.
Coimeádann na forais rannpháirteacha an fheidhm a ghabhann le cinneadh a dhéananh i dtaobh daoine a ligean isteach.
Ta se de cheangal ar an CAO deileail le hiarratais ar shif eifeachtuil chothrom.
Is ouideachta neamhbhrabúsach an CAO agus tá sé cláraithe in Éirinn.

Isteach sa Láithreán

Cóipcheart © 2010 An Lár-Oifig Iontrála, Gach ceart ar cosaint; ní cheadaitear aon chuid den láthrén gréas áin seo a atáirgeadh nó a tharchur in aon fhoirm nó ar aon mhodh gan cead a fháil roimh ré ón Lár-Oifigg Ientrála. Tá an fhaisnéis atá le fáil sa Láithreán Gráasáin seo beartaithe mar
threoir do dhaoine ató ag isursidh cúresí fochéime a dhésnamh i bhforsiz tríu leibhéal in Eirinn aguz ni mheasfar gurb ionann an thaisnés sin agus contadh leis an CAO no le haon triú pairti. Ce go nidearnadh gach iarracht chun a chinntií oo bhfuil an fhaisnéis atá ar na leathanaigh Faisnéise Oifigiúla ceart tráth a tioms sithe, ní bheidh an Lár-Oifig Iontrála, Gaillimh (CAO), faoi cheangal mar gheall ar aon earráid san fhaisnéis a fhoilsitear nó mar gheall ar aon ní a fhágáil ar lár.
Forchomeadann an cab anceatchun an a fhägäl ar lăr aqus ni féidir leis diteanas a ghlacadh ina leith \sin. Is ceart dilarratasoiri Lámhleabhar an CA O agus réambolaire na bhforas lena mbaineann a léanh,

Score-limits in Ireland

Score-limits in Ireland

Score-limits in Ireland

Score-limits in Turkey

M. Balinski and T. Sönmez. A Tale of Two Mechanisms: Student Placement. Journal of Economic Theory 84, 73-94 (1999)

Score-limits in Hungary

Basic IP model for the College Admissions problem

Feasibility constraints:

$$
\begin{aligned}
& \sum_{j:\left(a_{i}, c_{j}\right) \in E} x_{i j} \leq 1 \text { for each } a_{i} \in A \\
& \sum_{i:\left(a_{i}, c_{j}\right) \in E} x_{i j} \leq u_{j} \text { for each } c_{j} \in C
\end{aligned}
$$

Stability constraints:

$$
\left(\sum_{k: r_{i k} \leq r_{i j}} x_{i k}\right) \cdot u_{j}+\sum_{h:\left(a_{h}, c_{j}\right) \in E, s_{h j}>s_{i j}} x_{h j} \geq u_{j} \text { for each }\left(a_{i}, c_{j}\right) \in E
$$

Where $x_{i j}$ is a binary variable representing the application $\left(a_{i}, c_{j}\right)$, $r_{i j}$ is the rank of the application to c_{j} in a_{i} 's list, and
$s_{i j}$ is the score of a_{i} at c_{j}.

Basic IP for the College Admissions problem

Remark 1: We can get an applicant-optimal (resp. an applicant-pessimal) stable solution by setting the objective function of the IP as the minimum (resp. maximum) of the following term:

$$
\sum_{\left(a_{i}, c_{j}\right) \in E} r_{i j} \cdot x_{i j}
$$

Remark 2: When we have ties in the priorities (due to equal scores), then the following modified stability constraints (together with the feasibility constraints) lead to weakly stable matchings:

$$
\left(\sum_{k: r_{i k} \leq r_{i j}} x_{i k}\right) \cdot u_{j}+\sum_{h:\left(a_{h}, c_{j}\right) \in E, s_{h j} \geq s_{i j}} x_{h j} \geq u_{j} \text { for each }\left(a_{i}, c_{j}\right) \in E
$$

