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Reward prediction error (RPE) reflects the discrepancy between received and predicted outcomes 

and therefore plays an important role in learning in a dynamic environment. Using 

electroencephalographic measures of response to obtained and expected outcomes, previous studies 

have suggested that feedback-related negativity (FRN) could code RPE. It has further been 

hypothesized that FRN should be sensitive to both the likelihood and magnitude of behavioral 

outcomes. Previous studies consistently demonstrated that FRN is sensitive to the probability of 

outcomes, while the evidence of its sensitivity to the magnitude of outcomes is less consistent. In 

neuroimaging studies, a monetary incentive delay (MID) task is often used to evaluate the 

dependence of feedback processing on the RPE’s sign and size. In this article, for the first time, we 

studied FRN’s sensitivity to the valence, likelihood, and magnitude of outcomes during a novel 

auditory version of an MID task. FRN demonstrated sensitivity to both the valence of an outcome 

(gain vs. omission of a gain) and its probability (high vs. low). However, we did not observe a 

modulation of FRN amplitude by the magnitude of the outcomes. We also found that subjects’ 

behavior was more susceptible to changes in the probability than to the magnitude of the outcomes. 

Overall, FRN seems to be a promising tool to study the learning mechanisms of decision making. 

Keywords: feedback-related negativity, monetary incentive delay task, expected value, 

electroencephalography 
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Introduction 

Decision theory assumes that individuals’ choices are driven by the values attached to 

prospective outcomes. In order to evaluate the expected values (EV) of options, individuals estimate 

the magnitude and probability of outcomes (Bandura, 1977; Von Neumann and Morgenstern, 

1944). Neural correlates of EV (including the magnitude and probability of outcomes) have been 

widely investigated during the last two decades (see Glimcher et al., 2009 for a review). Decision 

theory is tightly interwoven with reinforcement learning (RL) theory (Bush and Mosteller, 1951). 

For example, the temporal difference model of RL (Rescorla and Wagner, 1972) indicates that an 

individual assigns high values to states that predict future rewards when encountered unexpectedly. 

Therefore, conceptually, reward prediction error (RPE) reflects any discrepancy between the 

obtained and expected outcomes: unexpected unfavorable outcomes (i.e., monetary loss) produce 

negative RPEs, whereas unexpected favorable outcomes (i.e., monetary gain) result in 

positive RPEs. Subsequently, with the seminal work of Wolfram Shultz (1997), RL theory has 

come to play an important bridging role between economics (e.g., Camerer and Ho, 1999; Erev and 

Roth, 1998), psychology (Rescorla and Wagner, 1972), and neuroscience (Schultz, 1997). It was 

proposed, that dopamine broadcasts a “prediction error” signal of precisely the form needed in 

reinforcement algorithms to drive convergence toward a standard dynamic programming value 

function (Barto and Sutton, 1982). Since then, the dopaminergic reward prediction error hypothesis 

has been tested using a variety of neuroimaging techniques (Caplin and Dean, 2008). Using 

electroencephalographic measures of reaction to the obtained and expected outcomes, Holroyd & 

Coles (2002) suggested that a feedback-related negativity (FRN) component of event-related 

potentials (ERPs) can code RPE.  

FRN is a frontocentral negative deflection occurring 240–340 ms after feedback onset. FRN is 

believed to represent an alerting signal that follows unexpected and/or unfavorable outcomes and 

underlies RL and performance monitoring (Holroyd and Coles, 2002; Van Meel et al., 2005; 

Montague and Berns, 2002; Montague et al., 2004; Sambrook and Goslin, 2015a). FRN is known to 

be strongly affected by the valence of feedback — it is enhanced by unfavorable outcomes (Miltner 

et al., 1997; Sambrook and Goslin, 2015b). EEG and fMRI research has established a causal role for 

the dopaminergic system in FRN generation in the cingulate cortex (for review, see Walsh and 

Anderson, 2012). 

