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‘The National Resident Matching Program (NRMP)
i a private, not-for-profit corporation established
in 1952 to provide a uniform date of appointment
to positions in graduate medical education (GME)
iin the United states

News from the NRMP!

New>NRMP TO IMPLEMENT MATCH WEEK
CHANGES

‘The NRMP Board of Directors has voted to
proceed with changes to Match Week 2012. A new
Supplemental Offer and Acceptance Program will
be implemented for unmatched applicants and
unfilled programs.

New>LARYNGOLOGY JOINS THE NRMP!

‘The NRMP is pleased to welcome Laryngology as
a new fellowship match for the 2012 appointment
year. sponsored by the American Laryngological
Association (ALA), the Laryngology Fellowship
Match will open for registration on September 29,
2010 with Match Day on February 2, 2011. For
more information about the Laryngology
Fellowship Match, including the Schedule of
Dates, click on Fellowship Matches at the top of
this page or contact our Helpdesk Specialists toll
free at 1-866-617-5834.

MEDICAL GENETICS JOINS THE NRMP.

(S

A u

To participate in a NRMP match, click
Register/Login al

Main Residency Match

Registration for the 2011 Match opens on August
15th for applicants and September 1t for
institutions and programs.

‘The 2010 Main Residency Match was the largest
in NRMP history, encompassing more than 37,000
applicants, 4,100 graduate medical education
programs, and 25,500 residency training
positions. For more information, read the press
release and listen to an interview with NRMP
Executive Director Mona M. Signer.

Communications

Visit the Communications page for more
information about and access to recent NRMP web
conferences and webcasts.

Data and Reports

Visit the Data and Reports section for recent
reports and historic NRMP match data.

New>Results of the 2010 NRMP Program
Director Survey (PDF, 164 pages) This report
presents the results of selected items from the
2010 NRMP Program Director Survey. Data are
reported for 19 specialties and include: (1) factors
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‘members of the couple must be active applicants in the Match. B

step1

Each partner should first arrange an individual preference list on separate
sheets of paper. In the example, the letters refer to a specific program in a
particular hospital in that city.

Partner | Partner I
1) New York City - A 1) chicago -

2) Chicago - A 2) chicago - Y
3) Evanston - B 3) Boston - X
4) Los Angeles - A 4) Chicago - Z

5) New York City - 8 5) New York City - X

6) New York City - Y

step 2

Next, both partners must decide together how to prepare their lists as pairs
of programs. For example, they could consider all the possible pairings
where the hospital programs are in the same general location, as indicated
in the list below. In some cases one rank in the pair may be designated "No
Match* to indicate that one partner is willing to go unmatched if the other
is matched to a position. Note that the list below is not necessarily in the
order that will eventually be submitted.

Partner | Partner I
New York City - A New York City X
New York City - A New York City -Y
Chicago - A Chicago -X
Chicago -A Chicago -¥
Chicago -A Chicago -2
Evanston -8 Chicago -X
Evanston -8 Chicago -¥
Evanston -8 Chicago -2

New York City -8 New York City X
New York City -8 New York City -Y
New York City - No Match
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Hospitals / Residents problem with couples

Applicants: Bill Adam and Eve
1st choice: Queens (Memorial, Queens)
2nd choice: Memorial

the ranking of NY Queens Hospital: Eve, Bill
the ranking of NY Memorial Hospital: Bill, Adam

P P. Biré, R.W. Irving and I. Schlotter, Stable matching with couples — an empirical study. ACM Journal of
Experimental Algorithmics, 16: Article number 1.2, 2011.
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Hospitals / Residents problem with couples

Applicants: Bill Adam and Eve
1st choice: Queens (Memorial, Queens)
2nd choice: Memorial

the ranking of NY Queens Hospital: Eve, Bill
the ranking of NY Memorial Hospital: Bill, Adam

Roth (1984): Stable solution may not exist.
Ronn (1990): The related decision problem is NP-complete.
B.-Irving-Schlotter (2011): NP-complete even for master lists.

B.-Manlove-McBride (2014): NP-complete even for preference lists
of length 2 on both sides.

Heuristics are used in the applications...

P P. Biré, R.W. Irving and I. Schlotter, Stable matching with couples — an empirical study. ACM Journal of
Experimental Algorithmics, 16: Article number 1.2, 2011.



Some more examples...

Applicants:

Adam and Eve

Romeo and Julia

1st choice:

(NY Memorial, NY Queens)

(NY Memorial, NY Queens)

NY Memorial:
NY Queens:

Romeo, Adam
Eve, Julia

Note 1: No applicant-optimal solution

P P. Biré and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory
Review 15(2), 1340008 (2013).




Some more examples...

Applicants: Adam and Eve Romeo and Julia
1st choice: | (NY Memorial, NY Queens) | (NY Memorial, NY Queens)
2nd choice: (SF General, SF Kaiser)

NY Memorial: Romeo, Adam
NY Queens: Eve, Julia

SF General: Julia

SF Kaiser: Romeo

Note 2: No rural hospital theorem

P P.Biré and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory
Review 15(2), 1340008 (2013).



Some more examples...

Adam and Eve Romeo and Julia Bill

(NY Memorial, NY Queens) | (NY Memorial, NY Queens) | SF Kaiser
(SF General, SF Kaiser) SF General

NY Memorial: Romeo, Adam
NY Queens: Eve, Julia

SF General: Romeo, Bill
SF Kaiser: Bill, Julia

Note 3: No path to stability

P P.Biré and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory
Review 15(2), 1340008 (2013).



Some more examples...

Adam and Eve Romeo and Julia Bill
(NY Memorial, NY Queens) | (NY Memorial, NY Queens) | NY Queens
(SF General, SF Kaiser) SF General

NY Memorial: Romeo, Adam
NY Queens: Eve, Bill, Julia
SF General: Romeo, Bill
SF Kaiser: Julia

common ranking: Eve, Romeo, Bill, Julia, Adam

Note 4: No strategy proof mechanism that always outputs a stable

matching if there exists one

P P.Biré and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory

Review 15(2), 1340008 (2013).




Some more examples...

Adam and Eve Romeo and Julia Bill

(NY Memorial, NY Queens) | (NY Memorial, NY Queens) | NY Memorial
(SF General, SF Kaiser) SF General

NY Memorial: Romeo, Bill, Adam
NY Queens: Eve, Julia

SF General: Romeo, Bill

SF Kaiser: Julia

common ranking: Eve, Romeo, Bill, Julia, Adam

Note 4: No strategy proof mechanism that always outputs a stable
matching if there exists one

P P.Biré and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory
Review 15(2), 1340008 (2013).



Economics/Game Theory literature
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know about stable matchings (but were afraid to ask). Review of
Economic Design, 11:175-184, 2007.

