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Introduction 

Theoretical understanding of a visual stimulus and of an observer's task in a psychophysical 

experiment is critical for controlling the experiment and for interpreting results of the experiment. 

This fact encourages vision scientists to use “simple” visual stimuli because the simple visual 

stimuli are expected to make understanding the results easier. Using simple visual stimuli can be 

also justified by “reductionism”. A visual proximal stimulus (a 2D retinal image) is often 

decomposed into points, contours, gratings, and Gabor patterns and perception of them has been 

studied in psychophysics (e.g. Watt, 1984; Campbell & Robson 1968). 

Perception of 3D spatial properties of visual distal stimuli (3D scenes and 3D shapes) cannot 

be studied in the same way as perception of 2D spatial properties of proximal visual stimuli (Pizlo, 

2008). The visual system is given 2D projections of the 3D distal stimuli but is not the distal stimuli 

themselves. Projecting a 3D distal stimulus to a 2D retina is a well-posed forward problem. The 

retinal image can be computed from the distal stimulus with a viewing condition (like 3D computer 

graphics). On the other hand, it is an ill-posed inverse problem to recover the 3D distal stimulus 

from the 2D retinal image. There are infinitely many possible 3D interpretations of the retinal image. 

The visual system can resolve this problem in two different ways: using a priori constraints about 

the 3D distal stimulus (Poggio, Torre, & Koch, 1985; Pizlo, Li, Sawada, & Steinman, 2014) and 

using depth cues (Howard, 2012). 

Visual distal stimuli (3D scenes and 3D shapes) are often represented as compositions of 

points or of triangles in computer vision and computer graphics. The triangle has been used for 

representing the scenes and the shapes because it is the simplest polygon with a surface and is 

always planar. Then, understanding properties of the triangle and of its 2D projection is important 

for discussing results of psychophysical studies using triangles as their visual stimuli and for 

studying perception of more complex 3D structures composed of triangles.  

In this study, we will numerically analyze i) geometrical properties of a relation between a 

triangle in a 3D scene and its retinal image and ii) retinal images of triangles used as visual stimuli 

in past psychophysical studies using an existing algorithm of geometry. Based on the analysis, we 

will discuss validity of results in the past psychophysical studies. 
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Analysis 

A relation between a triangle ABC in a 3D scene and its 2D perspective projection (see 

Appendix for a 2D orthographic projection of ABC) to a retina can be represented by a tetrahedron 

EABC (Figure 1). A bottom face of the tetrahedron is the triangle ABC and an apex E represents a 

center of projection of an eye. A retinal image of ABC can be represented by three visual angles θBC, 

θCA, θAB at E. A shape of the triangle ABC can be characterized by two angles ωA and ωB at the 

vertices A and B. The third angle ωC of the triangle ABC is ωC = 180° ˗ ωA ˗ ωB. A size of ABC can 

be controlled by a length of the line segment AB. The length of AB can be fixed to be 1 without loss 

of any generality. If the size of ABC is larger by a factor of s, the size of the tetrahedron EABC 

becomes also larger by a factor of s while all the angles of EABC remain constant. 

Consider a shape of the triangle ABC and its retinal image are given and recovering a 

position and orientation of the triangle from the given information. This problem has been referred 

as Perspective-3-Point (P3P) problem (e.g. Fischler & Bolles, 1981; Gao, Hou, Tang, & Cheng, 

2003; Li & Xu, 2011). It has been proved that there are up to 4 possible 3D interpretations of the 

triangle for the given shape of and the given retinal image of the triangle. 