An EEG study showed that FRN is a better index of negative RPE as compared to 

positive RPE (Gehring and Willoughby, 2002). This sensitivity to the valence of the outcome 



 
 

4 
 

constitutes the core argument proving that FRN might be an encoder of the RPE’s sign. It is critical 

that a negative RPE is generated when outcomes (a monetary loss or an omission of monetary gain) 

are worse than predicted (i.e, Holroyd and Coles, 2002; Luu et al., 2000). Overall, neuroimaging 

studies suggest that FRN is more sensitive to the probability of outcomes than to the magnitude of 

the outcomes (Walsh and Anderson, 2012), despite some evidence that the outcome magnitude 

exerts a modulatory effect on FRN (Sambrook and Goslin, 2015b).  

The monetary incentive delay task (MID) is an elegant tool to study the different stages of 

RL, from reward anticipation to its delivery (Knutson et al., 2000, 2005). It can be used to delineate 

the neural mechanisms of performance monitoring during behavioral acts with different EVs and 

RPEs. By introducing incentive cues signaling both the magnitude and probability of prospective 

outcomes, it is possible to study the effects of magnitude and probability on neural activity that are 

associated with feedback evaluation (Knutson et al., 2005). Initially, an MID task was used in fMRI 

studies of reward processing (Knutson et al., 2000). Subsequent EEG and MEG studies have 

employed MID to study the neural dynamics of reward processing (Broyd et al., 2012; Doñamayor 

et al., 2012; Thomas et al., 2013). To our knowledge, none of the previous studies investigated the 

simultaneous effects on FRN of the valence, magnitude, and probability of outcomes.  

In a classic MID task, visual stimuli such as circles, squares, and triangles were utilized as an 

incentive cues that coded the probabilities and magnitudes of outcomes. We developed an auditory 

version of an MID task that relied on sounds of different physical characteristics as incentive cues, 

which can also be used in studies of auditory perceptual learning.  

Using the auditory MID task, we studied the effect of the outcome’s valence, magnitude, and 

likelihood on FRN as index of performance monitoring for the first time. Crucially, the current 

study allowed us to develop a new paradigm investigating the mechanism of auditory perceptual 

learning during a neuroeconomic task using FRN as a neural signature of performance monitoring.  

Methods 

Subjects 

Seven subjects (4 women, 22±2 y.o.) participated in the behavioral pilot experiment. Forty-

two subjects (20 women, 23±4 y.o.) participated in the EEG experiment, in which both behavioral 

and electrophysiological data were collected. Data from five additional subjects were excluded due 

to excessive EEG artifacts. All subjects were right-handed, with normal or corrected-to-normal 

vision and with no history of psychiatric or neurological disorders. The study was approved by the 

local ethics committee, and all participants gave written informed consent prior to their 

participation. 



 
 

5 
 

Auditory stimuli 

 

Figure 1. Physical parameters of acoustic stimuli used as incentive cues in an MID task. 

This illustrates how the gain magnitude and the gain probability were encoded in the frequency 

and intensity of the acoustic cues. Gray dots represent four acoustic cues. In group 1, the 

frequency of the acoustic cue encoded the gain magnitude, while the intensity of the acoustic cue 

indicated the gain probability. In group 2, the encoding of the gain magnitude and the gain 

probability was reversed.  

Acoustic cues signaled a high or low prospective reward probability (0.80 and 0.20, 

respectively) and a high or low prospective reward magnitude (4 or 20 rubles, respectively), as 

illustrated by Fig. 1. We used two levels of frequency (fundamental frequencies of 562 Hz for the 

higher and 487 Hz for the lower tones) and two levels of intensity (55 and 80 dB) to encode the 

prospective reward probability and magnitude. All tones had a duration of 200 ms (including 5 ms 

of rising and falling times). Stimuli were generated with the PRAAT software. The probability and 

magnitude of reward were encoded differently in the two experimental groups. In group 1 (n = 24), 

the outcome magnitude was encoded by the intensity of the acoustic cue, while the gain probability 

was encoded by the frequency of the acoustic cue. In group 2 (n = 25), the encoding of the gain 

magnitude and gain probability was reversed. 

