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OF MULTIPLE FEATURE CONJUNCTIONS43
 

 

Although objects around us vary in a number of continuous dimensions (color, size, orientation, 

etc.), we tend to perceive the objects using more discrete, categorical descriptions. For example, 

in the variety of colors and shapes on a bush, we can see a set of berries and a set of leaves. 

Previously, we described how the visual system transforms the continuous statistics of simple 

features into categorical classes using the shape of distribution. In brief, “sharp” distributions 

with extreme values and a big gap between them are perceived as “segmentable” and as 

consisting of categorically different objects, while “smooth” distributions with both extreme and 

moderate features are perceived as “non-segmentable” and consisting of categorically identical 

objects. Here, we tested this mechanism of segmentation for more complex conjunctions of 

features. Using a texture discrimination task with texture difference defined as length-orientation 

correlation, we manipulated the segmentability of length and orientation. We found that 

observers are better at discriminating between the textures when both dimensions are 

segmentable. We assume that the segmentability of both dimensions leads to rapid (within 100-

200 ms, as our data show) segmentation of conjunction classes which facilitates the comparison 

between the textures containing these classes. 
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Introduction 

Our capacity to attend to objects and store them in the working memory for deep 

processing is very limited (Cowan, 2001; Luck  & Vogel, 1997; Pylyshyn & Storm, 1988; 

Scholl, 2001). However, in everyday perception we often encounter hundreds of objects at one 

time but do not have difficulties in seeing them all. How can these hundreds of objects survive 

the severe limits of the processing bottleneck? One possible answer is that the visual system can 

represent multiple objects in the compressed form of ensemble summary statistics (Alvarez, 

2011; Cohen, Dennett, & Kanwisher, 2016). Instead of the precise encoding of each individual 

item, a summary of many objects can be computed to describe them together. This gives a 

number of advantages. First, it provides more accessible and perhaps more precise information 

about the objects than any lossy individual representation (Alvarez, 2011; Alvarez & Oliva, 

2008; Ariely, 2001; Parkes, et al., 2001). Secondly, representing statistical summaries of many 

objects requires as much attention as representing individual properties of a single object 

(Huang, 2015) and can be performed without focusing on each object (Alvarez & Oliva, 2008; 

Chong & Treisman, 2005a; Huang, 2015; Robitaille & Harris, 2011; Utochkin & Tiurina, 2014; 

but see Allik et al., 2013; Myczek & Simons, 2008; Maule & Franklin, 2015). Thirdly, ensemble 

statistics probably do not suffer (Alvarez & Oliva, 2008; Epstein & Emmanouil, 2017) or even 

benefit (Bauer, 2017) from a concurrent task requiring individual objects to be attended to and 

maintained in working memory (but see Jackson-Nielsen, Cohen, & Pitts, 2017). Ensemble 

summaries can be computed for basic sensory domains: size (Ariely, 2001; Chong & Treisman, 

2003), orientation (Alvarez & Oliva, 2008; Dakin & Watt, 1997), color (Huang, 2015; Maule & 

Franklin, 2015; De Gardelle & Summerfield, 2011), brightness (Bauer, 2009), direction and 

speed of motion (Emmanouil & Treisman, 2008; Watamaniuk & Duchon, 1992) and for 

complex perceptual features (Haberman & Whitney, 2007; Yamanashi-Leib & Whitney, 2016). 

Different types of descriptives, such as the mean, variance and numerosity are available as a 
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result direct perceptual processing, as they are prone to adaptation aftereffects (Burr & Ross, 

2008; Corbett, Wurnitsch, Schwartz, & Whitney, 2012; Norman, Heywood, & Kentridge, 2015). 

One relevant point that is often mentioned in the literature is the link between statistical 

representations in vision and perceptual organization. It has been shown in previous studies that 

the statistical properties of an image predict how the elements of that image are grouped or 

segregated. For example, feature variance affects the precision of visual averaging, which can be 

interpreted as the ease with which a holistic representation of a group of objects is made (Im & 

Halberda, 2013; Maule & Franklin, 2015; Utochkin & Tiurina, 2014). On the other hand, the 

discriminability of two different groups depends on their mean difference and variances (Corbett 

et al., 2012; Fouriezos, Rubenfeld, & Capstick, 2008). Finally, results of visual search 

experiments show that statistical outliers – elements whose difference from the mean is 

substantially greater than the overall variance – are easily segregated from the surroundings, 

drawing attention and saccades (Avraham, Yeshurun, & Lindenbaum, 2008; Haberman & 

Whitney, 2012; Nothdurft, 1992, 1993; Palmer, Verghese, & Pavel, 2000; Rosenholtz, 2001; 

Rosenholtz, Huang, & Ehinger, 2012a; Rosenholtz, Huang, Raj, Balas, & Ilie, 2012b). It has also 

been shown that the visual system tends to downplay or exclude outlying values when 

computing the mean, thus protecting organization by similarity (Haberman & Whitney, 2010). 