 

Figure 1. A perspective projection from a triangle ABC in a 3D scene to a triangle abc on a 2D 

image plane Π from a center of projection E. The projection can be represented as a tetrahedron 

EABC. 
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Monte-Carlo simulation 

We tested frequencies of numbers of possible 3D interpretations of a triangle for a retinal 

image in two experiments of Monte-Carlo simulation. A shape of the triangle (ωA, ωB, ωC) and the 

retinal image (θBC, θCA, θAB) were randomly generated in each trial by randomly sampling ωA, ωB, 

θBC, θCA, and θAB from uniform distributions. The sampled variables of ωA, ωB, θBC, θCA, and θAB 

were constrained so that ωA, ωB, and ωC form the triangle and θBC, θCA, and θAB form an apex of the 

tetrahedron: ωA + ωB + ωC = 180°, θBC + θCA + θAB < 360°, θBC + θCA > θAB, θCA + θAB < θBC, θAB + 

θBC < θCA. Additionally, a shape of the triangle was restricted by another constraint: 10° < ωA, ωB, 

ωC < 170°. Then, possible 3D interpretations of the triangle for the retinal image (θBC, θCA, θAB) are 

computed using an algorithm of Fischler and Bolles (1981). 

In the first experiment, ranges of the sampling of θBC, θCA, and θAB were determined as 0.1° < 

θBC, θCA, θAB < θmax, where θmax is an independent variable (2°, 4°, … 118°, 120°) of the experiment. 

There were 4 × 10^8 trials for each value of θmax. In the second experiment, the ranges of the 

sampling were determined as θmax/2 < θBC, θCA, θAB < θmax.  

Results of the simulation are shown in Figure 2. The ordinates show frequencies of numbers 

of possible 3D interpretations. The abscissa shows θmax, which controls the range of the sampling. 

The four curves indicate the numbers of possible 3D interpretations.  

The results show that the frequency of 2 possible interpretations is almost 100% (> 95%) if 

the visual angles θBC, θCA, and θAB are small (θmax ≤ 14° in Figure 2AB) and decreases as the retinal 

image becomes larger. The number of possible interpretations is mostly 0 or 1 (> 94%) if all the 

visual angles θBC, θCA, and θAB are larger than 35° (θmax ≥ 70° in Figure 2B). The number is rarely 3 

or 4 for any value of θmax. 

Note that a perspective projection within a region of a small visual angle around the fovea 

can be well approximated by an orthographic projection with uniform scaling (see Appendix). 

Number of possible 3D interpretations of the triangle ABC for a given orthographic projection is 

always 2. It explains why the number of possible interpretations is almost always 2 under the 

perspective projection when the visual angles θBC, θCA, and θAB are small. As the visual angles 

become larger, discrepancy between the perspective and the orthographic projections becomes 

larger. 
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Figure 2. Results from the two experiments of Monte-Carlo simulation. The ordinate shows 

frequency of numbers of possible 3D interpretations and the abscissa shows θmax. The five curves 

indicate the numbers of possible 3D interpretations. (A) The visual angles θBC, θCA, and θAB were 

sampled between 0.1° and θmax. (B) The visual angles θBC, θCA, and θAB were sampled between 

θmax/2 and θmax. 

Past visual stimuli of triangles 

 Some psychophysical studies used triangles as their visual stimuli for testing human 

performance in shape constancy (Gottheil & Bitterman, 1951; Epstein, Bontrager, & Park, 1962; 

Wallach & Moore, 1962; Beck & Gibson, 1955; see also Pizlo, 1994, 2008) and for measuring 

discrepancy of the visual space from Euclidean space (Watanabe, 1996, see also Indow, 2004). 

These studies compared a shape of a triangle shown to an observer and a perceived shape of the 

triangle by the observer. Difference between these shapes was interpreted as failure of shape 

constancy in the shape constancy studies and was interpreted as an evidence of non-Euclidean visual 

space in Watanabe (1996). 