Study design  

The main goal of this study was to investigate the effect of the valence, magnitude, and 

probability of gain on FRN. The experiment consisted of two MID task sessions performed on two 

consecutive days.  
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Day 1. At the beginning of each experiment, the ability of participants to identify auditory 

stimuli was tested during a recognition test. Prior to the MID task, the probe structure and meaning 

of each acoustic cue were explained to participants. Next, participants performed the first session of 

the MID task. Day 2. At approximately the same time of the day, participants performed the second 

MID task session.  

The design of our paradigm aimed to investigate the effect of RPE on FRN over the course of 

learning in the MID task in two consecutive days.  

Recognition test 

The recognition test was designed to ensure that participants were able to discriminate 

acoustic cues coding EV. The participants were instructed to press a button corresponding to the 

delivered sound. The sound descriptions and target buttons were displayed on the screen (i.e., high 

loud sound, button 1, etc.) during the task. Participants received positive and negative visual 

feedback to facilitate learning. The EEG session started when the subject successfully identified 8 

out of 10 consecutive sounds. On average, participants made more mistakes in frequency 

identification (5.14±1.26; S±SEM) as compared to intensity identification (2.00±0.51) and mistakes 

in the simultaneous identification of frequency and intensity of sounds (1.90±0.64). 

Auditory MID task   

During the auditory MID task (Fig. 2), participants were exposed to acoustic cues encoding 

the prospective gain magnitude (4 or 20 rubles) and probability of a win (0.80 and 0.20). After a 

variable anticipatory delay period (2000–2500 ms), participants responded with a single button 

press immediately after the presentation of a visual target (white square) (Fig. 2). After a short 

delay, subsequent feedback (2000 ms) notified subjects as to whether they had won money and of 

their cumulative total outcome. The probability of a win was manipulated by altering the average 

target duration through an adaptive timing algorithm that followed subjects’ performance, such that 

they would succeed in 80% of the high-probability trials and 20% of the low-probability trials. 

Overall, the outcomes were positive (gain 4 or 20 rubles) or negative (miss 4 or 20 rubles). 

At the beginning of the task, the initial duration of the target was based on reaction times 

collected during the training session. It is important to note that, prior to the MID task, participants 

were instructed as to which acoustic cues corresponded to which probabilities and magnitudes of 

outcomes.  
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Figure 2. Trial scheme of auditory MID task. 

 

On average, the duration of the target presentation was set to 276±29 ms for trials with a high 

gain probability and 189±26 ms for those with a low gain probability. The reward feedback was 

presented in an average of 58±4 trials out of 76 in the case of 80% gain probability and an average 

of 13±3 trials out of 76 for the 20% gain probability. On average, subjects earned 854(±76) rubles 

by the end of the game.  

Analysis of behavioral results 

Reaction time (RT) on each trial type was averaged for each individual, grand averaged and 

subjected to mixed four – way repeated measures analyses of variance (ANOVA) with Group as a 

between-subject variable (group 1 vs. group 2) and Session (MID – session 1 vs. MID – session 2), 

Magnitude (low magnitude vs. high magnitude) and Probability (0,20 vs. 0,80) as within-subject 

variables.  

EEG data acquisition 

EEG data were recorded using 28 active electrodes (Brain Products GmbH) at a sampling rate 

of 500 Hz, according to the extended version of the 10–20 system: Fp1, Fp2, F3, F4, C3, C4, P3, 

P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, Oz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, and CP6. 

Active channels were referenced against the mean of two mastoid electrodes in order to display the 

maximal FRN response at the frontal electrode sites. The electrooculogram (EOG) was recorded 

with electrodes placed at the outer canthi and below the right eye. Data was acquired with a 

BrainVision actiCHamp amplifier (Brain Products GmbH) and sampled at 500 Hz. Impedance was 

confirmed to be less than 5 kΩ in all electrodes prior to recording. 

Auditory MID task EEG data analysis 
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EEG signals were pre-processed with the BrainVision Analyzer 2.1 (Brain Products GmbH). 

The EEG was filtered offline (passband 1–30 Hz, notch filter 50 Hz), and then an ICA-based ocular 

artifacts correction was performed. After manual inspection of the raw data for remaining artifacts, 

the data were segmented into epochs of 600 ms, including a 100 ms pre-stimulus. Each trial was 

baseline corrected to an average activity between -100 and 0 ms before stimulus onset. Epochs 

including voltage changes exceeding 75 mV at any channel were omitted from the averaging. 