Segmentability: Distribution-based segmentation and categorization 

Our recent work (Utochkin, 2015; Utochkin & Yurevich, 2016) focused on testing the 

idea that a set of multiple items can be grouped or segregated based on the shape of the feature 

distribution. Within a fixed range of feature variation, items can be rapidly categorized as same-

type objects or as different-type objects, depending on the peaks and gaps in the internal 

distribution. This theory explains how a distribution of continuous visual features can be rapidly 

transformed into discrete classes of objects in perception. If one peak is present, then the set is 

more likely to be perceived as consisting of same-type objects. By contrast, if several peaks are 

presented and interleaved with gaps then the items represented by each peak are more likely to 
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form different-type objects (Utochkin, 2015). Correspondingly, same-type objects are better 

grouped, while different-type objects are readily segmented, even if the types are intermixed in 

the space. For example, leaves on a tree can widely vary in the fall from green to red as 

extremes, but individual shades can be intermediate. The presence of these intermediate shades 

makes the transition between green and red smooth, so this produces a single-peak distribution 

recognized as a set of one-type objects. By contrast, in summer, leaves and ripe berries also vary 

between green and red. But the transition between the extremes is much more abrupt, so one 

would more easily see this set as two overlapping sets of different-type objects. Utochkin and 

Yurevich (2016) tested this theory in three visual search experiments. Their participants had to 

search a size (Experiment 1) or orientation (Experiments 2 and 3) singleton among homogeneous 

or heterogeneous distractors with different sizes or orientations, respectively. While the range of 

feature variation and set sizes were carefully controlled, the transition between extreme feature 

values was manipulated. Transition could be sharp, assuming that feature values were distributed 

with a relatively big step (e.g., 0º, 22.5º, and 45º of orientation) or extremely (e.g., 0º and 45º). 

Transition could also be smooth, assuming a much smaller step between neighboring values 

(e.g., 0º, 5º, 10º, …, 45º). Utochkin and Yurevich (2016) found that, despite being the most 

heterogeneous condition (Duncan & Humphreys, 1989), smooth distractor distributions yielded 

faster search than any of the sharp distributions. Among the sharp conditions, the one with three 

values was more difficult for the search than the one with only two extremes. Therefore, search 

efficiency was related to heterogeneity non-monotonically. Utochkin and Yurevich (2016) 

suggested that the size of the transition was critical and introduced a concept of “segmentability” 

to explain the non-monotonic effect of smoothness. The set with sharp transitions between the 

features provides internal distributions with peaks corresponding to each presented value, and 

large gaps between them. That should lead to segmentation of the set into categorically different 

subsets (Utochkin, 2015), so that each subset is analyzed as a separate chunk and rejected 

serially, making search slower (Duncan & Humphreys, 1989; Humphreys & Müller, 1993; 
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Müller, Humphreys, & Donnelly, 1994). When a transition is smooth, there are no large gaps in 

the internal distribution, so the visual system collects all local featural peaks under a single-peak 

global distribution. Although this distribution has large variance, it is more likely to be 

represented as one group and rejected at once in visual search. 

Segmentation of multiple conjunctions: A general framework 

In real-world perception, multiple objects rarely show variation, grouping, or 

segmentation along a single dimension. Each object varies in many features, forming an 

individual feature conjunction; taken together, multiple objects can provide a huge variety of 

conjunctions (Tsotsos, 1987). The variety of conjunctions as a function of their constituent 

feature statistics can be described in terms of inter-feature correlation. The correlation (or any 

other concordance measure) is a good way to estimate how likely certain features in one 

dimension go with certain features in another dimension. An analogy can be made between 

descriptive ensemble statistics (e.g. average size) in global feature discrimination, and 

correlational statistics in global conjunction discrimination. Comparing two sets of dots with 

different average sizes, we can say where bigger dots prevail. Likewise, comparing two sets with 

different color-size correlations, we can say where reddish and bigger items prevail. Therefore, 

our discrimination between conjunction-defined sets of multiple objects is the matter of “seeing” 

feature correlations. 

When working with multiple conjunctions provided by several variable dimensions, can 

the visual system rapidly segment the classes of conjunctions? Sometimes, even when several 

separate dimensions are variable, conjunction segmentation is not harder than segmentation 

along a single dimension. This can happen when the features are highly correlated, which often 

occurs in the real world. For example, ripe berries on a bush are well distinguished from 

surrounding leaves not only because they are red, but also because they significantly differ in 

shape and size. Due to their high feature correlation and segmentability, the berries and the 

leaves must be perceived reliably as two object populations, because any of the feature 
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distributions can be used for segmentation and no single distribution contradicts the rest. The 

segmentation task can be reduced to one-feature segmentation and based on a single statistical 

summary. But the case becomes more interesting when feature distributions overlap between the 

populations. Imagine that not all berries on the bush are ripe enough, so their color ranges from 

green to red through shades. Then the color distribution is no longer segmentable. Moreover, the 

greenish part of the berry color distribution is now shared with the leaf color distribution. 

Therefore, the overall color distribution is less useful to rapidly segment berries from leaves. 

Given that shapes are still segmentable enough, will segmentation be efficient? Shape 

segmentability supports categorical differences between leaves and berries, but the non-

segmentable color distribution supports one category, thus potentially interfering with 

segmentation. Another interesting case is an attempt to segment a relevant item population from 

stuff where different populations have very similar feature distributions, but these features are 

correlated differently. Imagine again, that you have two bookshelves filled with reddish and 

bluish books of A5 to A4 sizes. The proportion of colors and sizes are about equal between the 

shelves, but shelf 1 has more reddish A4 books and shelf 2 has more bluish A4 books, so color-

size correlations are different. If you are looking for a particular book, which is “big red”, can 

you determine with one brief glance which shelf is more likely to have this book? Can you also 

delimitate the subsets of potential target books from irrelevant ones? How can color 

segmentability help you in perceiving the proportions of the “big red” books and in subset 

delimitation? These are the questions that we are going to answer in our study. 