We analyzed the retinal images of the triangles in Experiment 1 of Beck and Gibson (1955) 

and in Condition 3 of Watanabe (1996) using the algorithm of P3P problem and shapes of triangles 

that can be projected to these retinal images were computed. Note that these studies were chosen 

because of simplicity of the stimuli and clarity of their apparatus settings. Their experiments were 

conducted in darkrooms and the triangles were shown without any other visual information. The 

triangles were observed monocularly in Beck and Gibson (1955) and binocularly in Watanabe 

(1996). 
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 Results of the analysis on the retinal images are shown in Figure 3. Each point in these maps 

represents a shape of a triangle. The abscissas and the ordinates show the two angles of the triangle 

ωA and ωB. The third angle ωC of the triangle can be computed as ωC = 180° ˗ ωA ˗ ωB. Colors 

indicate number of possible interpretations of the triangle with some shape (ωA, ωB, ωC) for the 

retinal image. The retinal image of the triangle under monocular observation is always ambiguous 

(Figure 3A). The triangle with most of shapes can be projected to the same retinal image. 

 

Figure 3. Results of analysis on the retinal images of triangles in (A) Beck and Gibson (1955) and 

(B) Watanabe (1996). The ordinate and abscissa show ωA and ωB. Colors indicate number of 

possible interpretations of the triangle with a shape (ωA, ωB, 180° − ωA − ωB) for the retinal image. 

White regions represent invalid triangles in Euclidean space: ωA + ωB ≥ 180°. (A) The analysis 

results on the retinal images in Experiment 1 of Beck and Gibson (1955) under 3 conditions of 

forward slant (30, 45, and 60°) of the triangle. The shape of the triangle (ωA, ωB, ωC) is (57.995°, 

57.995°, 64.010°). The retinal images (θBC, θCA, θAB) are (5.538°, 5.538°, 6.573°) for 30°, (4.928°, 

4.928°, 6.638°) for 45°, and (4.222°, 4.222°, 6.689°) for 60° of the slant. (B) The analysis results on 

the retinal images in Condition 3 of Watanabe (1996) under binocular observation. The shape of the 

Slant = 30°

0

180

90

ω
A

 (
°)

0 18090
ωB (°)

Slant = 45°

0

180

90

ω
A

 (
°)

0 18090
ωB (°)

Slant = 60°

0

180

90

ω
A

 (
°)

0 18090
ωB (°)

Left retinal ima ge

0

180

90

ω
A

 (
°)

0 18090
ωB (°)

Right retinal image

0

180

90

ω
A

 (
°)

0 18090
ωB (°)

A

B

Number of
3D interpretations
0 1 2 3 4



8 

 

triangle (ωA, ωB, ωC) is (87.459°, 42.946°, 49.594°). The retinal images (θBC, θCA, θAB) are (41.19°, 

27.68°, 31.01°) for a left eye and (41.18°, 27.78°, 30.91°) for a right eye. 

This ambiguity cannot be resolved even under binocular observation (Figure 3B). The left 

and right panels of Figure 3B show ambiguity of the left and right retinal images of a single triangle 

in Condition 3 of Watanabe (1996). These two panels are almost identical with one another. A 

stereo pair of the retinal images are individually ambiguous and the triangle with almost any shape 

that can be projected to one of the retinal images can be projected to the other retinal image as well. 

The studies of shape constancy using a triangle visual stimulus found that a perceived shape 

of the triangle was very different from its veridical shape unless some depth cue (e.g. binocular 

disparity) was provided. It is reasonable because a monocular retinal image of the triangle is 

consistent with many different shapes of triangles (Figure 3A). They concluded that depth 

information is critical for shape constancy. However, human performance in shape constancy is 

actually reliable even under monocular condition if a shape is not a triangle but is complex and 

regular enough (Pizlo, 1994; Li & Pizlo, 2011; Liu, Knill, & Kersten, 1995). The poor performance 

in shape constancy of a triangle can be explained by its geometrical property. However, Figure 3B 

shows that the shape of the triangle is still theoretically ambiguous even under binocular observation. 