Alternative stability conditions with score-limits

In addition to the feasibility constraints, we define a score-limit $0 \leq t_{j} \leq \bar{s}+1$ for each college c_{j}, and we link these score-limits to the matching with the following constraints:

$$
t_{j} \leq\left(1-x_{i j}\right) \cdot(\bar{s}+1)+s_{i j} \text { for each }\left(a_{i}, c_{j}\right) \in E
$$

and

$$
s_{i j}+1 \leq t_{j}+\left(\sum_{k: r_{i k} \leq r_{i j}} x_{i k}\right) \cdot(\bar{s}+1) \text { for each }\left(a_{i}, c_{j}\right) \in E
$$

Implying that each applicant is assigned to the best college where she achieved the score-limit

Alternative stability conditions with score-limits

In addition to the feasibility constraints, we define a score-limit $0 \leq t_{j} \leq \bar{s}+1$ for each college c_{j}, and we link these score-limits to the matching with the following constraints:

$$
t_{j} \leq\left(1-x_{i j}\right) \cdot(\bar{s}+1)+s_{i j} \text { for each }\left(a_{i}, c_{j}\right) \in E
$$

and

$$
s_{i j}+1 \leq t_{j}+\left(\sum_{k: r_{i k} \leq r_{i j}} x_{i k}\right) \cdot(\bar{s}+1) \text { for each }\left(a_{i}, c_{j}\right) \in E
$$

The stability condition can be replaced by either of the followings:

1. each unfilled college has score-limit zero
2. no college can decrease its score-limit without violating its quota
3. adding the following objective function:

$$
\min \sum_{j=1 \ldots m} t_{j}
$$

Special feature 1: ties with equal treatment policy.

- Students with the same score at some college
- Either all or none of them are admitted
- P. Biró. Student Admissions in Hungary as Gale and Shapley Envisaged. Technical Report. Dept of Computing Science, University of Glasgow, TR-2008-291.

Special feature 1: ties with equal treatment policy.

- Students with the same score at some college
- Either all or none of them are admitted
- P. Biró. Student Admissions in Hungary as Gale and Shapley Envisaged. Technical Report. Dept of Computing Science, University of Glasgow, TR-2008-291.

Special feature 1: ties with equal treatment policy.

- Students with the same score at some college
- Either all or none of them are admitted
- P. Biró. Student Admissions in Hungary as Gale and Shapley Envisaged. Technical Report. Dept of Computing Science, University of Glasgow, TR-2008-291.

Special feature 1: ties with equal treatment policy.

- Students with the same score at some college
- Either all or none of them are admitted
- Stable score-limits: No score-limit can be decreased at any college without violating its quota. (So the last tied group is rejected!)
- P. Biró. Student Admissions in Hungary as Gale and Shapley Envisaged. Technical Report. Dept of Computing Science, University of Glasgow, TR-2008-291.

Special feature 1: ties with equal treatment policy.

- Students with the same score at some college
- Either all or none of them are admitted
- Stable score-limits: No score-limit can be decreased at any college without violating its quota. (So the last tied group is rejected!)

Biró (2007): The generalised student / college-oriented GS algorithms produce student-optimal / pessimal stable score-limits efficiently.

[^2]
Special feature 1: ties with equal treatment policy.

- Students with the same score at some college
- Either all or none of them are admitted
- Stable score-limits: No score-limit can be decreased at any college without violating its quota. (So the last tied group is rejected!)

Biró (2007): The generalised student / college-oriented GS algorithms produce student-optimal / pessimal stable score-limits efficiently.

In Hungary the college-oriented version has been replaced by the applicant-oriented version in 2007.

[^3]
Stable score-limits under different policies

- higher stable: equal treatment, where no quota is violated (used in Hungary)
- breaking ties with lottery
- lower stable: equal treatment, where the quota may be violated with the last tied group (used in Chile)

$>$ P. Biró and S. Kiselgof. College admissions with stable score-limits. To appear in Central European Journal of Operations Research, 2015.
I. Rios, T. Larroucau, G. Parra and R. Cominetti. College Admissions Problem with Ties and Flexible Quotas. Working paper, 2014.
- T. Fleiner and Zs. Jankó. Choice Function-Based Two-Sided Markets: Stability, Lattice Property, Path Independence and Algorithms. Algorithms 7(1), 32-59 (2014)

