The Teachers Assignment Problem

Katarína Cechlárová
P. J. Šafárik University, Košice, Slovakia

First some geography

Some history

- 1657: Universitas Cassoviensis

- 1776: Academia Regia Cassoviensis
- 1850-1921 Law Academy
- 1959: Pavol Jozef Šafárik University

Faculties: Medicine, Law, Public administration, Science, Arts 1501 employees, 8138 students (2013)

- 1963: Science faculty

326 employees, 1283 students (2013)
originally: only teachers study, first graduates 1967
combination of 2 subjects
Mathematics, Physics, Chemistry, Biology
Informatics (since 1989), Geography (since 2003)
study programmes with Arts faculty (since 2011)

Numbers of graduates of

with Arts Faculty,
19 combination

Assignment of teachers to schools
Moscow October 2015

Graduates in combinations with Mathematics and Informatics

Practical placement

Teachers study for upper elementary and lower secondary schools

- specialization in two subjects (MF, IB, SjG,...)
- practical placements at schools several times during their study
- ideally at different types of schools
- each student needs an approved supervising teacher for each subject
- university/faculty provides a list of teaching schools + teachers
- binary preferences: some schools are unacceptable for a student (e.g. because of commuting)

Two types of placements:

A: students divided into groups (4-6) with the same subject groups visit classes and observe lessons, then analyze with the teacher; one subject in period 1 , second subject in period 2
B: student teaches pupils herself: both subjects simultaneously at the same school
Assignments are made by hand: several days needed

Assignment procedures elsewhere
 NATIONALRESIDENT MATCHING PROGRAM ${ }^{*}$

THI工 AHGORIMHM OF HAPPINISS

THE NRMP MATCHING ALGORITHM PRODUCES A "BEST FIT" FOR APPLICANTS AND PROGRAMS. AND SINCE RESEARCH ON THE ALGORITHM WAS A BASIS FOR AWARDING THE 2012 NOBEL PRIZE IN ECONOMICS, YOU CAN BE CONFIDENT IN ITS RESULTS.

THE MATCH: GETTING IT RIGHT SINCE 1952.
SHOW US YOUR MATGH FAGE, UPLOAD YOUR PIC TO OUR FAGEOOOK PAGE.

Assignment procedures elsewhere

Welcome

Benvindu
歡迎光臨
Byenveni
Bem－vindos
Soo dhowaada
Bienvenidos
Chào mừng

Vyberte jazyk
Používa technológiu Google Preložit＇

District

School Committee
Mission Statement
Superintendent
Departments
Staff Directory
District Calendar

Home » District » Facts and Figures

Facts and Figures

These pages contain facts and figures about the Boston Public Schools，including information about the district＇s budget and points of pride，as well as a look back on winning the 2006 Broad Prize for Urban Education．

The BPS At A Glance fact sheet provides a quick overview of the district and statistics on the district＇s staff，students，budget，programs and more．The Raising School Quality brochure is a colorful overview of facts and figures，plus major initiatives and points of pride．A Brief History of BPS Student Assignment gives important dates in the city＇s struggle to desegregate its schools and achieve equity in school assignments．

Matching in Practice

European network for research on matching practices in education and related markets

Welcome

"Matching in Practice" was created in September 2010 to bring together the growing community of researchers in Europe working on the various aspects of assignment and matching in education and related labour markets, with a view to actively foster the interactions between the different strands of approaches used by these researchers (theory, experiments, analysis of field data, policy/market design) and aggregate expertise about the actual functioning of these markets in Europe.

Upcoming Events

Meeting of COST Action IC1205 on Computational Social Choice
April 14 - April 16

MATCH-UP 2015: The Third International
Workshop on Matching Under Preferences
April 16 - April 17

Not so successiul stories

THE 纉琉TIMES

News \mid Opinion | Business | Money | Sport | Life | Arts | Puzzles | Papers
Welcome to your preview of The Times

Online selection of new doctors 'grossly unfair'

By Nigel Hawkes Health Editor

Published at 12:00AM, March 42006
RADICAL changes to medical training, introduced by the Department of Health, aim to train a new generation of doctors in the skills of communicating and working as a team.