This ambiguity can be resolved if the visual system knows how a stereo pair of eyes are 

oriented relative to their interocular axis. It is theoretically possible to estimate the eye orientations 

only from their retinal images if there are 5 or more than 5 feature points in the scene that are 

projected to the both images (Kruppa, 1913, translated by Gallego, Meggler, & Sturm, 2017; 

Thompson, 1959; see Hartley & Zisserman, 2003 for a review). However, the triangle has only 3 

vertices and they are not enough for estimating the eye orientations.  

The visual system can compensate for this shortage of visual information by using the 

efference signal from the oculomotor control system (Foley, 1980; Bradshaw, Glennerster, & 

Rogers, 1996; Backus, Banks, van Ee, & Crowell, 1999). The oculomotor efference signal can tell 

how the two eyes are oriented. Then, depth of even a single point in a 3D scene can be recovered 

with the oculomotor information (vergence as a depth cue, see Howard, 2012 for a review). 

However, the oculomotor efference signal can play any major role on binocular depth perception 

only if a visual stimulus is impoverished. It is unlikely in our everyday life because a 3D scene out 
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there is with many feature points and provides rich visual information in a wide visual field (see 

Discussion). 

Triangle visual stimuli used in the shape constancy studies (Gottheil & Bitterman, 1951; 

Epstein, Bontrager, & Park, 1962; Wallach & Moore, 1962; Beck & Gibson, 1955) were all smaller 

than 10°.
4
 These visual stimuli are too small for the visual system to recover their 3D information 

without the oculomotor efference signal (Backus et al., 1999; Bradshaw, Glennerster, & Rogers, 

1996). 

Triangle stimuli used in Watanabe (1996) were sufficiently large; the visual angles between 

the vertices of the triangles were around 31° on average (Figure 4). Additionally, several extra 

points were shown with the triangles depending on tasks of his experiment (6 extra points at 

maximum). Computationally, these points (both the extra points and the vertices of the triangles) 

provide sufficient information for recovering 3D information from the stimuli. However, it is 

questionable whether the human visual system can integrate such sparse points in the wide visual 

field to recover 3D information only from the retinal images (Kaneko & Howard, 1997; Zhang, 

Berends, & Schor, 2003; Gantz & Bedell, 2011). Then, the visual system should rely again on the 

oculomotor efference signal but the efference signal may introduce systematic error on visual 

perception (Mistudo, 2007; Mitsudo, Kaneko, & Nishida, 2009). Note that Watanabe (1996) 

reported distortion of 3D perception and concluded that the visual space is non-Euclidean. However, 

the distortion could be attributed to impoverishness of the visual stimuli.  

  

                                                 
4 Epstein, Bontrager, and Park (1962) showed a textured background with the triangle and the background size was less than 16°. 

Beck and Gibson (1955) also showed a textured background with the triangle in their Experiments 2 and 3. However, the size of their 

background was not mentioned. On the other hand, Erkelens (2015) tested a perceived shape of a triangle in a normally-illuminated 

room so that other visual features in a wide visual field were available.  
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Figure 4. Orthographic projections of visual distal stimuli used in (A) Condition 2 and (B) Condition 

3 of Watanabe (1996) along a direction of depth (the Z-axis). The X-axis is frontoparallel and 

horizontal (from left to right). The Y-axis is frontoparallel and vertical (its direction is not specified 

in Watanabe, 1996). A cyclopean eye of an observer was at [0, 0, 0]
T
 and its orthographic projection 
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is indicated by x in the figure). The unit in the figure is centimeters. A triangle ABC is shown with 

extra points depending on tasks. Task-0 (only Condition 3): The Z-coordinate of A was adjusted so 

that the triangle ABC is frontoparallel. Task-1: the observer adjusted positions of E and F so that E = 

(A+B)/2 and F = (A+C)/2. Task-2: the observer adjusted positions of D, P, Q, R, S, and T so that D = 

(B+C)/2, P = (B+D)/2, Q = (D+C)/2, R = (B+P)/2, S = (Q+C)/2, and T = (S+C)/2. Task-3: the 

observer adjusted positions of G and H so that they are on a line segment BC and |G˗B| = |F˗E| and 

|H˗C| = |F˗E|. Note that G and H were never shown together at the same time. Their geometrically 

correct positions in Euclid space coincide with one another. 