The question of how the visual system treats multiple feature conjunctions has rich 

theoretical links. Perhaps, the most fundamental topic this question is related to the “binding 

problem” (Cave & Wolfe, 1999; Treisman, 1999). Perceived objects and scenes are presumably 

represented as elementary features and parts in the early sensory analysis performed by isolated 

and independent sensory modules (Treisman, 2006; Yantis, 2014) and should be somehow 

integrated correctly. As complete and momentary binding seems to be very computationally 
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demanding (Tsotsos, 1987), it are prone to some limitations. A theoretical debate concerns the 

locus of binding limits and strategies that the visual system uses to deal with them (e.g., Di 

Lollo, 2012; Duncan & Humphreys, 1989; Cave & Wolfe, 1999; Rosenholtz, Huang, & Ehinger, 

2012a; Treisman, 2006; Treisman & Gelade, 1980, etc.). The perception of correlated features in 

multiple items is a question of binding to some degree. How accurately can colors and sizes be 

ascribed together to the books from our example, given that even separate features are 

represented quite approximately – as an ensemble summary rather than a set of precise values for 

each book? Can these correlation statistics be computed very efficiently across multiple regions 

at one time (Rosenholtz et al., 2012b)? Or does it require a slower accumulation of information 

across more local samples (Allik et al., 2013; Simons & Myczek, 2008), perhaps because the 

serial deployment of attention is required for correct binding (Treisman, 2006; Treisman & 

Gelade, 1980)? 

Our study 

In this study, we investigate whether ensemble-based segmentation takes place in sets of 

multiple conjunctions, where the specific visual properties in those sets are defined by a 

correlation of features. Previous research using ensemble tasks, visual search, and texture 

discrimination has found that such multi-element displays (sets or textures) can be discriminated 

to some degree. However, such discrimination is usually worse than in displays where the 

specific properties are defined by differences in a single feature (Emmanouil & Treisman, 2008; 

Found, 1998; Rosenholtz et al., 2012b; Treisman, 2006; Treisman & Gelade, 1980; Wolfe, 

1992). While some theories explain this by the quite poor discriminability of image statistics of 

correlated conjunctions compared to differently distributed features (e.g., Rosenholtz et al., 

2012b), others suggest a different strategy which is particularly relevant to segmentation issues. 

Observers can first select a class of items defined by a specific feature and ignore other classes in 

the same dimension. Then, within the selected class only, they can search for differences in 

features (Friedman-Hill & Wolfe, 1995; Nakayama & Silverman, 1986; Treisman & Gelade, 
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1980; Wolfe, Cave, & Franzel, 1989) or feature statistics (Chong & Treisman, 2005b) along a 

different dimension (Chong & Treisman, 2005b). This sort of processing is often labeled “guided 

search” (Wolfe, 1994) in the visual search literature. But for the implementation of this serial 

algorithm, the classes should be defined at least along a dimension that had been selected first. 

Segmentability can therefore influence selection. 

What prediction can we make to test whether segmentation of multiple conjunctions 

occurs rapidly? According to our segmentability theory (Utochkin, 2015; Utochkin & Yurevich, 

2016), segmentable sets facilitate the discrimination between sets with different feature 

correlations, because their statistics make it easier to select local classes for comparison. We ran 

two experiments to investigate the effect segmentability has on the discrimination of sets 

(textures) of two correlated features – the lengths and orientations of lines. In Experiment 1, we 

measured how well observers discriminated between two textures as a function of their 

segmentability and the difference between their correlation statistics. As in Utochkin and 

Yurevich (2016), we manipulated segmentability using sharp and smooth transitions of physical 

feature distributions within a fixed range. In Experiment 2, we manipulated segmentability 

orthogonally across both feature dimensions. By doing this, we wanted to see whether 

segmentation along one dimension provides better segmentation in general, even if the second 

dimension is non-segmentable. We also varied the exposure time in Experiment 2 in order to 

track the time course of extracting correlation statistics and segmentation. 

Experiment 1 

Methods 

Participants. Five expert observers, including the authors of this article, participated in 

the experiment. Their age varied between 20 years and 43 years old, median age was 21 years 

old. All had normal or corrected-to-normal vision and no neurological problems. 

Apparatus and stimuli. Stimulation was developed and presented through PsychoPy for 

Linux (Pierce, 2007). Stimuli were presented on a standard VGA monitor with a refresh 
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frequency of 75 Hz and a 800 × 600-pixel spatial resolution. A 26° × 26° square at the center of 

the screen was used as the “working” field for presenting stimuli; the rest screen space remained 

gray. The working field was divided into 8 × 8 = 64 cells by an imaginary grid (each cell side 

was 3.25°). Each cell was used for positioning a single line element of the display. Within the 

cell, a line could be randomly jittered within ±0.23° in both horizontal and vertical directions. 

We used white lines as items in the sample set. The width of the lines were 0.17°. The 

length varied between 0.91° and 3.08°. The step of length increment was 0.14°. The orientation 

of lines varied between 11° and 86° with steps of 5° (the angles were counted from the vertical 

axis, so the greater angle value corresponds to a flatter orientation). Only the extreme values of 

both length and orientations were drawn from this range in the “sharp” condition of the 

experiment (Figure 1A). In the “smooth” conditions all the steps of orientation and length were 

shown (16 values in each dimension, Figure 1B). That is, sharp displays aimed to model 

segmentable sets, while smooth ones were intended to model non-segmentable sets (Utochkin & 

Yurevich, 2016). 

 

Fig. 1. Example displays with (A) sharp and (B) smooth distributions of features and different 

correlation coefficients. The examples show positive correlations in the top halves of the 
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displays and negative correlations in the bottom halves, but inverse stimuli were also present 

during the experiment. 