Traditionally, junior doctors have served a form of apprenticeship, selected and mentored by senior figures who have guided their careers. Suspicious of what it saw as an "old boy" network, the department has introduced a scheme that aims to select and distribute medical students to their first posts by an entirely different system.

Not so successful stories

Assignment of teachers to schools
Moscow October 2015

Not so successful stories

Na Feira, Crato ouviu dois coros: um afinado de alunos, outro de protesto de professores sem trabalho

MULIIMÉDIA

Nesta sexta-feira, o ministro da Educação referiu-se a um "dia de festa" pela inauguração da nova EB2,3 Fernando Pessoa, em Santa Maria da Feira, escola com 1160 alunos, 41 turmas, 90 professores e 31 auxiliares. À sua espera, dentro da escola, estava um coro afinado de alunos do $9 .{ }^{\circ}$ ano com várias canções preparadas e acompanhadas ao piano. Lá fora, rodeado por um cordão policial, um coro de protestos em alta voz, megafone em punho, mobilizado pelo movimento nacional de professores Boicote e Cerco, com
"Crato rua, eeecha não e tua" na ponta das linguas e unrrattercom uma
Tormula matemática: "Caos nos concursos $=$ alunos sem aulas +40.000
professores sem trabalho."

Our task

- Create a mathematical model of the teachers assignment problem
- Study its structural and algorithmic properties
- Create a user-friendly computer program for every-day use
- My friends and colleagues involved in the research:
- Tamás Fleiner, Budapest
- David Manlove, Ian McBride, Glasgow
- Pavlos Eirinakis, Yiannis Mourtos, Dimitris Magos, Athens
- Eva Oceláková-Potpinková, Silvia Bodnárová, Michal Barančík - Košice

We also want to thank to COST action IC 1205

Outline of the talk

- Maximizing the number of assigned trainee teachers:
- placement A and placement B
- combinatorial representation and complexity results
- results of ILP implementation
- approximation algorithms
- Two sided preferences - stability
- suitable stability notion
- complexity results

The talk is hased on publications

- K. Cechlárová, T. Fleiner, D. Manlove, I. McBride, E. Potpinková: Modelling practical placement of trainee teachers to schools, Central European Journal of Operations Research 23(3), 547-562, 2015.
- K. Cechlárová, P. Eirinakis, T. Fleiner, D. Magos, I. Mourtos, E. Ocel'áková: Approximation Algorithms for the Teachers A ssignment Problem, Proc. 13th Int. Symposium on Operational Research in Slovenia, 479-484, 2015.
- K. Cechlárová, T. Fleiner, D. Manlove, I. McBride: Stable matchings of teachers to schools, arXiv: 1501.05547

Formal model: TAP

- An instance of tap is a triple $I=(P, A, S)$
- set $P=\{M, F, B, I, \ldots\}$ of subjects
- set A of applicants $=$ student teachers
- each $a \in A$ has pair of subjects $\mathbf{p}(a)$ and set of acceptable schools $S(a)$

	$\mathbf{p}\left(a_{i}\right)$	$\mathbf{s}\left(a_{i}\right)$
a_{1}	MF	$\left\{s_{1}, s_{2}\right\}$
a_{2}	IB	$\left\{s_{1}, s_{2}, s_{5}, \ldots\right\}$
\vdots	\vdots	\vdots

- set S of schools with partial capacities $c_{p}(s)$

	c_{M}	c_{F}	c_{B}	c_{I}	\ldots
s_{1}	2	3	4	1	\cdots
s_{2}	1	0	2	1	\cdots
\vdots					

Placement A:
separated subjects

Separated sulbjects - network llows

For instance I construct network $N(I)=(V, E, w)$
$V=\left\{a, a_{p}, a_{q}, \mathbf{p}(a)=\{p, q\}, a \in A\right\} \cup\left\{s_{p}, s \in S, p \in P, c_{p}(s) \neq \emptyset\right\} \cup\{r, t\}$.
Arcs: $r a$ for each $a \in A$; capacity 2
$a a_{p}, a a_{q}$ for $p, q \in \mathbf{p}(a)$, capacity 1
$a_{p} s_{p}$ for $s \in S(a)$, capacity 1

Theorem. All students can be placed iff $N(I)$ admits a flow of size $2 \cdot|A|$.