» F. Kojima, P.A. Pathak, and A.E. Roth. Matching with Couples: Stability
and Incentives in Large Markets. Quarterly Journal of Economics, 128(4):
1585-1632, 2013.
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The Redesign of the Matching Market for American Physicians:
Some Engineering Aspects of Economic Design

By ALVIN E. RoTH AND ELLIOTT PERANSON®!

We report on the design of the new clearinghouse adopted by the National Resident
Matching Program, which annually fills approximately 20,000 jobs for new physi-
cians. Because the market has complementarities between applicants and between
positions, the theory of simple matching markets does not apply directly. However,
computational experiments show the theory provides good approximations. Fur-
thermore, the set of stable matchings, and the opportunities for strategic manipu-
lation, are surprisingly small. A new kind of “core convergence” result explains
this; that each applicant interviews only a small fraction of available positions is
important. We also describe engineering aspects of the design process. (JEL CT8,

B4l, J44)

employment, rather than waiting to participate

The entry-level labor market for new physi-
cians in the United States is organized via a
centralized clearinghouse called the National
Resident Matching Program (NRMP). Each
year, approximately 20,000 jobs are filled in a
process in which graduating physicians and
other applicants interview at residency pro-
grams throughout the country and then compose
and submit Rank Order Lists (ROLs) to the
NRMP, each indicating an applicant’s prefer-

- . it fondaink

in the larger market. (By the 1940’s, contracts
were typically being signed two years in ad-
vance of employment.) Although the matching
algorithm has been adapted over time to meet
changes in the structure of medical employ-
ment, roughly the same form of clearinghouse
market mechanism has been used since 1951
(see Roth, 1984). The kind of market failure that
gave rise to this clearinghouse has since been
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(Appendix, Table 2). which, because of responsiveness is the outcome of the
deferred acceptance algorithm.
Next, we apply the Applicant Proposing Couples Algorithm to this couples
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The SFAS matching scheme

The SFAS Matching Scheme uses a computer program that aims to produce a matching that best satisfies the applicants' preferences. The algorithm
that underlies this program was developed in the Department of Computing Science at the University of Glasgow, and is based on state-of-the-art
research into optimal matching.

Introduction
The matching algorithm takes account of the following factors:

« the number of places in each programme
« the preference list of each individual applicant

« the score of each applicant

« which pairs of applicants are linked

« the compatibility information on programmes (from the viewpoint of linked applicants)

The algorithm is complicated by the need to deal with linked pairs in a fair way. giving them neither an advantage nor a disadvantage over single
applicants, and ensuring that, if they are matched, then it is to compatible programmes. The description below is initially in terms of single
=Ppicants, and than an IndicationIs e of tha adaptations nesdad £ sccamimedsvs linked pair of appicants.

The algorithm - main idea

The first step is a tie-breaking step in which applicants with equal scores are randomly ordered. In effect, each applicant is given a unique score, but
if applicant a had a higher original score than applicant b this will still be true for the revised scores.

The main body of the algorithm can be viewed as a sequence of attempts to match an applicant to a programme. At any point during the progress of
the algorithm, an applicant s either matched (at least temporarily) or unmatched. Initially, each applicant's best achievable preference is the first
entry on his/her preference list. At each step of the algorithm, a random applicant is chosen from those who are unmatched, and an attempt is made
to match this applicant to his/her best achievable preference. If the programme has at least one free place then the match is accepted. Otherwise.
the match is only accepted if a lower scoring applicant can be displaced from the programme ~ in this case the assigned applicant with the lowest
score is displaced:; if not the match is rejected. A rejection, or a displacement, results in the best achievable preference b jvanced by one
position in the list of the applicant concemed. The process terminates when each applicant is either matched or has been rejected by, or displaced
from, all of the programmes on his/her preference list.

The resulting matching has the crucial stability property, namely:

«_there can be no annlicant 2 who would orefer to he matched fo proaramme n. and at the same time o has an unfilled place or an assianed
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The algorithm is complicated by the need to deal with linked pairs in a fair way. giving them neither an advantage nor a disadvantage over single
ants, and ensuring that, if they are matched, then it is to compatible programmes. The description below is initially in terms of single
e e e e e e e P P e e ey

The algorithm - main idea
The first step is a tie-breaking step in which applicants with equal scores are randomly ordered. In effect, each applicant is given a unique score, but
if applicant a had a higher original score than applicant b this will still be true for the revised scores.

The main body of the algorithm can be viewed as a sequence of attempts to match an applicant to a programme. At any point during the progress of
the algorithm, an applicant s either matched (at least temporarily) or unmatched. Initially, each applicant's best achievable preference
entry on his/her preference list. At each step of the algorithm, a random applicant is chosen from those who are unmatched, and an attempt is made
ol lapellzanetolheieresfinchietatl afrsierence ffhelorosmnivelhaslalisaat e reclpiaceltierJbelal hlsfaccopiad ot
the match is only accepted if a lower scoring applicant can be displaced from the programme — e the assigned applicant with the lowest
score is displaced:; if not the match is rejected. A rejection, or a displacement, results in the best achicvable preference being advanced by one
position in the list of the applicant concerned. The process terminates when each applicant is either matched or has been rejected by, or displaced
from, all of the programmes on his/her preference list.

The resulting matching has the crucial stability property, namely:

« there can be no applicant a who would prefer to be matched to programme p, and at the same time p has an unfilled place or an assigned
applicant with a lower score than a.

In other words, no private ‘deal could be made by an applicant and a programme that would be to the benefit of both.

Linked applicants

To accommodate linked applicants, a joint preference list is formed for each such [ray ] (hexr ind‘ gerey preieren:e lists and the programme

compatibility information. If such a pair, a and b, have individual preferences p1, respectively (with a the higher

scoring applicant), then the joint preference list of the pair (a.b) is (p1,q1). (pl,qZ) (pZ,q % (pZ,qu 1p1 qS), (ps,qn (©2.93). (p3.92). . . . (p9.q10),
(p10.99). (p10.910) (except that incompatible pairs of programmes are omitted;

In the main body of the algorithm, the members of a linked pair are handled together, so the match of the pair (a,b) to the programmes (p.q) will be
accepted only if each of these programmes either has an unfilled place or a lower scoring applicant who can be displaced. A complication arises
when one member x of a linked pair has to be withdrawn from a programme p because his/her partner was displaced from their current assigned
programme. In this case, some other appll(xnts may have been rejected by p because of the presence of x, and any such applicant a must be

withdrawn from their current programme, if any. and have their best achievable preference reset to p. (A corresponding, but more complex reset
perstion i Fesdad] I8 remarof alisbec pairvls s ot cperstion] Breby N is ]kt ‘oppertiy o Eppicant fata b atehadlis
programme p.

The algorithm terminates when every single applicant and linked pair is either matched or has been rejected by, or displaced from, every entry in
their preference list with no possibility of reconsideration by a programme that has had a withdrawal.