College Admissions with ties: stable score-limits

In addition to the feasibility constraints, we define a score-limit $0 \leq t_{j} \leq \bar{s}+1$ for each college c_{j}, and the following constraints:

$$
t_{j} \leq\left(1-x_{i j}\right) \cdot(\bar{s}+1)+s_{i j} \text { for each }\left(a_{i}, c_{j}\right) \in E
$$

and

$$
s_{i j}+1 \leq t_{j}+\left(\sum_{k: r_{r_{k}} \leq r_{i j}} x_{i k}\right) \cdot(\bar{s}+1) \text { for each }\left(a_{i}, c_{j}\right) \in E
$$

together with a set of constraints implying that no college can decrease its score-limit without violating its quota.

College Admissions with ties: stable score-limits

In addition to the feasibility constraints, we define a score-limit $0 \leq t_{j} \leq \bar{s}+1$ for each college c_{j}, and the following constraints:

$$
t_{j} \leq\left(1-x_{i j}\right) \cdot(\bar{s}+1)+s_{i j} \text { for each }\left(a_{i}, c_{j}\right) \in E
$$

and

$$
s_{i j}+1 \leq t_{j}+\left(\sum_{k: r_{r_{k}} \leq r_{i j}} x_{i k}\right) \cdot(\bar{s}+1) \text { for each }\left(a_{i}, c_{j}\right) \in E
$$

together with a set of constraints implying that no college can decrease its score-limit without violating its quota.

OR with the following objective function:

$$
\min \sum_{j=1 \ldots m} t_{j}
$$

Special feature 2: lower quotas

Suppose that college c_{j} has lower quota l_{j} and upper quota u_{j}.
A solution is a matching, where each college c_{j} has either

- no assignees ("closed college") or
- at least l_{j} and at most u_{j} assignees ("open college").

Special feature 2: lower quotas

Suppose that college c_{j} has lower quota l_{j} and upper quota u_{j}.
A solution is a matching, where each college c_{j} has either

- no assignees ("closed college") or
- at least l_{j} and at most u_{j} assignees ("open college").

A matching is stable is there exist no

- "blocking pair", consisting of an open college and an unsatisfied applicant,
- "blocking coalition", consisting of a closed college c_{j} and I_{j} unsatisfied applicants.

Special feature 2: lower quotas

Studies:	Saxophone	Trumpet
lower and upper quotas	$1 \leq \cdots \leq 1$	$2 \leq \cdots \leq 2$
1st applicant:	Adam	Adam
2nd applicant:	Bill	Bill

Adam's list: Trumpet, Saxophone Bill's list: Saxophone, Trumpet

- P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

Special feature 2: lower quotas

Studies:	Saxophone	Trumpet
lower and upper quotas	$1 \leq \cdots \leq 1$	$2 \leq \cdots \leq 2$
1st applicant:	Adam	Adam
2nd applicant:	Bill	Bill

Adam's list: Trumpet, Saxophone Bill's list: Saxophone, Trumpet

- P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

Special feature 2: lower quotas

Studies:	Saxophone	Trumpet
lower and upper quotas	$1 \leq \cdots \leq 1$	$2 \leq \cdots \leq 2$
1st applicant:	Adam	Adam
2nd applicant:	Bill	Bill

Adam's list: Trumpet, Saxophone Bill's list: Saxophone, Trumpet

- P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

Special feature 2: lower quotas

Studies:	Saxophone	Trumpet
lower and upper quotas	$1 \leq \cdots \leq 1$	$2 \leq \cdots \leq 2$
1st applicant:	Adam	Adam
2nd applicant:	Bill	Bill

Adam's list: Trumpet, Saxophone Bill's list: Saxophone, Trumpet

- P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

Special feature 2: lower quotas

Studies:	Saxophone	Trumpet
lower and upper quotas	$1 \leq \cdots \leq 1$	$2 \leq \cdots \leq 2$
1st applicant:	Adam	Adam
2nd applicant:	Bill	Bill

Adam's list: Trumpet, Saxophone Bill's list: Saxophone, Trumpet

- P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

Special feature 2: lower quotas

Studies:	Saxophone	Trumpet
lower and upper quotas	$1 \leq \cdots \leq 1$	$2 \leq \cdots \leq 2$
1st applicant:	Adam	Adam
2nd applicant:	Bill	Bill