Epochs were separately averaged for different trial types. Averaged ERP waveforms were 

computed within each subject and condition with a minimum number of 15 trials per condition.  

We processed feedback-locked visual ERP in two different ways: pooling ERPs for expected 

(highly likely) and unexpected (highly unlikely) outcomes, irrespective of magnitude, and pooling 

ERPs for the high (20 rub) and low (4 rub) magnitudes, irrespective of probability. ERPs obtained 

during the first and the second sessions were pooled together. As a result, we obtained 4×2 different 

types of waveforms. This procedure also helped to increase the number of trials averaged for each 

type of feedback because of a large difference in the number of trials for expected and unexpected 

outcomes. FRN peak amplitudes were quantified as the average amplitude (±20 ms) around the 

local minimum occurring within the timeframe of interest (270-350 ms at electrode Fz) post– 

stimulus onset. A time window chosen for statistical analysis of FRN was based on visual 

inspection of the grand-average waveforms and the results of previous studies. Timeframes of 

interest were the same for all eight types of feedback. For probability-pooled ERPs, we calculated 

ERPs (27±6 trials) to unlikely positive outcomes (gain, p=0.20), ERPs (110±14 trials) to likely 

positive outcomes (gain, p=0.80), ERPs (28±7 trials) to unlikely negative outcomes (miss, p=0.80), 

and ERPs (110±19 trials) to likely negative outcomes (miss, p=0.20). For magnitude-pooled ERPs, 

we calculated ERPs (67±5 trials) to small positive outcomes (4 rub), ERPs (84±10 trials) to large 

positive outcomes (20 rub), ERPs (71±8 trials) to small negative outcomes (misses of 4 rub), and 

ERPs (68±7 trials) to large negative outcomes (misses of 20 rub). ERPs obtained during the first 

and the second sessions were pooled together. Mixed four-way repeated measures ANOVAs with 

Group as a between-subject variable (group 1 vs. group 2) and Valence (gain vs. miss), Probability 

(unlikely vs. likely), and Electrode (Fz vs. Cz vs. Pz) as within-subject variables were conducted for 

FRN amplitudes derived from probability-pooled ERPs. Mixed four-way repeated measures 

ANOVAs with Group as a between-subject variable (group 1 vs. group 2) and Valence (gain vs. 

miss), Magnitude (low magnitude vs. high magnitude), and Electrode (Fz vs. Cz vs. Pz) as within-

subject variables were conducted for FRN amplitudes derived from magnitude-pooled ERPs. 

In addition to analysis of FRN amplitudes, we calculated the differential FRN (dFRN). 

Valence dFRN was defined as FRN to all positive outcomes (gain) and minus FRN to all negative 
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outcomes (omission of a gain). Probability dFRN and Magnitude dFRN were calculated similar to 

Sambrook and Goslin, 2015a. By subtracting the waveforms for gains and misses with the same 

size of RPE, we obtained difference waveforms reflecting differences in processing feedback 

valence in the cases of small RPE and large RPE. Then, we subtracted the obtained difference 

waveforms for small RPE from the waveforms for large RPE. Thus, the overall scheme of 

Probability dFRN calculation was as follows: (unexpected misses — unexpected gains) — 

(expected misses — expected gains), irrespective of the magnitude of outcome. For Magnitude 

dFRN, the calculation scheme was similar: (large misses — large gains) — (small misses — small 

gains). Amplitudes of Valence dFRN, Probability dFRN, and Magnitude dFRN were detected with 

the same procedure used for amplitudes of FRN. We conducted a two-way mixed model ANOVA 

with dFRN amplitudes as the dependent variable, Group as a between-subject variable (group 1 vs. 

group 2), and FRN type (valence vs. probability vs. magnitude) as a within-subject variable. 

Timeframes of interest for the three difference FRN waveforms (dFRN were the same as for FRN. 

This procedure allowed us to compare the sensitivity of FRN and dFRN to valence and to 

components of EV. 