The final matching s stable for single applicants, as before, but also for linked pairs, in the sense that:

« there can be no linked pair (a,b) of applicants who would prefer to be matched to compatible programmes (p.q), and at the same time, each of
and g has an unfilled place or an assigned applicant with a lower score than a and b respectively.

Erequently Asked Questions.
back to top
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Stable matching with couples — theory and
practice

Péter Biré*!, Robert W. Irving* and Ildiké Schlotter®*

! Institute of Economics, Hungarian Academy of Sciences, H-1112, Budadrsi 1t 45, Budapest, Hungary
Email: biroplecon.core.hu.

2 School of Computing Science, University of Glasgow, Glasgow G12 80, UK.
Email: rob.irving@glasgow. ac.uk.

% Budapest University of Tech and Economies, H-1521 Budapest, Hungary
FEmaul: 11di@cs.bme.hu.

Abstract

In practical applications, algorithms for the classieal version of the Hospitals Res-
idents problem (the many-one version of the Stable Marriage problem) may have to
be extended to accommodate the needs of couples who wish to be allodated to (zeo-
graphically) compatible places. Such an extension has been in operation in the NRMP
matching scheme in the US for a number of years. In this setting, a stable matching
need not. exist, and it is an NP-complete problem to decide if one does. However,
the only previous empirical study in this context {focused on the NRMP algorithm),
together with information from NRMP, suggest that, in practice, stable matchings do
exist and that an appropriate heuristic can be used to find such a matehing.

The study presented here was motivated by the recent decision to accommodate
couples in the Scottish Foundation Allocation Scheme (SFAS). the Scottish equivalent
of the NRMP. Here, the problem is a special case, since hospital preferences are derived
from a ‘master list’ of resident scores, but we show that the existence problem remains
NP-complete in this case. We describe the algorithm nsed in SFAS, and contrast it

vith a version of the aleorithm that forms the basis of the NRMP approach, We
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Number of couples

Algorithm || 12 | 25 [ 50 | 75 [ 100 | 125 | 150 | 175 | 200 | 225 | 250
C-RAN 976 | 958 | 908 | 862 | 811 | 729 | 586 | 352 | 163 40 5
C-STA 965 | 925 | 807 | 745 | 660 | 588 | 481 | 331 | 191 | 41 | 10
C-SGL || 976 | 957 | 904 | 861 | 80L | 752 | 677 | 504 | 244 | 61 | 4
C-CPL 964 | 908 | 804 | 767 | 709 | 580 | 426 | 253 | 122 30 5
C-RLP 962 | 922 | 805 | 546 | 271 | 92 | 19 3 1 0 | 0
BB-RAN || 976 | 958 | 911 | 870 | 800 | 655 | 412 | 169 | 51 | 14 | 0
BB-SCO || 958 | 914 | 793 | 663 | 498 | 342 | 230 | 122 | 65 | 29 | 8
BB-USE || 976 | 957 | 909 | 867 | 799 | 696 | 501 | 254 | 81 | 27 | 4
BB-USS || 963 | 934 | 880 | 825 | 764 | 716 | 682 | 546 | 281 | 71 | 4
BB-SGL || 963 | 934 | 879 | 828 | 773 | 720 | 680 | 529 | 232 | 44 | 0
BB-CPL || 974 | 943 | 783 | 482 | 215 | 95 | 25 8 0 1 2
RP-RAN 888 | 771 | 579 | 453 | 320 | 188 | 119 67 35 16 4 |
RP-SGL_|| 952 | 897 | 701 | 547 | 395 | 277 | 170 | 83 | 41 | 9 3|
RP-CPL || 872 | 778 | 585 | 424 | 306 | 183 | 115 | 63 | 28 | 11 | 1

[ Total ][ 976 | 958 | O11 | 871 | 820 | 775 | 739 | 642 | 401 | 143 | 29 |

Table 2: Instances of size 500 (5 seconds per instance)
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Some more examples...

(LA Lincoln, LA Pacific)

Adam and Eve Romeo and Julia Bill
(NY Memorial, NY Queens) (SF General, SF Kaiser) NY Queens
(LA Lincoln, LA Hollywood) | (NY Memorial, NY Queens) | SF General

David and Victoria CIiff

and | (LA Hollywood, LA Sunset) | LA Hollywood

LA Sunset

common ranking: Eve, Julia, Bill, Romeo, Adam, David, Cliff, Victoria

Note 5: Inevitable failure of heuristics based on best applications

P> P.Birs, RW. Irving and |. Schlotter, Stable matching with couples — an empirical study. ACM Journal of
Experimental Algorithmics, 16: Article number 1.2, 2011.




Some more examples...

(LA Lincoln, LA Pacific)

Adam and Eve Romeo and Julia Bill
(NY Memorial, NY Queens) (SF General, SF Kaiser) NY Queens
(LA Lincoln, LA Hollywood) | (NY Memorial, NY Queens) | SF General

David and Victoria CIiff

and | (LA Hollywood, LA Sunset) | LA Hollywood

LA Sunset

common ranking: Eve, Julia, Bill, Romeo, Adam, David, Cliff, Victoria

Note 5: Inevitable failure of heuristics based on best applications

P> P.Birs, RW. Irving and |. Schlotter, Stable matching with couples — an empirical study. ACM Journal of
Experimental Algorithmics, 16: Article number 1.2, 2011.




Some more examples...

(LA Lincoln, LA Pacific)

Adam and Eve Romeo and Julia Bill
(NY Memorial, NY Queens) (SF General, SF Kaiser) NY Queens
(LA Lincoln, LA Hollywood) | (NY Memorial, NY Queens) | SF General

David and Victoria CIiff

and | (LA Hollywood, LA Sunset) | LA Hollywood

LA Sunset

common ranking: Eve, Julia, Bill, Romeo, Adam, David, Cliff, Victoria

Note 5: Inevitable failure of heuristics based on best applications

P> P.Birs, RW. Irving and |. Schlotter, Stable matching with couples — an empirical study. ACM Journal of
Experimental Algorithmics, 16: Article number 1.2, 2011.




Now, something completely different... (1?)
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Fractional Solutions for NTU-Games
Péter Biré' and Tamés Fleiner?

Abstract

Tn this paper we survey some applications of Scarf’s Lemma. First, we introduce the
notion of fractional core for NTU-games, which is always nonempty by the Lemma.
Stable allocation is a general solution concept for games where both the players and
their possible cooperations can have capacities. We show that the problem of finding
a stable allocation, given a finitely generated NTU-game with capacities, is always
solvable by a variant of Scarf’s Lemma. Finally, we describe the interpretation of
these results for matching games.