 

The 64-cell working field was divided in half (top and bottom, 8 × 4 = 32 cells each) by 

an imaginary horizontal meridian. Each half contained lines with exactly the same distributions 

of lengths and orientations as separate dimensions. In “smooth” displays, each half contained a 

double set of lines with 16 values of length and 16 values of orientation; in “sharp” displays, two 

extreme values of length (the shortest and the longest) and orientation (the steepest and the 

flattest) were presented 16 times in each half (Figure 1). While the distributions of lengths and 

orientations were equated between the halves, the conjunctions of these features were distributed 

differently, providing various levels of length-orientation correlations. These levels can be 

approximated by correlation coefficients ranging from -1.00 to 1.00 with steps of 0.25. For 

example, the correlation coefficient of 1.0 means that a longer line is exactly combined with a 

greater deviation from vertical, and the shorter lines were closer to vertical (steeper). As another 

example, correlation approximated by -0.25 was provided by 5/8 of the longer lines being 

steeper and 3/8 of the longer lines being flatter. Lines generated this way were randomly 

assigned to positions within each half (Figure 1). Within each compared half, the distributions of 

line-orientation conjunctions were counterbalanced between their inner halves (or quarters of the 

entire field). This was done to avoid a situation where features from different sides of the 

distributions are present unevenly between the quarters, thus causing conflicting perceptual 

grouping.  

Both halves of the display in one trial always had the same absolute value of length-

orientation correlation, but signs were always opposite (except for the correlation of 0). Figure 1 

demonstrates examples of displays with various levels of differences in correlation between the 

top and bottom halves. 
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Procedure. Participants were seated approximately 50 cm from the screen. Two of them 

were instructed to answer which half of a display contains more longer and flatter lines. This 

means that they were instructed to search for a positive correlation. The rest were instructed to 

answer which half of a display contains more longer and steeper lines. This means that they were 

instructed to search for a negative correlation. This was made for counterbalancing possible 

instruction-associated biases. 

Each trial started with the presentation of a fixation point for 500 ms (Figure 2). The 

sample display was shown during for 200 ms and was followed by a mask (a noisy set of 

overlapping white lines of different orientations, Figure 2), which was also presented for 200 ms. 

After that participants had to report which half of the display had contained the relevant set, 

using “up” and “down” arrow keys on a standard computer keyboard. Responses were followed 

by feedback informing the observers whether answer had been correct or not. A next trial started 

by pressing the SPACE bar, so participants could progress at a comfortable pace and take a rest 

whenever they wanted. 

At the beginning of the experiment, the participants did a training session consisting of 

eighteen trials for familiarization with the task. 

 

 

Fig. 2. The time course of a trial in Experiment 1. 
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Design and data analysis. In this experiment, we used a 2 (Segmentability: smooth vs. 

sharp) × 9 (Line-length correlation (as measured on the top half of a display): -1.00, -0.75, -0.50, 

-0.25, 0.00, 0.25, 0.50, 0.75, 1.00) within-subject design. 100 trials were presented within each 

factorial combination, so the total number of trials was 1,800 per observer. 

To analyze the discrimination performance, we built psychometric functions for each 

observer and each segmentability condition. The psychometric functions plotted the probability 

of an “up” response p (Up) as a function of the length-orientation correlation in the top half of 

the display. Since some observers were instructed to search for a negative correlation, we 

inverted their original probabilities of “up” responses (1 – p (Up)). This transformation was done 

in order to get a standard shape for the psychometric function, where the growth of the response 

probability is expected with the growth of the stimulus (here, with a positive correlation). 

Therefore, values of p (Up), unitized across observers, were eventually used for building the 

psychometric functions. 

The shapes and parameters of the psychometric functions were fit using normal 

cumulative density functions (CDF). Two parameters characterizing performance were extracted 

from each fitted function: μ (the mean of the normal distribution) and σ
2
 (the variance of the 

normal distribution). The latter parameter was of principal significance, as it characterizes the 

discriminability of the stimulus: The smaller σ
2
 we observe in a psychometric function, the better 

the observer discriminates the stimuli. 

Results and discussion 

For each participant, σ
2
 for the smooth condition was greater than σ

2
 for sharp one 

(observer A.Y.: 0.955 vs. 0.436; observer I.U.: 0.814 vs. 0.364; observer L.D.: 1.227 vs. 0.534; 

observer V.K.: 2.478 vs. 0.548; observer Y.S.: 1.099 vs 0.538). The graphical interpretation of σ
2
 

is the slope of the psychometric functions (CDF), with steeper slopes corresponding to a smaller 

σ
2
 (Figure 3). We can conclude, therefore, that all five observers showed better discrimination of 

length-orientation correlations in “sharp” compared to “smooth” displays. 
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Two results of this experiment are important. First, we showed that observers were able 

to discriminate between different degrees of feature correlations, even in a short presentation 

with backward masking. The discriminability of correlated-feature patterns steadily grows with 

the physical contrast between their correlational structures (cf. Rensink, 2017; Rensink & 

Baldridge, 2010). Second and most important, segmentability makes correlation discrimination 

easier. The relatively steep slopes of the psychometric functions for the “sharp” condition 

(Figure 3) suggest a greater increment in sensitivity per unit of the physical feature correlation. 

In other words, any change in the correlational structure of the pattern is noticed with higher 

probability in “sharp” compared to “smooth” displays. 
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Fig.3. Psychometric functions for all observers plotting the unitized probability of 

responding “Up” as a function of length-orientation correlation in the top half of the display. 

 

To summarize, Experiment 1 showed that the perceived feature correlation in 

conjunction-defined displays is a monotonic function of physical correlation and is improved by 

segmentability. In the next experiment, we test how this correlational structure is sampled over 

time and how conjunction-based segmentation arises from the segmentability of each feature 

dimension. 