Separated sulbjects - network ilows

To allocate subjects to periods: technique of capacity and flow halving each capacity w replaced by $\left\lceil\frac{w}{2}\right\rceil$, each flow $f(e)$ replaced by $\frac{f(e)}{2}$
Integrality lemma. If f is a flow of integer value K then there exists an integer flow f^{\prime} such that $\lfloor f(e)\rfloor \leq f^{\prime}(e) \leq\lceil f(e)\rceil$ for each arc e.

Arcs with flow equal 1 correspond to the subject performed in period 1.
R. W. Irving, Matching medical students to pairs of hospitals: a new variation on an old theme, LNCS 1461, 381-392 (1998).

Separated sulbjects - create grouns

Lemma. Let $n \geq 8$ be any integer. Then there exist integers x_{1}, x_{2}, x_{3} such that $n=4 x_{1}+5 x_{2}+6 x_{3}$.

Proof. Let $y=\left\lfloor\frac{n}{6}\right\rfloor$.

$x \bmod 6$	x_{1}	x_{2}	x_{3}
0	y	0	0
1	$y-2$	1	2
2	$y-1$	0	2
3	$y-1$	1	1
4	y	0	1
5	y	1	0

Number of groups is $x_{1}+x_{2}+x_{3}$; for $n \geq 8$ we get minimum possible.
If the numbers of students whose specialization involves one subject is smaller than 8 , then the minimizing the number of placement groups difficult.

Separated sulbjects - create grouns

specialization	Students
MF	Anna, Boris
MI	Clyde, Daniel
IF	Eva, Frank

Group	Students
M	Anna, Boris, Clyde, Daniel
I	Clyde, Daniel, Eva, Frank
F	Anna, Boris, Eva, Frank

- these groups cannot be scheduled
- if M is in period 1 , then both F and I must be in period 2
- Eva and Frank cannot complete both subjects

Separated sulbjects - create groups

Theorem. If the numbers of students studying one subject are small then minimizing the number of placement groups is NP-hard.

Proof. Polynomial transformation from the problem BIPARTITE SUBGRAPH Input: Graph $G=(V, H)$, integer k.
Question: Is it possible to delete at most k vertices to make G bipartite?
Transformation: Vertices are subject, edges are students

An instance (G, k) of BIPARTITE SUBGRAPH is a YES-instance \Longleftrightarrow if $|V|+k$ groups suffice.
\Longrightarrow Let us delete k vertices

Separated sulbjects - create grouns

Theorem. If the numbers of students studying one subject are small then minimizing the number of placement groups is NP-hard.

Proof. Polynomial transformation from the problem BIPARTITE SUBGRAPH Input: Graph $G=(V, H)$, integer k.
Question: Is it possible to delete at most k vertices to make G bipartite?
Transformation: Vertices are subject, edges are students

An instance (G, k) of BIPARTITE SUBGRAPH is a YES-instance \Longleftrightarrow if $|V|+k$ groups suffice.
\Longrightarrow Let us delete k vertices

Separated sulbjects - create grouns

Theorem. If the numbers of students studying one subject are small then minimizing the number of placement groups is NP-hard.

Proof. Polynomial transformation from the problem BIPARTITE SUBGRAPH Input: Graph $G=(V, H)$, integer k.
Question: Is it possible to delete at most k vertices to make G bipartite?
Transformation: Vertices are subject, edges are students

An instance (G, k) of BIPARTITE SUBGRAPH is a YES-instance \Longleftrightarrow if $|V|+k$ groups suffice.
\Longrightarrow Let us delete k vertices
Now we can color the vertices by 2 colors

Separated sulbjects - create grouns

Theorem. If the numbers of students studying one subject are small then minimizing the number of placement groups is NP-hard.