1 Introduction

Complex social and economic situations can be described as games where the players may
cooperate with each other. Most studies in cooperative game theory focus on the issue of
how the participants form disjoint coalitions, and sometimes also on the way the members
of coalitions share the utilities of their cooperations among themselves (in case of games
with transferable utility). However, in reality, an agent in the market (or any individual in -
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Definitions: a general setting

Set of residents: A = {a1,a2,...,an}, where A =S UC, i.e., single residents
and couples. Set of hospitals: H = {h1, h2, ..., hm} with c(h,) denoting the
capacity of hospital h,.
Set of applications, E, has three types (E = E° U EY U E°)

> E°: single application from a single resident to a hospital

> E7: joint application from a couple to a pair of hospitals

> EC: combined application from a couple to a hospital
Each application specifies one or two employments, respectively.
A matching M is a set of employments specified by a set of (accepted)

applications Ep, where no resident is employed in more than one hospital and
no hospital employs more residents than its quota.

Preferences:

- the single residents and couples have strict preferences over the applications
- the hospitals have strict rankings over the residents, which generates choice
functions over the set of applications (and thus over the set of residents).

Stability: no blocking application, which would be chosen by each party
involved in the application when offered together with the currently accepted

applications of that party.



Definitions: specific model used in SFAS

Easy to check fairness (for single and joint applications) with cutoff scores:

> If a single application [a; — h,] is rejected then h,, filled its quota with
better residents than a; (i.e., the resident did not meet the cutoff score).

> If a joint application [(aj, a;) — (hp, hq)] is rejected then either h, or hq
filled its quota with better applicants than a; or a;, respectively.
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Definitions: specific model used in SFAS

Easy to check fairness (for single and joint applications) with cutoff scores:

> If a single application [a; — h,] is rejected then h,, filled its quota with
better residents than a; (i.e., the resident did not meet the cutoff score).

> If a joint application [(aj, a;) — (hp, hq)] is rejected then either h, or hq
filled its quota with better applicants than a; or a;, respectively.

This generates the choices of the hospitals over the set off applications:
Adam, Bill, Eve and Adam, Romeo, Julia, Eve

The creation of the hospitals’ choice functions:

- Each hospital h, has a strict ranking =h, over the residents.

- This defines weak preferences >, over the applications according to the
corresponding residents making single or joint applications or the weakest
members of couples making combined applications.

(- Ties: one resident can submit several joint applications to a hospital).

- Refined strict preference >, is where the above ties are broken according to
the residents’ preferences.

- Choice function Chy, over the set of applications is derived as follows:

hp accepts each application from X C E in the order of >, such that no two
applications from the same couple are accepted and its quota is not violated.
- We call this type of choice functions, derived from refined strict preferences
over applications, quota-responsive.
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(Scarf's algorithm always returns a core element for such games)



Notes on Cooperative Game Theory

For Stable Marriage problem,
set of stable matchings = core of the corresponding CFG

For the matching with couples problem with quota-responsive
choice functions where each hospital has one position only:
set of stable matchings = strong core of the corresponding
NTU-game for > = core of the corresponding NTU-game for >

Scarf (1967): Every balanced NTU-game has nonempty core.
(Scarf's algorithm always returns a core element for such games)

But what if an NTU-game is not balanced? The Scarf algorithm
still returns a (fractional) core solution...
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Stable (fractional) matchings
bipartite graph nonbipartite graph

Marriage problem | Roommates problem
Gale-Shapley ‘62: | Tan ‘90:
I stable matching | 3 stable half-matching

For every vertex v, let <, be a linear order on the edges incident
with v. A weight-function x : E(G) — {0, 1} is a matching if
Y veex(e) <1 for every v e V(G).

A matching is stable if for every e € E(G), either x(e) =1,
or there is a vertex v € e s.t. > . (x(f) =1.

» Gale-Shapley (1962):

Stable matching may not exist!

» Tan (1990): Stable half-matching
always exists! i.e. x(e) € {0, 3,1}.
Here: x({B,C}) = x({C,D}) =
x({B.D}) =3




Stable (fractional) matchings

bipartite graph

nonbipartite graph

hypergraph

Marriage problem
Gale-Shapley '62:
3 stable matching

Roommates problem
Tan ‘90:
3 stable half-matching

Coalition Formation Game
Aharoni-Fleiner '03 (Scarf '67):
3 stable fractional matching

hyper—

For every vertex v, let <, be a linear order on théXdges incident
with v. A weight-function x : E(G) — {0, 1} is a matching if
Y veex(e) <1 for every v € V(G).

A matching is stable if for every e € E(G), either x(e) =1,
or there is a vertex v € e s.t. > . (x(f) =1.

Aharoni-Fleiner (2003): Scarf’s algorithm returns a stable
fractional matching, as defined above with x(e) € [0, 1].




An example: stable fractional matching

Applicants: Bill Adam and Eve
1st choice: Queens (Memorial, Queens)
2nd choice: Memorial

ranking of NY Queens: Eve, Bill
ranking of NY Memorial: Bill, Adam

Oy4GO,
%
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An example: stable fractional matching

Applicants: Bill Adam and Eve
1st choice: Queens (Memorial, Queens)
2nd choice: Memorial

ranking of NY Queens: Eve, Bill G' GO,

ranking of NY Memorial: Bill, Adam
2]

Each coalition has weight % in the stable fractional matching

What is the meaning of a fractional solution?
-These can be seen as part-time contracts...

What if the fractional solution obtained is integral?

-Then it corresponds to a stable matching (or a core element).
Thus the Scarf algorithm can be used as a heuristic to find a stable
matching (or to find a core element in any NTU-game).



Stable b-matchings: agents with capacities
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Y vee x(e) <b(v) for every v € V(G).
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Stable b-matchings: agents with capacities
bipartite graph nonbipartite graph

College Admissions | Stable Fixtures
Gale-Shapley ‘62: Biré-Fleiner '03:
3 stable matching 3 stable half-matching

Let b: V(G) — Z4 be vertex-bounds.
A weight-function x : E(G) — {0,1} is a (b-)matching if
Y vee x(e) <b(v) for every v € V(G).

A matching is stable if for every e € E(G), either x(e) = 1,
or there is a vertex v € e s.t. > . (x(f) =b(v).

Biré-Fleiner (2003): A stable half-matching can be found
efficiently for nonbipartite graphs.

Cechlarova-Fleiner (2005), Irving-Scott (2007): A stable matching
can be found in linear time, if one exists ( “Stable Multiple
Activities” or “Stable Fixtures").



Stable b-matchings: agents with capacities

bipartite graph

nonbipartite graph

hypergraph

College Admissions
Gale-Shapley '62:
3 stable matching

Stable Fixtures
Biré-Fleiner '03:
3 stable half-matching

CFG with agent-capacities
Biré-Fleiner '10:
3 stable fractional matching

Let b: V(G) — Z4 be vertex-bounds.
A weight-function x : E(G) — {0,1} is a (b-)matching if
Y vee x(e) <b(v) for every v € V(G).

A matching is stable if for every e € E(G), either x(e) = 1,
or there is a vertex v € e s.t. > . (x(f) =b(v).

Biré-Fleiner (2010): A stable fractional matching can be found by
an extension of Scarf’s algorithm for hypergraphs.