In all repeated measures ANOVAs, significant interactions were further decomposed with 

simple effect tests (Howell and Lacroix, 2012; Stevens, 1991). The level of significance was set to p 

< 0.05. P-values reported for the ANOVAs were adjusted with the use of the Greenhouse–Geisser 

correction. All statistical analyses were performed using the Matlab 2015a and SPSS software 

package (22.0).  

 

Results 

Behavioral results 

Mean RT was 232±25 ms. RT in each trial type was averaged individually for MID — session 

1 and MID — session 2 (Fig. 3). A repeated measures ANOVA revealed significant main effects of 

Group [F(1, 48) = 5.708, p = 0.021, η
2
p = 0.275]: we observed a longer average RT in Group 1 

(221±5) as compared to Group 2 (204±5). The probability and valence of the expected outcome 

significantly modulated the RTs (factors Probability [F(1, 48) = 135.632, p < 0.001, η
2
p = 0.739] 

and Magnitude [F(1, 48) = 18.209, p < 0.001, η
2
p = 0.275]). On average, participants were faster in 

trials with a low probability of positive outcomes (202±4) as compared to those with a high 

probability (222±3). The RT was faster in trials with a large magnitude of expected gains (210±3) 

as compared to trials with a small magnitude (215±4). No significant interactions between factors 

were observed. 
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Figure 3. RTs for different types of trials in two experimental groups (light blue — group 1, 

green — group 2). 

Electrophysiological results 

Fig. 4 presents eight different types of feedback-locked visual ERP waveforms recorded in the 

MID at Fz. In all conditions, feedback is followed by FRN as a negative deflection around 300 ms. 

For both experimental groups, FRN was stronger for negative outcomes than for positive outcomes: 

the smallest FRN was evoked by unexpected gains, while the largest FRN was evoked by small 

negative outcomes (Fig. 4).  

The main effect of Valence [F(1,40) = 25.892, p < 0.001, η
2

p = 0.393] resulted from more 

negative amplitudes of FRN for misses (4.133±0.372) as compared to gains (6.337±0.611). A main 

effect of Probability [F(1,40) = 42.099, p < 0.001, η
2

p = 0.513] reflected larger FRN for expected 

outcomes (4.423±0.471) as compared to unexpected outcomes (6.047±0.477) (Fig. 4). It was of 

note that there was a significant two-way interaction of Valence x Probability [F(1, 40) = 10.540, p = 

0.002, η
2

p = 0.209]: the effect of probability for misses was smaller [F(1, 40) = 5.294, p = 0.027, η
2
p = 

0.117] than for gains [F(1, 40) = 38.101, p < 0.001, η
2

p = 0.494].  
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Figure 4. Grand-averaged visual ERP waveforms superimposed for eight types of feedback 

(averaged across two MID task sessions), as a function of probability (left part) or magnitude (right 

part). The FRN component (270 – 350 ms) is highlighted by gray shading).  

 

We also observed a significant interaction of Electrode x Probability [F(2, 68) = 5.275, p = 

0.011, η
2

p = 0.117], indicating the frontocentral maximum of the effect. The main effect of Group 

was not significant, and no significant interactions with other factors were observed. 

We further tested the effect of magnitude on FRN amplitudes. We observed a significant main 

effect of Electrode [F(1,56) = 6.089, p = 0.009, η
2

p = 0.132], supporting a frontocentral maximum of 

FRN. The main effect of Valence [F(1,40) = 11.248, p = 0.002, η
2

p = 0.219] resulted from the more 

negative amplitude of FRN to misses (4.292±0.381) as compared to gains (5.772±0.579). We did 

not observe any significant main effects of Magnitude and Group or the interaction thereof. 

  An analysis of dFRN (Fig. 5) showed a significant main effect of dFRN type [F(2, 76) = 

12.515, p < 0.001, η
2

p = 0.238], indicating a larger Probability dFRN (-2.454±0.528) when 

compared to the Valence dFRN (-1.847±0.440) and the nearly absent Magnitude dFRN 

(0.691±0.518). The main effect of Group and the dFRN type × Group interaction on dFRN was not 
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significant. Topographies clearly showed frontocentral dFRN distribution for Valence dFRN and 

Probability dFRN but not for Magnitude dFRN.  