Proof. Polynomial transformation from the problem BIPARTITE SUBGRAPH Input: Graph $G=(V, H)$, integer k.
Question: Is it possible to delete at most k vertices to make G bipartite?
Transformation: Vertices are subject, edges are students

An instance (G, k) of BIPARTITE SUBGRAPH is a YES-instance \Longleftrightarrow if $|V|+k$ groups suffice.
\Longrightarrow Let us delete k vertices
Now we can color the vertices by 2 colors
Duplicate the deleted vertices and color them the by two different colors

Formal model: TAP

- An instance of TAP is a triple $I=(P, A, S)$
- set $P=\{M, F, B, I, \ldots\}$ of subjects
- set A of applicants $=$ student teachers
- each $a \in A$ has pair of subjects $\mathbf{p}(a)$ and set of acceptable schools $S(a)$

	$\mathbf{p}\left(a_{i}\right)$	$\mathbf{s}\left(a_{i}\right)$
a_{1}	MF	$\left\{s_{1}, s_{2}\right\}$
a_{2}	IB	$\left\{s_{1}, s_{2}, s_{5}, \ldots\right\}$
\vdots	\vdots	\vdots

- set S of schools with partial capacities $c_{p}(s)$

	c_{M}	c_{F}	c_{B}	c_{I}	\cdots
s_{1}	2	3	4	1	\cdots
s_{2}	1	0	2	1	\cdots
\vdots					

Placements B:
inseparable subjects

Assignment of teachers to schools

Inseparable subjects

Applicants:

a_{1}	MF	s_{1}
a_{2}	MI	s_{1}
a_{3}	FI	s_{1}, s_{2}

Schools:

	c_{M}	c_{F}	c_{I}
s_{1}	2	1	1
s_{2}	0	1	1

An assignment of students to schools is feasible if:

- each student is assigned to an acceptable school
- for each $s \in S$ and each $p \in P$: the number of students assigned to s whose specialization includes p does not exceed the capacity $c_{p}(s)$ of school s in subject p.
In this instance, all students can be placed.
However, if the first step is unfortunate ...

Inseparable sulbjects

Applicants:

a_{1}	MF	s_{1}
a_{2}	MI	s_{1}
a_{3}	FI	s_{1}, s_{2}

Schools:

	c_{M}	c_{F}	c_{I}
s_{1}	2	1	1
s_{2}	0	1	1

An assignment of students to schools is feasible if:

- each student is assigned to an acceptable school
- for each $s \in S$ and each $p \in P$: the number of students assigned to s whose specialization includes p does not exceed the capacity $c_{p}(s)$ of school s in subject p.
In this instance, all students can be placed.
However, if the first step is unfortunate . . .

\ldots maximal matching assigning only $1 / 3$ of maximum is obtained
Theorem. If μ and μ^{*} are maximal and maximum then $|\mu| \geq\left|\mu^{*}\right| / 3$.

Computational complexity of TAP

Solvable in polynomial time if there are only 2 subjects.
Theorem 1. The problem of maximizing the number of assigned students is NP-hard even in the cases when each student lists at most 3 schools and

- there are 3 subjects and no partial capacity exceeds 2 ;
- there are 4 subjects and no partial capacity exceeds 1 .

Theorem 2. If each applicant is allowed to list at most 2 acceptable schools and all partial capacities are at most 1 then it can be decided in polynomial time whether all applicants can be placed. However, the problem of maximizing the number of assigned students is NP-hard.

Proof: 38 subjects
Open problem: What is the minimum number of subjects for NP-completeness?

Computational complexity of TAP

Theorem 3. The problem of maximizing the number of assigned students is NP-hard even in the case when each school is acceptable for each student and no partial capacity exceeds 2 .

Proof: number of subjects is not constant
Open problem: Complexity with the constant number of subjects?

Open problem: Eficiently solvable special cases?

Open problem: Other parameters for efficient solvability?