Stable b-matchings: agents with capacities

bipartite graph nonbipartite graph hypergraph

College Admissions | Stable Fixtures CFG with agent-capacities
Gale-Shapley ‘62: Biré-Fleiner '03: Bir6-Fleiner '10:

3 stable matching 3 stable half-matching | 3 stable fractional matching

Let b: V(G) — Z4 be vertex-bounds.
A weight-function x : E(G) — {0,1} is a (b-)matching if
Y vee x(e) <b(v) for every v € V(G).

A matching is stable if for every e € E(G), either x(e) = 1,
or there is a vertex v € e s.t. > . (x(f) =b(v).

Bir6-Fleiner (2010): A stable fractional matching can be found by
an extension of Scarf’s algorithm for hypergraphs.

This can be used for the Hospitals Residents problem with couples!
In the case when hospitals have capacities, but no couple may
apply for a pair of positions at the same hospital.

The stable matchings as defined here are stable matchings
for the matching with couples problem, and vice versa.



A motivating example for stable schedules

Researchers’ contributions in projects sponsored by the Hungarian
Scientific Research Fund:

Each researcher can be involved in several running projects, but
she has to declare her contribution in each project, and her total
contribution cannot exceed 1.0 at any time.

Similar requirements apply for the grant applications of the French
National Research Agency.



Stable schedules
Let r,(e) denote v's contribution in contract e, and

let b: V(G) — Z4 be vertex-bounds.
A weight-function x : E(G) — {0,1} is a schedule if
> veev(e) - x(e) < b(v) for every v € V(G).

P P. Biré and T. Fleiner, Fractional solutions for capacitated NTU-games, with applications to stable
matchings. To appear in Discrete Optimization.



Stable schedules
Let r,(e) denote v's contribution in contract e, and
let b: V(G) — Z4 be vertex-bounds.
A weight-function x : E(G) — {0,1} is a schedule if
> veev(e) - x(e) < b(v) for every v € V(G).
A schedule is stable if for every e € E(G), either x(e) =1,

or there is a vertex v € e s.t. > . (r(f) - x(f) = b(v).
(every non-active edge is “dominated” at some vertex.)

P P. Biré and T. Fleiner, Fractional solutions for capacitated NTU-games, with applications to stable
matchings. To appear in Discrete Optimization.



Stable schedules
Let r,(e) denote v's contribution in contract e, and

let b: V(G) — Z4 be vertex-bounds.
A weight-function x : E(G) — {0,1} is a schedule if
> veev(e) - x(e) < b(v) for every v € V(G).

A schedule is stable if for every e € E(G), either x(e) =1,
or there is a vertex v € e s.t. > . (r(f) - x(f) = b(v).

Biré-Fleiner (2012): A stable fractional schedule can be found by
an extension of Scarf’s algorithm for hypergraphs.

P P. Biré and T. Fleiner, Fractional solutions for capacitated NTU-games, with applications to stable
matchings. To appear in Discrete Optimization.



Stable schedules
Let r,(e) denote v's contribution in contract e, and

let b: V(G) — Z4 be vertex-bounds.
A weight-function x : E(G) — {0,1} is a schedule if
> veev(e) - x(e) < b(v) for every v € V(G).

A schedule is stable if for every e € E(G), either x(e) =1,
or there is a vertex v € e s.t. > . (r(f) - x(f) = b(v).

Biré-Fleiner (2012): A stable fractional schedule can be found by
an extension of Scarf’s algorithm for hypergraphs.

This can be used for the Hospitals Residents problem with couples!
In the general case, where each combined applications is a contract
with 1 contribution for the couple and 2 for the hospital.

Stable schedules correspond to stable matchings for the
couples’ market, but not the other way!

P P. Biré and T. Fleiner, Fractional solutions for capacitated NTU-games, with applications to stable
matchings. To appear in Discrete Optimization.



Experiments on random samples with 500 applicants

Number of couples

[ I
l

Algorithm [ 12 ] 25 T 50 [ 75 ] 100 [ 125 | 150 [ 175 | 200 | 225 | 250
Roth-Perantson 952 897 701 547 395 277 170 83 41 9 3

Best heuristics in B-I-S 976 958 911 870 811 752 682 546 281 71 10
Scarf (int. solution) 895 813 649 532 426 356 316 261 202 174 158
Scarf half-int. solution 999 997 978 958 918 859 816 777 692 695 588
Scarf frac. solution 105 187 351 468 574 644 684 739 798 826 842
Av. # of frac. weights 3.9 4.8 5.7 6.7 7.6 8.8 10.0 10.8 12.8 13.5 15.7
# of frac. weights =1 41 61 104 127 119 126 106 114 97 85 69
# of frac. weights = 2 2 9 21 30 36 41 43 43 44 48 41

# of frac. weights = 3 14 14 29 38 38 33 35 44 29 36 22
# of frac. weights = 4 7 18 19 25 40 37 39 38 30 32 41

# of frac. weights = 5 11 19 18 25 33 42 34 30 40 28 30

P> P.Birs, RW. Irving and |. Schlotter, Stable matching with couples — an empirical study. ACM Journal of

Experimental Algorithmics, 16: Article number 1.2, 2011.

P P.Biré, T. Fleiner and R.W. Irving, Matching couples with Scarf’s algorithm. In the Proceedings of the
8th Japanese-Hungarian Symposium on Discrete Mathematics and its Applications, pp. 55-64, 2013.
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Scarf’s algorithm performs very well for high proportion of couples!
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I

Number of couples

l
l

Algorithm ] ] 12 ] 25 ] 50 ] 75 ] 100 ] 125 ] 150 ] 175 ] 200 ] 225 ] 250
Roth-Perantson 952 897 701 547 395 277 170 83 41 9 3

Best heuristics in B-I-S 976 958 911 870 811 752 682 546 281 71 10
Scarf (int. solution) 895 813 649 532 426 356 316 261 202 174 158
Scarf half-int. solution 999 997 978 958 918 859 816 777 692 695 588
Scarf frac. solution 105 187 351 468 574 644 684 739 798 826 842
Av. # of frac. weights 3.9 4.8 5.7 6.7 7.6 8.8 10.0 10.8 12.8 13.5 15.7
# of frac. weights =1 41 61 104 127 119 126 106 114 97 85 69
# of frac. weights = 2 2 9 21 30 36 41 43 43 44 48 41
# of frac. weights = 3 14 14 29 38 38 33 35 44 29 36 22
# of frac. weights = 4 7 18 19 25 40 37 39 38 30 32 41
# of frac. weights = 5 11 19 18 25 33 42 34 30 40 28 30

, . . .
Scarf’s algorithm performs very well for high proportion of couples!

Bir6-Manlove-McBride: Experiments by IP techniques show that
around 70% of these instances with couples only are solvable.

P> P.Birs, RW. Irving and |. Schlotter, Stable matching with couples — an empirical study. ACM Journal of

Experimental Algorithmics, 16: Article number 1.2, 2011.