Adam's list: Trumpet, Saxophone Bill's list: Saxophone, Trumpet

- P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

Special feature 2: lower quotas

Studies:	Saxophone	Trumpet
lower and upper quotas	$1 \leq \cdots \leq 1$	$2 \leq \cdots \leq 2$
1st applicant:	Adam	Adam
2nd applicant:	Bill	Bill

Adam's list: Trumpet, Saxophone Bill's list: Saxophone, Trumpet

- P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

Special feature 2: lower quotas

Studies:	Saxophone	Trumpet
lower and upper quotas	$1 \leq \cdots \leq 1$	$2 \leq \cdots \leq 2$
1st applicant:	Adam	Adam
2nd applicant:	Bill	Bill

Adam's list: Trumpet, Saxophone Bill's list: Saxophone, Trumpet
B.-Fleiner-Irving-Manlove (2010): Stable matching may not exist, and the related decision problem is NP-complete.

[^4]
Special feature 2: lower quotas

Studies:	Saxophone	Trumpet
lower and upper quotas	$1 \leq \cdots \leq 1$	$2 \leq \cdots \leq 2$
1st applicant:	Adam	Adam
2nd applicant:	Bill	Bill

Adam's list: Trumpet, Saxophone Bill's list: Saxophone, Trumpet
B.-Fleiner-Irving-Manlove (2010): Stable matching may not exist, and the related decision problem is NP-complete.

A natural heuristic is used in Hungary.

[^5]
College Admissions with lower quotas: IP model

$o_{j} \in\{0,1\}$ is the indicator variable showing whether c_{j} is open. New feasibility constraint:

$$
o_{j} \cdot l_{j} \leq \sum_{i:\left(a_{i}, c_{j}\right) \in E} x_{i j} \leq o_{j} \cdot u_{j} \text { for each } c_{j} \in C
$$

Pairwise stability for open colleges:

$$
\left(\sum_{k: r_{i k} \leq r_{i j}} x_{i k}\right) \cdot u_{j}+\sum_{h:\left(a_{h}, c_{j}\right) \in E, s_{h j}>s_{i j}} x_{h j} \geq o_{j} \cdot u_{j} \text { for each }\left(a_{i}, c_{j}\right) \in E
$$

group-stability for closed colleges:

$$
\sum_{i:\left(a_{i}, c_{j}\right) \in E}\left[1-\sum_{k: r_{r_{i}}<r_{i j}} x_{i k}\right] \leq\left(1-o_{j}\right) \cdot\left(l_{j}-1\right)+o_{j} \cdot n \text { for each } c_{j} \in C
$$

Some lemmas that can speed up the solver

$c_{1}, c_{2}, \ldots, c_{m-k}, c_{m-k+1}, \ldots, c_{m}$
Lemma 1: The colleges that reach their lower quotas in the stable solutions of a College Admissions problem with no lower quotas must be open in every stable solution where lower quotas are respected.
Lemma 2: Suppose that X is the set of colleges that do not reach their lower quotas in the stable solutions with no lower quotas. Given a college c_{j} of X, if all the colleges in X but c_{j} are closed and c_{j} still does not achieve its lower quota then c_{j} must be closed in any stable solution with lower quotas.
and then we can repeat this filtering process...

Special feature 3: common quotas

Some set of colleges may have a common quota.
No common quota may be exceeded in a feasible matching.

Special feature 3: common quotas

Some set of colleges may have a common quota.
No common quota may be exceeded in a feasible matching.
The stability of a matching:
If an applicant a_{i} is not matched to a college c_{j}, then

- either a_{i} is matched to a better college
- or c_{j} has filled its quota with better applicants than a_{i}
- or there is a set of colleges C_{p} such that $c_{j} \in C_{p}$ and C_{p} filled its quota with better applicants.