Integer linear program for TAP

Students $A=\left\{a_{1}, \ldots, a_{n}\right\}$, schools $S=\left\{s_{1}, \ldots, s_{m}\right\}$, subjects $P=\left\{p_{1}, \ldots, p_{k}\right\}$ Student a_{i} has a k-vector $\mathbf{y}: y_{i r}=1$ iff a_{i} studies subject p_{r} Student a_{i} has an ordered list of acceptable schools of length $\ell\left(a_{i}\right)$ Let $s\left(a_{i}, \rho\right)$ be the school in the ρ-th place of a_{i} 's list Binary variables $x_{i, \rho}$ for each a_{i} and each $\rho=1,2, \ldots, \ell\left(a_{i}\right)+1$ Interpretation: $x_{i, \rho}= \begin{cases}1 & \text { if } a_{i} \text { is assigned to the school in position } \rho \\ 0 & \text { otherwise }\end{cases}$ Cost function: $\begin{array}{ll}\sum_{i=1}^{n} \sum_{\rho=1}^{\ell\left(a_{i}\right)} x_{i \rho} \rightarrow \max \\ \text { Constraints: } & \sum_{\rho=1}^{\ell\left(a_{i}\right)+1} x_{i \rho}=1 \\ \sum_{i=1}^{n} \sum_{\rho=1}^{\ell\left(a_{i}\right)}\left\{x_{i \rho}: s\left(a_{i}, \rho\right)=s_{j} \& y_{i \rho}=1\right\} \leq c_{\rho}\left(s_{j}\right) \\ x_{i \rho} \in\{0,1\}\end{array}$

P.J.Šafárik university in numbers

Usual practice: students of Ps are allocated to E or Ov.

year	\# of students	\# of schools	\# of assigned	time
2015	82	59	82	8 sec
2014	138	197	137	21 sec
2014	138	59	120	6 minutes
$2014+2015$	220	197	208	13 minutes
$2014+2015$	220	59	no result	>7 hours

unassigned combinations EH, ENj, GPs, GOv, OvH

Approximation algorithms

Approximation algorithm: does not output the maximum number of asignees Approximation algorithm \mathcal{A} for a maximization problem \mathcal{P} has an appoximation guarantee α if $\operatorname{Opt}(I) \leq \alpha \cdot \mathcal{A}(I)$ for each instance I of \mathcal{P}. Notation: A_{p} is the set of applicants whose specialization involves subject p Algorithm to find μ^{p} : maximum cardinality matching for A_{p} : flow network

Approximation algorithms: Greedv1

begin fix the order of subjects $1,2, \ldots, k$;
for $p:=1$ to k do
begin find a maximum cardinality matching μ^{p} for A_{p}; reduce the set of applicants and partial capacities of schools accordingly end
end
Theorem. The approximation guarantee of algorithm Greedy1 is 2.

applicant	type	acceptable schools
b_{1}	$\{3,4\}$	s_{1}
b_{2}	$\{2,4\}$	s_{2}
b_{3}	$\{2,3\}$	s_{3}
a_{1}	$\{1,2\}$	s_{1}, s_{2}, s_{3}
a_{2}	$\{1,3\}$	s_{1}, s_{2}, s_{3}
a_{3}	$\{1,4\}$	s_{1}, s_{2}, s_{3}

Approximation algorithms: Greedv1

begin fix the order of subjects $1,2, \ldots, k$;
for $p:=1$ to k do
begin find a maximum cardinality matching μ^{p} for A_{p}; reduce the set of applicants and partial capacities of schools accordingly end
end
Theorem. The approximation guarantee of algorithm Greedy1 is 2.

applicant	type	acceptable schools
b_{1}	$\{3,4\}$	s_{1}
b_{2}	$\{2,4\}$	s_{2}
b_{3}	$\{2,3\}$	s_{3}
a_{1}	$\{1,2\}$	s_{1}, s_{2}, s_{3}
a_{2}	$\{1,3\}$	s_{1}, s_{2}, s_{3}
a_{3}	$\{1,4\}$	s_{1}, s_{2}, s_{3}

If the first stage outputs μ^{1} as follows ... matching of size $3=\frac{1}{2}$ of optimum is output. Approximation bound is tight.