  

 

Figure 5. Grand-averaged visual ERP difference waveforms superimposed for three types of 

FRN (dFRN), calculated separately for valence (misses — gains), for probability ((unexpected 

misses — unexpected gains) — (expected misses — expected gains)) and for magnitude ((big 

misses — big gains) — (small misses — small gains)). Difference waveforms were calculated 

separately for two experimental groups: group 1 — top left picture, group 2 — bottom left 

picture. Time windows (270 – 350 ms), indicated by gray shading, were used for individual 

peak amplitude measurement and for topographies calculation. Scalp topographies (right row) 

show the dFRN distribution for valence, probability, and magnitude. 

Discussion 

Here we investigated the effect of the expected value (magnitude and probability of an 

outcome) on FRN recorded during an auditory MID task.  
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We found that both the magnitude and probability of the expected outcome strongly 

influenced RT, similar to previous studies (Helfinstein et al., 2013; Knutson et al., 2003, 2005; 

Rademacher et al., 2014). 

An analysis of FRN strongly supports previous findings, showing an FRN sensitivity to 

outcome valence (Hajcak et al., 2006; Nieuwenhuis et al., 2004; Yeung and Sanfey, 2004). In our 

study, the FRN amplitude was higher overall for misses compared to gains, in waveforms pooled by 

both probability and magnitude. It has previously been proposed that FRN reflects an evaluation of 

positive vs. negative outcomes and that this binary evaluation is more pronounced in processing 

utilitarian (gain vs. miss) than in performance (correct vs. incorrect) feedback information 

(Nieuwenhuis et al., 2005).  

The probability of the outcome more strongly influenced FRN amplitude than the magnitude 

of the outcome. Previous studies demonstrated gain/loss asymmetry of the effect of probability on 

FRN: the likelihood of an outcome affects waveforms for gains more strongly than for losses or 

omissions of a gain (for review, see Walsh and Anderson, 2012). This preferential sensitivity of 

FRN to the changes in size of negative RPE might indicate different neural mechanisms underlying 

feedback processing for wins and losses (Cohen et al., 2007). The design of the current study could 

affect the strong influence of probability on FRN magnitude. Results of RT analysis suggest that the 

probability of a gain was more salient for participants than the gain magnitude, as it more strongly 

affected RTs. This behavioral saliency could affect reward expectations. 

We did not find a significant modulation of FRN by magnitude: Magnitude dFRN was nearly 

absent during the time window of interest. The modulation of FRN by the magnitude of the 

expected outcome is still controversial. Some studies have suggested that FRN is not influenced by 

reward magnitude (Cui et al., 2013; Hajcak et al., 2003, 2006; Holroyd et al., 2006; Marco-Pallares 

et al., 2008; Nieuwenhuis et al., 2004; De Pascalis et al., 2010; Yeung and Sanfey, 2004). However, 

there is also mounting evidence that FRN encodes magnitude in addition to probability and valence 

(Bellebaum et al., 2010; Kreussel et al., 2012; Toyomaki and Murohashi, 2005). Our results support 

those previous findings showing no FRN modulation by reward magnitude, but these results might 

be affected by a relatively low difference in the magnitude of gains — the difference could be 

insufficiently salient to result in significantly distinct FRN amplitudes. Bellebaum et al. (2010) 

proposed that the effect of the outcome magnitude on FRN can be clearly observed using a contrast 

between large gains vs. an omission of large gains and small gains vs. an omission of small gains, 

rather than by contrasting large gains and small gains. Further studies using a larger variety of 

rewards are clearly needed to determine the role of reward magnitude in FRN generation. 
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Conclusion 

Overall, our results indicate that only the probability of rewards affects FRN amplitudes. Our 

study supports the hypothesis that separate neural networks underlie the processing of reward 

probability and reward magnitude during performance monitoring. Thus, FRN is more sensitive to 

the probability but not to the reward component of RPE. Our results indicate that FRN can be used 

as a neural signature of RL to study auditory perceptual learning using an MID task. 
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