Special feature 3: common quotas

| Studies: | p. CS $_{B M E}$ | s. CS $_{B M E}$ | \ldots | s. CS $_{G D}$ | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| c. quotas: | | CS national quota: ≤ 3000 | | | |
| quotas: | ≤ 50 | ≤ 450 | \ldots | ≤ 400 | \ldots |
| 2004: | $49(78 p)$ | $474(113 p)$ | \ldots | $336(74 p)$ | \ldots |
| 2005: | $51(90 p)$ | $423(126 p)$ | \ldots | $369(77 p)$ | \ldots |
| 2006: | $41(80 p)$ | $443(125 p)$ | \ldots | $321(78 p)$ | \ldots |
| 2007: | $51(100 p)$ | $478(120 p)$ | \ldots | $246(79 p)$ | \ldots |

Special feature 3: common quotas

Studies:	p. $\mathrm{CS}_{\text {BME }}$	s. $\mathrm{CS}_{\text {BME }}$		s. $\mathrm{CS}_{G D}$	
c. quotas:		CS national quota: ≤ 3000			
quotas:	≤ 50	≤ 450		≤ 400	
2004:	49 (78p)	474 (113p)		336 (74p)	
2005:	51 (90p)	423 (126p)		369 (77p)	
2006:	41 (80p)	443 (125p)		321 (78p)	
2007:	51 (100p)	478 (120p)		246 (79p)	
Studies:	p. $\mathrm{CS}_{\text {BME }}$	s. $\mathrm{CS}_{B M E}$		s. $\mathrm{CS}_{G D}$	
c. quotas:		CS national quota: ≤ 3000			
c. quotas:	faculty quota: ≤ 500			≤ 400	
2008:	8 (365p)	492 (366p)		165 (160p)	
2009:	16 (365p)	583 (373p)		183 (224p)	
2010:	23 (384p)	572 (370p)		241 (206p)	
2011:	24 (372p)	573 (370p)	\ldots	356 (200p)	
2012:	35 (396p)	578 (370p)		40 (240p)	
2013:	42 (382p)	519 (370p)	\ldots	33 (240p)	

CA with common quotas: theoretical findings

B.-Fleiner-Irving-Manlove (2010): For nested set systems, stable matching always exists and it can be obtained by generalised Gale-Shapley type algorithms. Moreover, the applicant / college -oriented versions produce the best / worst possible stable matchings for the applicants.

Otherwise, stable matching may not exist, and the related decision problem is NP-complete.

- P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

CA with common quotas: theoretical findings

B.-Fleiner-Irving-Manlove (2010): For nested set systems, stable matching always exists and it can be obtained by generalised Gale-Shapley type algorithms. Moreover, the applicant / college -oriented versions produce the best / worst possible stable matchings for the applicants.

Otherwise, stable matching may not exist, and the related decision problem is NP-complete.

The set system had been nested in Hungary until 2007, but became non-nested in 2008 with the possibility that no stable solution exists, and the related decision problem being NP-hard. So, heuristics are used...
P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and
common quotas. Theoretical Computer Science 411, 3136-3153 (2010). common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

IP for CA with common quotas

Let u_{p} be a common upper quota for C_{p} and t_{p} a corresponding score-limit. Additional feasibility constraint:

$$
\sum_{i:\left(a_{i}, c_{j}\right) \in E, c_{j} \in C_{p}} x_{i j} \leq u_{p} \text { for each } C_{p} \subseteq C
$$

Stability:

$$
t_{p} \leq\left(1-x_{i j}\right) \cdot(\bar{s}+1)+s_{i j} \text { for each }\left(a_{i}, c_{j}\right) \in E \text { and } c_{j} \in C_{p}
$$

and
$s_{i j}+1 \leq t_{p}+\left(\sum_{k: r_{i k} \leq r_{i j}} x_{i k}+y_{i}^{p}\right) \cdot(\bar{s}+1)$ for each $\left(a_{i}, c_{j}\right) \in E$ and $c_{j} \in C_{p}$
with

$$
\sum_{p: c_{j} \in C_{p}} y_{i}^{p} \leq q_{j}-1 \text { for each }\left(a_{i}, c_{j}\right) \in E
$$

where $y_{i}^{p} \in\{0,1\}$ and q_{j} is the number of sets c_{j} is involved in.

Special feature 4: paired applications

Students may apply for pair of programmes (these are special programmes for teachers). In 2010: 5,578 students applied for teachers' programmes, and 2,091 of them applied for pair of programmes...