Approximation algorithms: Greedy2

begin for $p:=1$ to k find a maximum cardinality matching μ^{p} of applicants A_{p}; keep μ^{j} whose size is maximum;
add applicants from $A \backslash A_{j}$ arbitrarily to get a maximal matching
end
Theorem. The approximation guarantee of algorithm Greedy2 is $\frac{k}{2}$. Better only for $k=3$.

| school | capacities for | | | | applicant | type |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | \(\left.\begin{array}{l}acceptable

schools\end{array}\right]\)| | 2 | 3 | a_{1} | $\{1,2\}$ | s_{1}, s_{2} |
| :---: | :---: | :---: | :---: | :---: | :--- |
| s_{1} | 2 | 1 | 1 | a_{2} | $\{1,3\}$ |
| s_{2} | 2 | 1 | 1 | s_{1}, s_{2} | |
| | | | a_{3} | $\{2,3\}$ | s_{1} |

Assignment of teachers to schools

Approximation algorithms: Greedy2

begin for $p:=1$ to k find a maximum cardinality matching μ^{p} of applicants A_{p}; keep μ^{j} whose size is maximum; add applicants from $A \backslash A_{j}$ arbitrarily to get a maximal matching end

Theorem. The approximation guarantee of algorithm Greedy2 is $\frac{k}{2}$. Better only for $k=3$.

school	capacities for			applicant	type	acceptable schools
	1	2	3		a_{1}	$\{1,2\}$
s_{1}	2	1	1	s_{1}, s_{2}		
s_{2}	2	1	1	a_{2}	$\{1,3\}$	s_{1}, s_{2}
			a_{3}	$\{2,3\}$	s_{1}	

If the first stage outputs μ^{1} as follows ...
matching of size $2=\frac{2}{3}$ of optimum is output. Approximation bound is tight.

Stability definition

Definition. Let μ be a matching. We say that a pair $(a, s) \in A \times S$ with $\mathbf{p}(a)=\left\{p_{1}, p_{2}\right\}$ is blocking if a is not assigned in μ or a prefers s to $\mu(a)$ and one of the following conditions hold:
(i) s is undersubscribed in both p_{1} and p_{2},
(ii) s is undersubscribed in p_{i} and it prefers a to one applicant in $\mu_{p_{3-i}}(s)$ for some $i \in\{1,2\}$,
(iii) s prefers a to one applicant in $\mu_{p_{1}, p_{2}}(s)$,
(iv) s prefers a to two different applicants a_{1}, a_{2} such that $a_{1} \in \mu_{p_{1}}(s)$ and $a_{2} \in \mu_{p_{2}}(s)$.

A matching is stable if it admits no blocking pair.

school	capacities for			preferences	applicant	type	preferences
	M	I	F				
s_{1}	1	1	2	a_{3}, a_{4}, a_{1}, a	a_{1}	MF	s_{1}, S_{3}
s_{2}	1	1	1	a_{4}, a_{3}	a_{2}	$M F$	(s1), s_{3}
s_{3}	1	1	2	(a4) a_{1}, a_{2}	a_{3}	MI	s_{1}, S_{2}
					a_{4}	IF	(s3.) s_{2}, s_{1}

blocking pairs:
$\left(a_{4}, s_{3}\right)$
$\left(a_{4}, s_{2}\right)$
$\left(a_{1}, s_{1}\right)$
$\left(a_{3}, s_{1}\right)$

Stability definition

Definition. Let μ be a matching. We say that a pair $(a, s) \in A \times S$ with $\mathbf{p}(a)=\left\{p_{1}, p_{2}\right\}$ is blocking if a is not assigned in μ or a prefers s to $\mu(a)$ and one of the following conditions hold:
(i) s is undersubscribed in both p_{1} and p_{2},
s is undersubscribed in p_{i} and it prefers a to one applicant in $\mu_{p_{3-i}}(s)$ for some $i \in\{1,2\}$,
(iii) s prefers a to one applicant in $\mu_{p_{1}, p_{2}}(s)$,
(iv) s prefers a to two different applicants a_{1}, a_{2} such that $a_{1} \in \mu_{p_{1}}(s)$ and $a_{2} \in \mu_{p_{2}}(s)$.