 

Experiment 2 

In Experiment 1, we used a brief stimulus presentation (200 ms) to reflect the early 

(preattentive) processing of texture (Rosenholtz, 2000, 2014) or ensemble (Chong & Treisman, 

2003; Whiting & Oriet, 2011) statistics. This is typically characterized by a widespread and rapid 

sampling of the visual field (Treisman, 2006). Our expert observers could achieve high accuracy 

with perfectly correlated (length-orientation correlation equal to -1 or 1) “sharp” displays, but 

their performance with “smooth” displays was relatively poor (Figure 3). It seems, therefore, that 

within the window of early processing, sampling of feature correlation is not very efficient, but 

segmentability somehow increases its efficiency. How does this sampling take place then? In 

previous research on ensemble summary statistics, a limited-capacity mechanism of focused 

attention is discussed as a candidate (Allik et al., 2013; Gorea, Belkoura, & Solomon, 2014; 

Myczek & Simons, 2008), although this mechanism is debated (Alvarez, 2011; Ariely, 2008; 

Chong, Joo, Emmanouil, & Treisman, 2008; Utochkin & Tiurina, 2014). If this is the case, then 

correlation discrimination should benefit from longer stimulus presentation, but this benefit 

should be observed later than 200 ms, as the attentional sampling rate is supposed to be no more 

than ~1-5 samples a second (Gorea et al., 2014; see also Wolfe, Alvarez, & Horowitz, 2000, for 

limiting conditions). Other studies demonstrated that faster sampling can take place in the 
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accumulation of ensemble statistics (Chong & Treisman, 2003; Whiting & Oriet, 2011); these 

data suggest that fast non-attentional (or preattentive) sampling can exist. In Experiment 2, we 

examined several stimulus presentation durations (from 100 to 500 ms) to test whether 

correlation discrimination benefits from fast sampling, slow sampling, or both. Combining this 

with segmentability manipulation, this allowed us to see how the early ensemble-based 

segmentation of conjunctions occurs. 

The second question we wanted to answer in Experiment 2 was how the conjunction 

segmentability, we observed in Experiment 1, originates from the more basic segmentability 

properties of separate feature distributions. While in Experiment 1 the distributions were either 

both smooth or both sharp, in Experiment 2 we manipulated the segmentability of the 

distributions orthogonally. Can observers better discriminate correlations if one dimension (e.g., 

length) is segmentable and the other one (e.g., orientation) is not? In other words, if they can 

easily select a well-segmentable subset (e.g., long lines), can they say “long-steeper” lines from 

“long-flatter” lines more easily, even when orientations are not segmentable? Or must both the 

length and the orientations be distributed sharply in order to provide better discrimination? 

We used a slightly different psychophysical paradigm and a sample of observers in 

Experiment 2. As the correlation contrast between two textural patches was now fixed, we did 

not model psychometric functions. Instead, our paradigm was intended for obtaining the signal 

detection theory sensitivity rate dʹ. We also used a sample of naive observers instead of expert 

observers. This allowed us to collect a number of observations of sufficient statistical power (as 

dʹ, unlike psychometric functions, is less informative in individual analysis) and generalize our 

findings to a broader population. 

Methods 

Participants. In total, 21 undergraduate students at the Higher School of Economics 

participated in Experiment 2 for extra course credits (all females, aged from 18 to 21 years, 

median age was 20 years). All reported having normal or correct-to-normal visual acuity and no 
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experience of neurological problems. At the beginning of experiment, the participants signed an 

informed consent. 

Apparatus and stimuli. We used the same apparatus as in the Experiment 1. Stimulation 

was also similar in terms of the spatial arrangement of line elements, their length and orientation 

ranges, and how segmentability was defined within each feature dimension. However, there were 

three important differences. First, in some displays the correlational structures could differ 

between the top and the bottom halves (as in Experiment 1), but in other displays it could differ 

between the left and the right halves (Figures 4A and 4B). This provided either a horizontal, or a 

vertical boundary between two correlation-defined sets (or textures). Second, we used a fixed 

correlational contrast between the halves, r = 1.00 vs. r = –1.00. The positive and negative 

correlations evenly alternated between the halves from trial to trial. Third, the segmentability of 

length and orientation distributions varied orthogonally from display to display. That is, the 

distributions could be both smooth, both sharp, length sharp with orientation smooth, and length 

smooth with orientation sharp. These four segmentability conditions were called, respectively, 

both segmentable, none segmentable, length segmentable, and orientation segmentable (Figure 

4). 
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Fig. 4. Example stimuli used in Experiment 2 with four segmentability conditions. Panel (A) 

shows horizontal boundaries and panel (B) shows vertical boundaries between the textures. 

 

Design and procedure. The participants were seated approximately 50 cm from the 

screen. Their task was to determine whether a boundary between the half-sets with opposite 

length-orientation correlations is horizontal or vertical. The concept of correlation was explained 

as “the longer the line, the steeper its slope” (and vice versa), and also as prevalence of “longer-

steeper and shorter-flatter” (and vice versa). For visualization purposes, the experimenter drew 

an example set during the explanation, pointing to the differences in line attributes between the 

patches with positively and negatively correlated features. This provided a clear understanding 

of the task for the participants. 

Each trial started with a presentation of a fixation point for 500 ms. The sample display 

was shown for 100, 200, 350, or 500 ms and followed by a mask for 200 ms. After that 

participants had to report whether the boundary between the patches with opposing correlations 

had been horizontal or vertical. They used “left” and “up” arrow keys, respectively. Responses 

were followed by a feedback informing the observers whether answer had been correct or not. In 

the practice session at the beginning of the experiment, feedback was accompanied by the 

repeated presentation of the sample stimulus for unlimited time, with horizontal or vertical color 

line markers indicating the beginning and the end of the boundary (if the response had been 

correct the markers were blue, otherwise they were red). A next trial started by pressing the 

SPACE bar, so participants could progress at a comfortable pace and take a rest whenever they 

wanted. 