P P.Biré, T. Fleiner and R.W. Irving, Matching couples with Scarf’s algorithm. In the Proceedings of the
8th Japanese-Hungarian Symposium on Discrete Mathematics and its Applications, pp. 55-64, 2013.




Integer programming techniques (David Manlove's talk)

}j&lﬁ{;ﬁ:’ Integer Programming for HRC
e Model developed by lain McBride (2013)
e Solved using CPLEX IP solver
e Random instances, scalability (preference lists of length between 5 and 10):
— 5000 residents, 500 hospitals, 500 couples, 5000 posts (x25)
« solved in 99.6 seconds on average
— 10000 residents, 1000 hospitals, 1000 couples, 10000 posts (x1)
« solvedin 10 minutes
e Random instances, solvability / sizes of

largest stable matchings found: - ‘ I
ol | |

— 500 residents, 50 hospitals, 250
couples, 500 posts (x1000)
+ around 70% of instances were solvable
+ Average time taken 75s per instance
e SFAS instances:
— 2012: 710 residents, stable matching of size 681 found in 16s
— 2011: 736 residents, stable matching of size 688 found in 17s
— 2010: 734 residents, stable matching of size 681 found in 65s

P P. Bir, I. McBride and D.F. Manlove. The Hospitals / Residents problem with Couples: Complexity and
Integer Programming models. To appear in Proceedings of SEA 2014: the 13th International Symposium
on Experimental Algorithms, Lecture Notes in Computer Science, Springer, 2014.



Matching with payments



marriage = one-to-one market with no transfers (?)

. implicit assumptions on 'marriage’:

1. Everybody can have at most one partner

2. Only men and women can marry each other

3. No dowry (no transfer)
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marriage = one-to-one market with no transfers (?)

The relaxation of the
. implicit assumptions on 'marriage’:

1. Everybody can have at most one partner

2. Only men and women can marry each other
— stable matching for nonbipartite graphs
=Roommates problem (kidney exchange)

3. No dowry (no transfer)



marriage = one-to-one market with no transfers (?)

The relaxation of the
. implicit assumptions on 'marriage’:

1. Everybody can have at most one partner

2. Only men and women can marry each other

3. No dowry (no transfer)
— stable matching for bipartite graphs with
TU =Assignment Game ( “the market”)



All possible models with relaxations

I two-sided [ one-sided [
NTU stable marriage problem stable roommates problem
TU assignment game matching game
capa- | NTU college admissions problem stable fixtures problem
city TU multiple partners assignment game this paper




Notes on the problems with no payments
two-sided one-sided

stable marriage

capacity | college admissions

Gale-Shapley (1962): A stable matching always exists for the
marriage problem, and the same result holds for the many-to-one
college admissions problem.



Notes on the problems with no payments
two-sided one-sided
stable marriage | stable roommates
capacity | college admissions

> Gale-Shapley (1962):
Stable matching may not exist!

» Irving (1985): A stable matching can
be found in O(m) time, if one exists.

» Tan (1990): Stable half-matching
always exists. +The same odd cycles
are formed in every stable solution.

» Diamantoudi et al. (2004): Path to stability result.




Notes on the problems with no payments

two-sided one-sided
stable marriage | stable roommates
capacity | college admissions stable fixtures

> Gale-Shapley (1962):
Stable matching may not exist!

» Irving (1985): A stable matching can
be found in O(m) time, if one exists.

» Tan (1990): Stable half-matching
always exists. +The same odd cycles
are formed in every stable solution.

» Diamantoudi et al. (2004): Path to stability result.

» Irving-Scott (2007): The stable fixtures problem can be solved
efficiently.

» Cechldrova-Fleiner (2005): The problem can be reduced to the
stable roommates problem with a simple graph construction.



Graph reduction by Cechlarova-Fleiner 2005
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Graph reduction by Cechlarova-Fleiner 2005

al a2 a3 a4 a5

(©) o

-®

bl b2 b3

- stable matchings of the capacitated market correspond to stable
matchings in the reduced non-capacitated market...



Stable matchings with or without payments
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Stable matchings with or without payments

a a a a
5 V({ab}) V({ab) V({ab}) V({ab)
4
3 b 3 5 b b 3 b

5 3 5 3 5 p(ab) 3
o——0 o0 OE0
a b a 4 5 b a b

b

- Stable matching problems with payments can be seen as stable
matching problems with contracts.

- Stable matchings with contracts can be reduced to stable
matching problems (with the Cechlarova-Fleiner construction).







Basic graph theoretical notions

G(N, E) graph nodes: N = {.. yJy--.}, edges:
E={..0...}
A matchlng is a set of independent edges M C E,

e., it can be described with its characteristic function:
x:E—{0,1}: foreach i€ N, 3.y x(ij) < 1.

For given edge-weights w : E — Ry, ¢: N — R, is a cover, if for
each ij € E, c(i) + c(j) > w;.
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Basic graph theoretical notions

G(N, E) graph nodes: N = {.. yJy. ..}, edges:
E={..0..}
A matchlng is a set of independent edges M C E,

e., it can be described with its characteristic function:
x:E—{0,1}: foreach i€ N, 3.y x(ij) < 1.

For given edge-weights w : E — Ry, ¢: N — R, is a cover, if for
each ij € E, c(i) + c(j) > w;.

Egervary 1931: If G is bipartite then
maximum weight of a matching = minimum value of a cover

Balinski 1965: If G is nonbipartite then
maximum weight of a half-matching = minimum value of a cover



linear programming, duality theorem

LP: max. weight frac. matching .
DLP: minimum value cover

maxz wiix(if) . .
s mlnEZNy(/)
1

s.t. Z x(ij) <1foreachie Ngy y(i)+y(j) > wjj for each ij € E
jijeE

- - where 0 < y(i) for each i € N,
where 0 < x(ij) for each ij € E

maximum weight matching = max;p < maxpp < max.p =

= minp p = minimum value cover

Note: The theorem of Egervary is implied by the fact the incidence
matrix of any bipartite graph is totally unimodular.



Nonbipartite graphs: the role of half-matching

Balinski (1965): The maximum weight of a half-matching is equal
to the minimum value of a cover.

Simple proof: duplication technique (Nemhauser-Trotter, 1975):
G(N,E) — GI(N9, EY), where N9 = Ny U Ny,
ieN—>i1€N1,i26N2
ij € E— ivjo,j1 € E9, and w9(ip) = w(ij1) = w(ij).
Let x? be a maximum weight matching and ¢? a minimum value
cover in G?. Let us define x(ij) = w for each edge and
c(i) = c(i) + c(i2) for each vertex.
We can verify that x is a half-matching, ¢ is a minimum cover in
G s.t.

w(x) = w!(x?) = /() = ¢(N)

Corollary: We can compute a maximum weight half-matching (and
also a minimum cover) efficiently by the Hungarian method.