A matching is stable if it admits no blocking pair.

school	capacities for			preferences	applicant	type	preferences
	M	I	F				
s_{1}	1	1	2	$\begin{aligned} & a_{3}, a_{4}, a_{1}, a_{2} \\ & a_{4} \text { (os) } \\ & a_{4}, a_{1}, a_{2} \end{aligned}$	a_{1}	MF	s_{1}, s_{3}
s_{2}	1	1	1		a_{2}	MF	(s1), s_{3}
s_{3}		1	2		a_{3}	MI	
					a_{4}	IF	s_{3}, s_{2}, s_{1}

blocking pairs:
$\left(a_{4}, s_{3}\right)$
$\left(a_{4}, s_{2}\right)$
$\left(a_{1}, s_{1}\right)$
$\left(a_{3}, s_{1}\right)$

Stability definition

Definition. Let μ be a matching. We say that a pair $(a, s) \in A \times S$ with $\mathbf{p}(a)=\left\{p_{1}, p_{2}\right\}$ is blocking if a is not assigned in μ or a prefers s to $\mu(a)$ and one of the following conditions hold:
(i) s is undersubscribed in both p_{1} and p_{2},
(ii) s is undersubscribed in p_{i} and it prefers a to one applicant in $\mu_{p_{3-i}}(s)$ for some $i \in\{1,2\}$,
(iii) s prefers a to one applicant in $\mu_{p_{1}, p_{2}}(s)$,
(iv) s prefers a to two different applicants a_{1}, a_{2} such that $a_{1} \in \mu_{p_{1}}(s)$ and $a_{2} \in \mu_{p_{2}}(s)$.

A matching is stable if it admits no blocking pair.

school	capacities for						preferences
	M	I	F		applicant	type	preferences
s_{1}	1	1	2	a_{3}, a_{4}, a_{1}	a_{1}	$M F$	s_{1}, s_{3}
s_{2}	1	1	1	a_{4}, a_{3}	a_{2}	$M F$	s_{1}, s_{3}
s_{3}	1	1	2	a_{4}, a_{1}, a_{2}	a_{3}	$M I$	s_{1}, s_{2}
			a_{4}	$I F$	s_{3}, s_{2}, s_{1}		

blocking pairs:
$\left(a_{4}, s_{3}\right)$
$\left(a_{4}, s_{2}\right)$
a_{1}, s_{1}
$\left(a_{3}, s_{1}\right)$

Stability definition

Definition. Let μ be a matching. We say that a pair $(a, s) \in A \times S$ with $\mathbf{p}(a)=\left\{p_{1}, p_{2}\right\}$ is blocking if a is not assigned in μ or a prefers s to $\mu(a)$ and one of the following conditions hold:
(i) s is undersubscribed in both p_{1} and p_{2},
(ii) s is undersubscribed in p_{i} and it prefers a to one applicant in $\mu_{p_{3-i}}(s)$ for some $i \in\{1,2\}$,
(iii) s prefers a to one applicant in $\mu_{p_{1}, p_{2}}(s)$.
(iv) s prefers a to two different applicants a_{1}, a_{2} such that $a_{1} \in \mu_{p_{1}}(s)$ and
$a_{2} \in \mu_{p_{2}}(s)$.
A matching is stable if it admits no blocking pair.

Intractahility

If there are only two subjects: All applicants are equivalent; the problem is in fact the hospital/residents matching problem:

- a stable matching always exists
- Rural hospitals theorem

Theorem. Given an instance of TAP, the problem of deciding whether a stable matching exists, is NP-complete. This result holds even if

- there are at most three subjects,
- each partial capacity of a school is at most 2 ,
- the preference list of each teacher is of length at most 3 .