This is like the Hospitals Residents problems with couples! Ronn's 1990 theorem implies NP-hardness here as well.

Integer programming techniques used for market design Many papers on auctions and allocation problems

- N. Nisan. Bidding and allocation in combinatorial auctions. In Proceedings of ACM-EC 2000.
- E. Budish, A. Othman and T. Sandholm. Finding Approximate Competitive Equilibria: Efficient and Fair Course Allocation. In Proceedings of AAMAS 2010.
- N. Garg, T. Kavitha, A. Kumar, K. Mehlhorn, and J. Mestre. Assigning Papers to Referees. Algorithmica, 58(1):119-136 (2010).

Most kidney exchange applications are based on IP techniques

- A.E. Roth, T. Sönmez and M.U. Ünver. Efficient Kidney Exchange: Coincidence of Wants in Markets with Compatibility-Based Preferences. American Economic Review, 97(3), 828-851 (2007).
- D. Abraham, A. Blum and T. Sandholm. Clearing Algorithms for Barter-Exchange Markets: Enabling Nationwide Kidney Exchanges. In Proceedings of ACM-EC 2007.
- D.F. Manlove and G. O'Malley. Paired and altruistic kidney donation in the UK: Algorithms and experimentation. In Proceedings of SEA 2012.

Recent papers on IP methods for stable matching problems

- A. Kwanashie and D.F. Manlove. An Integer Programming approach to the Hospitals / Residents problem with Ties. Proceedings of OR 2013, Springer, pp: 263-269, 2014.
- P. Biró, I. McBride and D.F. Manlove. The Hospitals / Residents problem with Couples: Complexity and Integer Programming models. Proceedings of SEA 2014, vol. 8504 of LNCS, pp: 10-21, 2014.

Integer programming for solving the Hungarian case

What we have done in this paper:

- We formulated IPs to solve the problems for each of the four special features
- We investigated some combination of these special features
- We established new lemmas to speed up the solutions

Future plans:

- To integrate the IPs into a single one that can be used to solve the real application
- Implement and test the IPs on a real data from 2008, Hungary
- Other applications? E.g.
- resident allocation with regional caps
- controlled school choice
- P. Biró, and I. McBride. Integer programming methods for special college admissions problems. In Proceedings of COCOA 2014: the 8th Annual International Conference on Combinatorial Optimization and Applications, volume 8881 of LNCS, pages 429-443, Springer, 2014

Computational complexity in mechanism design

Why is this aspect interesting?

- because the computational complexity of the underlying matching problems is crucial in the solvability of practical applications
- sometimes we can avoid the computationally hard problems when designing the market
- if we cannot avoid the hard problems, algorithm/optimisation theory still provides many tools to analyse and solve them...

Further references

New book on the algorithmic aspects:
David F. Manlove: Algorithmics of matching under preferences. World Scientific, 2013.

Summer school talks by Manlove and others:
http://econ.core.hu/english/res/MatchingSchool.html
COST Action on Computational Social Choice:
http://www.illc.uva.nl/COST-IC1205/
The Matching in Practice network website: http://www.matching-in-practice.eu/

My research website:
http://www.cs.bme.hu/~pbiro/research.html

[^0]: D.F. Manlove, R.W. Irving. Finding large stable matchings. ACM Journal of Experimental Algorithmics, volume 14, section 1, article 2, 30 pages, 2009.

[^1]: - P. Biró and B. Rastegari. Matching under uncertain preference. Working paper, 2014.

[^2]: - P. Biró. Student Admissions in Hungary as Gale and Shapley Envisaged. Technical Report. Dept of Computing Science, University of Glasgow, TR-2008-291.

[^3]: - P. Biró. Student Admissions in Hungary as Gale and Shapley Envisaged. Technical Report. Dept of Computing Science, University of Glasgow, TR-2008-291.

[^4]: $>$ P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

[^5]: \rightarrow P. Biró, T.Fleiner, R.W. Irving and D.F. Manlove. The College Admissions problem with lower and common quotas. Theoretical Computer Science 411, 3136-3153 (2010).