Design and data analysis. In this experiment, we used a 4 (Stimulus duration: 100, 200, 

350, and 500 ms) × 4 (Segmentability: both, length, orientation, and none) within-subject design. 

40 trials was presented within each factorial combination (20 with horizontal and 20 with 

vertical boundaries), so the total number of trials was 640 per observer. 
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The sensitivity index dʹ was calculated from the data, using a formula for two-alternative 

force choices (Stanislaw & Todorow, 1999). A 4 × 4 repeated-measure ANOVA (the model 

corresponding to the design) was then applied to dʹ. We implemented the standard significance 

tests and calculated Bayes factors for our ANOVA model. In the Bayesian statistical inference, 

the Bayes factor (BF10) is the odds showing the relative likelihood of H1 compared to H0 given 

the data. The Bayes factors were calculated in JASP statistical software (JASP Team, 2017). The 

width r of a prior Cauchy distribution of effect sizes was set at 0.5, following the default settings 

recommended by Wagenmakers and colleagues (Wagenmakers et al. 2017) and JASP Team 

(2017) for fixed effects models. Jeffreys’ scale (Jeffreys, 1961) with Kass and Raftery’s 

adjustment (Kass & Raftery, 1995) was used to interpret the Bayes factors. Here 1 < BF10 < 3 is 

evidence for H1 that is “not worth more than a bare mention” (Kass & Raftery, 1995, p. 777), 3 < 

BF10 < 20 is positive evidence for H1, 20 < BF10 < 150 is strong evidence for H1, and BF10 > 150 

is very strong evidence for H1. For post hoc pairwise comparisons, Bayes factors were calculated 

using the Bayesian t-test (Rouder et al., 2009) with a prior width set at r = 0.707, which is 

recommended as the default value for this test (JASP Team, 2017; Wagenmakers et al., 2017). 

Results and discussion 

We found a strong effect of stimulus duration on dʹ (F(3,60) = 16.871, p < .001, η
2

p = 

0.458, BF10 = 4.86×10
5
). Post hoc t-tests showed that dʹ in 100 ms was lower than in the rest of 

the durations (t’s > 4.44, p’s < 0.001, Bonferroni corrected α = 0.008, Cohen’s d’s > 0.48, BF10’s 

> 649), while other durations showed no difference from each other (t’s < 1.94, p’s > 0.05, 

Bonferroni corrected α = 0.008, d’s < 0.23, BF10’s < 0.72). The effect of segmentability was also 

very strong (F(3,60) = 26.829, p < 0.001, η
2

p = 0.573, BF10 = 1.04×10
16

). This was shown by the 

substantially greater dʹ in the “both” condition compared to the other three conditions (t’s > 7.52, 

p’s < 0.001, Bonferroni corrected α = 0.008, d’s > 0.82, BF10’s > 1.6×10
8
), while the rest of the 

conditions showed no difference from each other (t’s < 1.33, p’s > 0.19, Bonferroni corrected α 

= 0.008, d’s < 0.15, BF10’s < 0.29). We did not find any evidence of an effect of stimulus 
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duration × segmentability on dʹ (F(9,180) = 1.499, p = 0.151, η
2

p = 0.070, BF12 = 0.81, where 

BF12 is a ratio of BF10 for a model taking only the main effects into account to BF10 for a model 

taking the main effects and interaction into account). Additionally, we compared the observed dʹ 

for all factorial combinations with dʹ = 0 to estimate whether performance was better than chance 

in each condition. All of dʹ were found to be greater than 0 (t’s > 77.8, p’s < 0.001, Bonferroni 

corrected α = 0.003, d’s > 3.9, BF10’s > 6.87×10
10

), suggesting observers always were better than 

chance. The results are shown in Figure 5. 

 

Fig. 5. Texture discriminability (dʹ) as a function of presentation duration and segmentability 

(experiment 2).  

 

Our results show that observers were better at discriminating two sets (textures) with 

different correlations only when both correlated dimensions had sharp feature distributions. This 

finding replicates the advantage of segmentability observed in Experiment 1, though in a slightly 

different paradigm. Importantly, the two newly introduced conditions, where only one dimension 

had a sharp distribution, failed to improve correlation discrimination as compared to the “none” 
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condition. This suggests that conjunction segmentability arises from all contributing features 

being segmentable. In the next section, a more detailed explanation will be provided, based on 

the results of Experiments 1 and 2, for why segmentability rather than other statistical properties 

of the distributions is crucial for correlation perception. 

The second important effect shown in Experiment 2 is the effect of stimulus duration. We 

showed that the most dramatic increment in performance tended to occur within the early 

temporal window (from 100 to 200 ms) rather than within the late temporal window (from 350 to 

500 ms). This finding is consistent with the idea of relatively fast sampling of correlational 

statistics, whose speed is comparable to the sampling speed of averaging (Chong & Treisman, 

2003; Whiting & Oriet, 2011). In contrast, our data show no evidence for any benefit from slow 

sampling associated with focused attention (Allik et al., 2013; Gorea et al., 2014; Myczek & 

Simons, 2008). Moreover, the additive main effects of segmentability and stimulus duration 

suggest that conjunction segmentation can start at least as early as 100 ms. 