Example for the duplication construction
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Example for the duplication construction

0 2 1 2 2
EAYOAYCAYAYOA

Y ACTACIACTAET
0

1
1

1

1

1

1

1

1

1

2 3
1

1

1

1

1

1

! 2 0 1 1
1

max/p(Gd) < maxh,p(G) SminDLp(G) < minDLp(Gd)

but max;p(G?)=minp p(GY) so we have = everywhere!



Game theory: Koopmans-Beckmann (1957, Econometrica)

stable matching with payments:
Let G(N, E) be a bipartite graph, where N = | U J (buyers-sellers),
and w : E — R edge-weights (value of pairs).

A solution is a pair (M, p), where M C E is a matching and
p: N — R, are the payments of the agents such that

» ij€ M — p(i)+ p(j) = wj and
> i is not covered by M — p(i) = 0.
A solution is stable if for each ij € E\ M: p(i) + p(j) > w;;.



Game theory: Koopmans-Beckmann (1957, Econometrica)

stable matching with payments:
Let G(N, E) be a bipartite graph, where N = | U J (buyers-sellers),
and w : E — R edge-weights (value of pairs).

A solution is a pair (M, p), where M C E is a matching and
p: N — R, are the payments of the agents such that

» ij€ M — p(i)+ p(j) = wj and
> i is not covered by M — p(i) = 0.
A solution is stable if for each ij € E\ M: p(i) + p(j) > w;;.

Observation: (M, p) is stable <= M is a maximum weight
matching and p is a minimum cover.

So the Egervary thm implies the Koopmans-Beckmann thm:

The stable matching problem with payments is always solvable.



Game theory: Shapley-Shubik (1971, IJGT)

assignment game:
Let G(N, E) be a bipartite graph, where N = | U J (buyers-sellers),
and w : E — R edge-weights (value of pairs).

We define a TU-game (N, v) as follows. For any coalition S C N,
let v(S) = maximum weight of a matching on S, the value of S.
u: N — Ry is an imputation if ),y u(i) = u(N) = v(N).

u is in the core of the game if for each S C N, v(S) < u(S).
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The assignment game has a nonempty core.



Game theory: Shapley-Shubik (1971, IJGT)

assignment game:
Let G(N, E) be a bipartite graph, where N = | U J (buyers-sellers),
and w : E — R edge-weights (value of pairs).

We define a TU-game (N, v) as follows. For any coalition S C N,
let v(S) = maximum weight of a matching on S, the value of S.
u: N — Ry is an imputation if ),y u(i) = u(N) = v(N).

u is in the core of the game if for each S C N, v(S) < u(S).
Observation: v is in the core <= u is not blocked by any pair.
u is in the core <= (M, u) is a stable matching with payments
Koopmans-Beckmann thm implies Shapley-Shubik thm:

The assignment game has a nonempty core.

+Shapley-Shubik 1971: The set of stable solutions forms a
lattice with a buyer-optimal and a seller-optimal solution.
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Generalisations of the assignment game

bipartite graph

nonbipartite graph

non-capacitated assignment game

capacitated multiple partners a.g.

Sotomayor: multiple partners assignment game

1992: stable solution exists

1999, IJGT: the stable solutions form a lattice

2007, JET: competitive equilibria exist and form a sub-lattice
(competitive equilibrium: each seller gets the same payment from
any of her buyers, which can be seen as the price of her goods)



Generalisations of the assignment game

bipartite graph nonbipartite graph
non-capacitated assignment game matching game
capacitated multiple partners a.g.

Biré-Kern-Paulusma 2012: A matching game has a stable
solution <= the maximum weight of a matching is equal to the
maximum weight of a half-matching. (Thus it can be decided
efficiently with Edmonds’ algorithm and with the Hungarian
method.)




Generalisations of the assignment game

bipartite graph nonbipartite graph
non-capacitated assignment game matching game
capacitated multiple partners a.g.

Biré-Kern-Paulusma 2012: A matching game has a stable
solution <= the maximum weight of a matching is equal to the
maximum weight of a half-matching. (Thus it can be decided
efficiently with Edmonds’ algorithm and with the Hungarian
method.)




Path to stability for assignment games

For an unstable state (M, p), satisfying a blocking pair jj ¢ M
means that we get a new state (M’, p’) such that

-ije M, p'(i) + p'() = w(ij), P'(i) = p(i) and p'(j) = p(j)

- if i was matched in M then M(i) is unmatched in M’

- agents outside /, j and their partners in M are not affected.

Biré-Bomhoff-Golovach-Kern-Paulusma (2014, TCS): If a stable
solution exists then one can be reached in at most 2n steps.
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Stable Fixtures problem with Payments (SFP)

bipartite graph nonbipartite graph
non-capacitated assignment game matching game
capacitated multiple partners a.g. SFP

A motivating example: soccer teams looking for opponents in the
summer training season...
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Stable Fixtures problem with Payments (SFP)

G(N, E) nonbipartite, with w : E — R edge-weights and
b: N — Z4 node-capacities.
A solution is a pair (M, p), where
1. M C E is a b-matching, i.e. for each i € N
{j:ij € M}| < b;, and
2. p: E— ]R%r are the payments, such that
a) j€M—p(i,j)+ p(j,i) = wj and
b) ij & M— p(i,j)=p(,i)=0.

Let up(i) =0if |{j: j € M}| < b; and

up(i) = min{p(i,j) : ij € M} otherwise.

A solution is (M, p) stable, if for each ijj € E\ M,
Up(i) + Up(j) > wijj.



Simple reduction with a graph construction
(3l
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Simple reduction with a graph construction

We can reduce

multiple partners a.g. to a.g.
and

SFP to matching game
(construction by Tutte 1954)
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Simple reduction with a graph construction

(0] @iy u
u 31 1 " ' i

)
1
G 1
We can reduce :
1
1
multiple partners a.g. to a.g. 7 :
1
1
and 1
1
1
SFP to matching game @ :
(construction by Tutte 1954) w0 :

[5] u® u u® e u )

jeEM = {lk,z},{%J/}a{JTaJl} eM

U §z M — {E*U}/{Iafl} € M/



Consequence for two-sided markets
Alternative proofs for Sotomayor’s theorems:

1992: stable solution exists
(from the reduction + Koopmans-Beckhamm 1957)

1999: the stable solutions form a lattice
(from the lattice prop. on the 'middle agents’ in the reduction)

2007: competitive equilibria exist and form a sub-lattice
(from the lattice prop. on the 'copied sellers’ in the reduction)



LP model, where dual solutions <= payments

PRIMAL: DUAL:

maxZw,-jx(ij) minzb;y(i)Jer(ij)

jEE ieN jeE

s.t. s.t.

Z x(if) < bj foreach i € N y(i)+y(j)+d(ij) > w; for each ij € E
jiijeE
where 0 < y(i) for each i € N,
where
and 0 < d(ij) for each ij € E
0 < x(ij) <1 foreach jj€E



LP model, where dual solutions <= payments

PRIMAL: DUAL:

maxZW,-jx(ij) minzb;y(i)Jer(ij)

jEE ieN jeE

s.t. s.t.