Master lists

Master list of teachers: the preferences of all schools are the same: $a_{1}, a_{2}, \ldots, a_{n}$
begin $\mu:=\emptyset$;
for $i=1,2, \ldots, n$
if a_{i} 's list contains a school with enough free capacity
$\left\{s:=\right.$ first such school on a_{i} 's list ;
$\mu:=\mu \cup\left\{\left(a_{i}, s\right)\right\} ;$
\}
end

Algorithm Serial dictatorship

Theorem. Let J be an instance of TAP with the master list of teachers $a_{1}, a_{2}, \ldots, a_{n}$. Then J admits a unique stable matching that may be found by an application of Serial Dictatorship.

Master lists

Master list of schools: preferences of all teachers are the same: $s_{1}, s_{2}, \ldots, s_{m}$

begin

$$
\begin{aligned}
& \mu:=\emptyset \\
& \text { for } j=1,2, \ldots, m
\end{aligned}
$$

$$
/^{*} \text { let } s_{j} \text { 's list be } a_{i_{1}}, \ldots, a_{i_{\ell}} * /
$$

$$
\text { for } r=1,2, \ldots, \ell
$$

if $a_{i_{r}}$ is unassigned and s_{j} has enough capacity for $a_{i_{r}}$ then $\mu:=\mu \cup\left\{\left(a_{i_{r}}, s_{j}\right)\right\} ;$
end

Algorithm Double Serial dictatorship

Theorem. Let J be an instance of TAP with the master list of schools $s_{1}, s_{2}, \ldots, s_{m}$. Then J admits a unique stable matching that may be found by an application of Double Serial Dictatorship.

Sulbject specific preferences

Definition. Let μ be a matching. We say that a pair (a, s) with $\mathbf{p}(a)=\left\{p_{1}, p_{2}\right\}$ and $s \in S(A)$ is blocking if a is not assigned in μ or a prefers s to $\mu(a)$, and one of the following conditions hold:
(i) s is undersubscribed in both p_{1} and p_{2},
(ii) s is undersubscribed in p_{i} and it prefers a in subject p_{3-i} to one applicant in $\mu_{p_{3-i}}(s)$ for some $i \in\{1,2\}$,
(iii) s prefers a in both subjects p_{1}, p_{2} to one applicant in $\mu_{p_{1}, p_{2}}(s)$,
(iv) s prefers a in subject p_{1} to applicant $a_{1} \in \mu_{p_{1}}(s)$ and in subject p_{2} to another applicant $a_{2} \in \mu_{p_{2}}(s)$.

Applicants:
Preferences of school s :

a_{1}	MI
a_{2}	MF
a_{3}	FI

M	a_{1}, a_{2}
F	a_{2}, a_{3}
I	a_{3}, a_{1}

At most one applicant can be assigned Let a_{2} be assigned
Then $\left(a_{1}, s\right)$ blocks, as

- there is free place in I
- s prefers a_{1} to a_{2}

Sulbject specific preferences

Theorem. If there are subject specific preference lists, the problem of deciding whether a stable matching exists is NP-complete. This result holds even if

- there are at most three subjects,
- each partial capacity of a school is at most 1 ,
- the preference lists of the schools are derived from subject-specific master lists of the applicants,
- and the preference lists of the applicants are derived from a single master list of schools.

Minimizing instahility

Abraham, Biró, Manlove(2006): stable roommates
Biró, Manlove, Mittal (2010): stable marriage
P: any stable matching problem, deciding existence NP-complete.
MIN BP P: find a matching with the minimum number of blocking pairs for P .
$\operatorname{opt}(I)=1$ plus the minimum number of blocking pairs of any matching in I.
Theorem. MIN BP P is not approximable within $n^{1-\varepsilon}$, where n is the number of agents in a given instance, for any $\varepsilon>0$ unless $\mathrm{P}=\mathrm{NP}$.

This result holds even if there are at most three subjects, each partial capacity of a school is at most 1, the preference lists of the schools are derived from subject-specific master lists of the applicants, and the preference lists of the applicants are derived from a single master list of schools.

Thank you for your attention!