General discussion 

Previous research demonstrated that the distribution of individual features along a 

sensory dimension can provide an efficient basis for segmenting multiple objects based on that 

dimension (Treue, Hol, & Rauber, 2001; Utochkin & Yurevich, 2016). Substantial 

discontinuities between the clusters of similar features provide the distribution property that we 

called “segmentability” (Utochkin & Yurevich, 2016) and which can aid primitive but rapid 

categorization (Utochkin, 2015). In this study, we demonstrated that segmentability can work 

beyond separate dimensions. We found evidence that rapid segmentation of multiple 

conjunctions can emerge from good segmentability of the underlying feature dimensions, and 

that this segmentation supports discrimination between sets with similarly distributed but 

differently correlated (or bound) features. 

Segmentation vs. other ensemble-based algorithms 
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Our manipulations with the shapes of length and orientation distributions made some 

other statistical properties of these distributions change as well. Could these changes, rather than 

segmentability per se, account for our results? Below, we consider these alternative accounts and 

show why our data are best explained by segmentability. 

Variance is the first obvious ensemble parameter that changes with the shape of 

distribution. It is easy to see that the distributions with only extreme feature values (“sharp” 

condition in our experiments) have greater total variance than the distributions with extreme and 

medium feature values (“smooth” condition in our experiments). However, it seems very 

unlikely that the total variance could explain the facilitatory effects of sharp distributions. 

Previous research has convincingly shown that higher feature variance reduces the perceived 

contrast between the summary statistics of different sets (Callaghan, 1984, 1989; Corbett et al., 

2012; Fouriezos et al., 2008; Im & Halberda, 2013; Maule & Franklin, 2015; Rosenholtz, 2000; 

Utochkin & Tiurina, 2014). In our experiments, the sharp and, thus, more variable distributions 

enhanced rather than reduced discriminability. We, therefore, ruled out total variance as an 

explanation for our data pattern. The shape itself seems to be a preferred explanation at this 

point. 

Another possible strategy is selecting a subset of items whose features are located 

roughly close to one side of the distribution of the first dimension (“half-splitting”). Within this 

subset, a few samples can be tested for the average feature along a second dimension. For 

example, an observer can attend to a subset of longer lines and establish which samples of this 

subset are steeper or flatter on average. This might give the impression of differences between 

patches without computing the full correlations. 

The idea of half-splitting can explain the observed enhancement effect of segmentability. 

As sharp distributions consist of clearly shaped peaks, determining which feature represents 

which side of the distribution is not hard. By contrast, smooth displays imply a wide single-peak 

distribution where half-sets are harder to determine. One reason is that, without having a gap 
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between the extremes, features from the opposite sides of a smooth distribution can be confused. 

This is especially true for the features lying closer to the center of the distribution. To avoid this, 

an observer could ignore the medium features and focus on the tail of the distribution (e.g. on the 

longest lines only). But due to the smoothness of inter-feature transition (that is, the lack of 

segmentability), these “tail-most” elements are not salient enough to be quickly and accurately 

distinguished from the medium. As a result, the half-sample of the smooth distribution is 

imperfect and the corresponding correlation judgments are less accurate. 

The half-split strategy, described above, assumes that only one dimension should be 

segmentable. If a highly segmentable subset of long lines is selected, then the orientations can be 

compared based on average, so its segmentability should not play a substantial role. In 

Experiment 2, we found that segmentability enhances texture discrimination only when both 

dimensions were represented by the sharp distributions. The critical question is whether this is 

explained by segmentation or better average comparison within the second dimension when it 

has a sharp distribution. To illustrate this point, consider an example stimulus with a correlation 

contrast “r = 1.00 vs. r = –1.00” from our experiments. If the length is segmentable and a half-set 

of long lines is selected, only orientation contrasts should be found between the regions for 

establishing correlation differences. If orientations are also distributed sharply, their 

segmentability would provide good discrimination between “long-steep” and “long-flat” lines; if 

they are distributed smoothly, it is more difficult to distinguish between steep and flat lines, and 

this predicts poorer performance. However, the discriminability between the samples of 

orientations within the subset of long lines can be explained by the differences in the means and 

variances. In sharp distributions consisting of 11º and 86º elements, the physical orientational 

mean difference between the length-limited sub-textures was 75º and the standard deviation of 

each sub-texture was 0º. In the smooth condition, the mean difference between the sub-textures 

was 40º, and the standard deviation of each sub-texture was about 12º. For a symmetrical case 

(orientation is segmented), the mean length differences between the orientation-limited textures 
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was 2.1º (3.3 times) in the sharp and 1.1º (1.8 times) in the smooth conditions; the standard 

deviations of the sub-textures were 0º and 0.35º, respectively. From the previous work, we know 

that a smaller mean difference combined with a greater standard deviation within the textures 

leads to a decrement in average discrimination between the sets (Corbett et al., 2012; Fouriezos 

et al., 2008; Im & Halberda, 2013; Maule & Franklin, 2015; Utochkin & Tiurina, 2014). 

Having said that, the data from the previous work show that, even with smaller mean 

differences and greater standard deviations, the contrasts between sub-textures in our 

experiments were sufficient to provide a mean discrimination above the threshold. In the tasks 

requiring discriminations between mean orientations (Rosenholtz, 2000), mean lengths 

(Fouriezos et al., 2008), or mean dot diameters (Chong & Treisman, 2003, 2005b; Im & 

Halberda, 2013) between two sets, observers were more accurate with lower mean difference-to-

variance ratios than our participants, when working with one sharp and one smooth distribution. 