Z x(if) < bj foreach i € N y(i)+y(j)+d(ij) > w; for each ij € E

Jij€E
where 0 < y(i) for each i € N,

where
and 0 < d(ij) for each ij € E

0 < x(ij) <1 foreach jj€E

Thm 1: If (M, u) is a stable solution for an instance of SFP then
y(i) = up(i), d(ij) = wjj — up(i) — up(j) is opt. solution for DUAL.



LP model, where dual solutions <= payments

PRIMAL.: DUAL:
max Y wipx(if) miny_ biy(i)+ Y d(ij)

jEE ieN jeE

s.t. s.t.

Z x(if) < bj foreach i € N y(i)+y(j)+d(ij) > w; for each ij € E
jijeE
where 0 < y(i) for each i € N,

where
and 0 < d(ij) for each ij € E
0 < x(ij) <1 foreach jj€E

Thm 2: (M’ ) is a stable solution for the reduced instance IFF
y(i) = d'(i%), d(ij) = (¢'(ij) = o'(i%)) + (' (i) = '(%)) s opt.
solution for DUAL.



Solving SFP efficiently

Theorem: An instance (G, b, w) of SFP admits a stable solution if
and only if the maximum weight of a b-matching in G is equal to
the maximum weight of a half-b-matching in G. So this can be
decided in O(n?>mlog(n®/m)) time.

Proof: again by the duplication technique:

max,p(Gd) < maxh,p(G) SminDLp(G) < minDLp(Gd)

but max;p(G?)=minp p(GY) so we have = everywhere!



Core of Multiple Partners Matching Game

We define the TU-game (N, v) that corresponds with a multiple
partners matching game (G, b, w) by setting, for every S C N,

v(S) = w(Ms) = Y w(e),

ecMs

where Ms is a maximum weight b-matching in S.
(2
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We define the TU-game (N, v) that corresponds with a multiple
partners matching game (G, b, w) by setting, for every S C N,

v(S) = w(Ms) = Y w(e),

ecMs

where Ms is a maximum weight b-matching in S.
[2]

. maximum weight of a matching: 3
‘O - maximum weight of a half-matching: 3.5
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Core of Multiple Partners Matching Game

We define the TU-game (N, v) that corresponds with a multiple
partners matching game (G, b, w) by setting, for every S C N,

v(S) = w(Ms) = Y w(e),

ecMs
where Ms is a maximum weight b-matching in S.
maximum weight of a matching: 3

maximum weight of a half-matching: 3.5
yet, core allocation exists




Core of Multiple Partners Matching Game

Theorem: The payoff vector of every stable solution of a multiple
partners matching game is a core allocation.

Proof: Let (M, p) be a stable solution, with total payoff vector pt € R” defined by p(i) = >ijee p(i,J) for all
i € N. Let M’ be a maximum-weight b-matching in S...

p'(S)

v

v

POHG!

i€s

DD DERGY) ED S ()
i€S  jijeMnm’ AN

ST N +pG N+ D plisd)
jeMnm’ i€S j:ije M\ M’
dSoowi+d. > e
jeMnm’ i€S jiije M\ M’
Soowli+Y. D wpli)
jeMnm’ i€S jijeM/\M
Soowli+ > upli) + up()
jeMnm’ jEM\M
Sowlin+ YD wi)
jeMnM’ jEM\M

w(M') = v(S).



Core of Multiple Partners Matching Game

Theorem: It is possible to test in polynomial time if an allocation
is in the core of a multiple partners matching game defined on a
triple (G, b, w) with b < 2.

Proof: Let (N, v) be a multiple partners matching game defined on
a triple (G, b, w), where b(i) <2 forall i € N. Given SC N, a
maximum weight b-matching in G[S] is composed of cycles and
paths. Hence the core can be alternatively described by the
following (slightly smaller) set of constraints:

p(C) > w(C), forallcycles CeC

p(P) > w(P), for all paths P € P
p(N) = v(N).

The first condition is testable efficiently by solving the tramp

steamer problem. The second is testable by solving O(n®)
instances of the shortest path problem.



Core of Multiple Partners Matching Game

Theorem: It is co-NP-complete to test if an allocation is in the
core of a multiple partners matching game defined on a triple

(G, b, w) with b= 3.
Proof: reduction from BIPARTITE CUBIC SUBGRAPH problem:
Testing whether a bipartite graph has a 3-regular subgraph.

We add new vertices and create
K3 3 subgraphs in G”:

original agent gets: % - %

new agents get: % + 5—1"

Blocking coalition exists <= G has a 3-regular subgraph



Conclusions

» Half-matchings are crucial in solving and characterising the
roommates problems.

> The 'basic’ capacitated stable matching problems can be
reduced to non-capacitated problems by simple graph
constructions, thus their properties are similar.

» The basic models with payments are not much different from
the corresponding models without payments (although we still
need to understand the exact connections)

Further references on generalised roommates problems:

P A Alkan and A. Tuncay. Pairing games and markets. Working paper, August 2013.

P P.Biré, and T. Fleiner. The Integral Stable Allocation Problem on Graphs. Discrete Optimization 7(1-2),
pp: 64-73, 2010.

P P.Biré, and T. Fleiner. Fractional solutions for capacitated NTU-games, with applications to stable
matchings. To appear in Discrete Optimization, 2015.

P T. Fleiner. The stable roommates problem with choice functions. In proceedings of IPCO 2008, LNCS, vol.
5035, pp:385-400, 2008.



Open questions

> Any further result of non-capacited models that can be
generalised to capacitated models? (e.g. the path to stability
result)

» More general models, e.g. stable fixtures with contributions?
Motivation: a friendly game might take 1 day for the home
team but 3 days for the visitors...

» Other TU-games with capacities and contributions?

References on capacitated TU-games with contributions:
P G. Chalkiadakis, E. Elkind, E. Markakis, M. Polukarov and N. R. Jennings. Cooperative Games with
Overlapping Coalitions. Journal of Artificial Intelligence Research, 39:179-216, 2010.
P Y. Zick, E. Elkind. Arbitrators in overlapping coalition formation games. Proceedings of AAMAS 2011.

P Y. Zick, G. Chalkiadakis, E. Elkind. Overlapping coalition formation games: Charting the tractability
frontier. Proceedings of AAMAS 2012.



Further references

New book on the algorithmic aspects:
David F. Manlove: Algorithmics of matching under preferences.
World Scientific, 2013.

Summer school talks by Manlove and others:
http://econ.core.hu/english/res/MatchingSchool.html

COST Action on Computational Social Choice:
http://www.illc.uva.nl/COST-IC1205/

The Matching in Practice network website:
http://www.matching-in-practice.eu/

My research website:
http://www.cs.bme.hu/~pbiro/research.html