If our observers compared the averages along a second dimension within a half-sample along a 

first dimension, we would have expected better performance in these conditions compared to 

performance in the “none” condition (when both distributions are non-segmentable and half-

splitting is not reliable at all). One could argue that the half-set distribution can be permeable to 

the features from another half, which increases actual variance and decreases the actual mean 

difference. But this explanation seems hardly distinguishable from our previously adopted 

explanation in terms of segmentability. If half-set statistics of a smooth distribution are 

susceptible to the influence of another half-set more than the sharp half-set (where the other half-

set consists of opposing extreme and thus potentially even more biasing features), it indicates a 

problem with establishing a boundary between the half-sets. We conclude, therefore, that our 

finding that only both sharp distributions enhance the discrimination between the correlational 

structures of two textures, is explained by double segmentation and the formation of categorical 

classes of conjunctions. 

The time course of sampling 
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Our data show that correlation statistics (statistics of feature conjunctions) are less 

discriminable than single feature statistics, as previously reported (e.g. Rosenholtz, 2000). 

However, Experiment 2 shows that people do somehow estimate feature correlation above 

chance rapidly, even in the hardest condition with both length and orientations distributed 

smoothly. Note that at the shortest duration of 100 ms the accuracy is already non-zero, 

suggesting that some information about feature correlation is available early. At the same time, 

the increase in the presentation time beyond 200 ms did not have an effect on the accuracy of 

correlation estimation. This fact leads to two conclusions. Firstly, observers did not use sampling 

strategies based on focused attention (cf. Allik et al., 2013; Gorea et al., 2014; Myczek & 

Simons, 2008). If this was the case, participants would have acquired more precise information 

via collecting more local samples with time, so that d` should have grown. Second, as our task 

requires the binding of these features (or referencing between the features) and d` is always 

above 0, we can conclude that some coarse binding can take place without attention (e.g., 

Rosenholtz et al., 2012a). We do not claim, however, that our results dismiss the role of attention 

completely in object binding and recognition (Cave & Wolfe, 1999; Wolfe, Võ, Evans, & 

Greene, 2011): Our relatively low dʹ values show that the binding processes were very imperfect 

when lacking focused attention. It is possible that this coarse imperfect binding is sufficient to 

extract some statistics over large textured regions but insufficient for more precise recognition 

and localization of particular feature conjunctions (Balas et al., 2009; Wolfe, 1992). 

Despite having no evidence for slow attentional sampling, we observed increasing 

sampling efficiency within the “preattentive” window, between 100 and 200 ms. Although the 

correlation between two dimensions is a more complex statistic than the average along a single 

dimension, the time course of accumulating the information about correlations is comparable 

with the time course of visual averaging (Whiting & Oriet, 2011). Importantly, the effect of 

feature segmentability was observed very early: there was a significant benefit from both sharply 

distributed features at 100 ms. In our opinion, this early segmentation mediates sampling and 
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explains the gain from the sharp distributions. When the items are well segmented into classes, 

observers become more effective in drawing proper samples. In contrast, when distributions are 

smooth, observers are worse at using this strategy, because any pair of samples for comparison is 

more similar. 

Implications for the theory of vision 

Our results are important for understanding how discrete groups of objects can be 

coarsely identified for a more rigorous analysis. Although the features of real-world objects have 

some natural variation along continuous dimensions (such as size, orientation, color wavelength, 

etc), these continuously distributed features can be discretized based on the shape of distribution. 

In our experiments (Experiment 2 in particular), we demonstrated how the discrete classes of 

items arise from statistical properties of more elementary distributions, each corresponding to 

one variable sensory dimension. Segmentability, an earlier discovered emergent property of the 

single feature distribution (Utochkin & Yurevich, 2016), seems to provide a basis for 

discretization and coarse categorization (Utochkin, 2015). Our new data show that 

segmentability is a requirement for all variable features in order to support discrimination 

between the classes of feature conjunctions. In our experiments, the categorical differences 

supported by both segmentable lengths and orientations provide the facilitation of texture 

discrimination via access to categorically distinct subsets. 

The global and early segmentation of a scene can play an important role in the further 

deployment of attention and scene recognition (Wolfe et al., 2011). Our results provide new 

information about the boundary conditions for such segmentation and attentional control. 

According to the guided search model (Wolfe, 1994; Wolfe et al.,1989), observers can limit the 

number of inspected items to the preattentively segmented part of the set sharing common 

features with the target template. For example, when searching a red vertical line among multiple 

red horizontal and green vertical lines, the observer can give more weight to all red items and 

search for the only vertical item among them, which is the target (Friedman-Hill & Wolfe, 1995; 
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Wolfe et al., 1989). A similar mechanism was reported for binocular depth as a segmentation cue 

in search of depth-color or depth-motion conjunctions (Nakayama & Martini, 2011; Nakayama 

& Silverman, 1986). This strategy leads to a much more efficient conjunction search than that 

predicted by the purely serial deployment of attention (Treisman & Gelade, 1980). Our results 

show that the ability to select subsets for a guided conjunction search should depend on the 

segmentability of conjunction-defining dimensions. For example, when an observer attends to 

the items of a certain color, the color of a relevant subset should be segmentable from the 

irrelevant one. A less trivial point following from our results is that the second dimension should 

be segmentable, too. That is, even when color is segmentable enough for the selection of a 

relevant subset, the guided visual search without orientation being also segmentable will be less 

efficient. This prediction was not tested in the present study but can be tested in further 

experiments. 

Conclusion 

The results of our study advance our understanding of how the visual system splits poorly 

organized sets of multiple items (variable in attributes and intermixed in the space, which often 

corresponds to the natural organization of the real world) into groups representing categorically 

different classes of objects. Ensemble summary statistics, proven as an efficient tool to organize 

visual cognition in many different ways, seem to guide the massive transformation of 

continuously distributed visual features into discrete categories of objects. Here we showed that 

segmenability, a previously described emergent property associated with the shape of feature 

distribution, plays an important role in the categorization of objects whose categorical 

differences are defined by particular conjunctions of more simple features.  
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