Discussion 

 The computational analysis in this study showed that a triangle in a 3D scene is an 

“impoverished” visual stimulus even under binocular observation. There are many different 3D 

shapes of the triangle with many different 3D positions and orientations that can project to the 

retinal image and the stereo pair of retinal images. 

It is difficult to discuss shape constancy (Gottheil & Bitterman, 1951; Epstein, Bontrager, & 

Park, 1962; Wallach & Moore, 1962; Beck & Gibson, 1955) and non-Euclidean visual space 

(Watanabe, 1996) based on results of their past studies using triangles as visual stimuli. The stimuli 

are so impoverished. Namely, they are too small, with few feature points, or with sparse feature 

points. In that case, the visual system should rely on the oculomotor efference signal to recover 3D 

information (see Past visual stimuli of triangles). However, the oculomotor efference signal should 

not play an important role for depth perception outside the laboratory because a 3D scene out there 

is full of visual information (see Backus et al., 1999; Bradshaw, Glennerster, & Rogers, 1996). 

 Recovering 3D information (3D shape or 3D scene) from a 2D retinal image is an ill-posed 

problem under monocular observation. However, our perception of a 3D scene out there is almost 

always veridical in our everyday life even under monocular observation. The everyday scene and 

objects there almost always satisfy some regularities (e.g. mirror-symmetry). Then, the visual 

system can recover their regular 3D information by applying a priori constraints of these regularities 

(Pizlo, Li, Sawada, & Steinman, 2014). The a priori constraints strongly bias our perception even 

under binocular observation (Li, Sawada, Shi, Kwon, & Pizlo, 2011; Jayadevan, Sawada, Delp, & 

Pizlo, accepted; Li & Pizlo, 2011; Sugihara, 2016). Erkelens (2015) reported a systematic bias of 

perception of a shape and of a 3D orientation of an isosceles triangle in a 3D scene. Such a bias 

toward a right angle is observed with some other objects (Perkins, 1972; Perkins, 1976; Sugihara, 

1997, 2005, 2014a, b; Griffiths & Zaidi, 2000). It is worth pointing out that almost all triangles used 
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in the studies of shape constancy (Gottheil & Bitterman, 1951; Wallach & Moore, 1962; Beck & 

Gibson, 1955) were isosceles triangles.
5
 Results reported in these studies could be affected by the 

right angle bias. 

This study discussed specifically a triangle in a 3D scene because of uniqueness of its 

geometrical properties (e.g. the P3P problem). However, other “simple” 3D visual stimuli can have 

the same or analogous problems as the triangle does (e.g. Pizlo & Salach-Golyska, 1994). 

Perception of 3D spatial properties cannot be studied in the same way as perception of 2D spatial 

properties. The 3D properties are about a distal stimulus and the 2D properties are about a retinal 

image (a proximal stimulus), which is a projection of the distal stimulus. The visual system can 

perceive the 3D properties from the 2D retinal image but this is an ill-posed problem. Understanding 

this geometry is important for designing experiments for testing 3D perception and interpreting their 

results. 

Appendix 

 A retinal image of a 3D scene is a 2D perspective projection. The perspective projection can 

be approximated within a region of a small visual angle around the fovea by a 2D orthographic 

projection along a line of sight with uniform scaling. In this appendix, a relation between a triangle 

in a 3D scene and its 2D orthographic projection is analyzed. Note that a general solution of this 

problem has been already shown in earlier studies (e.g. Hu & Ahuja, 1991; Pei & Liou, 1994). In 

this appendix, the problem is specifically formulated so that a 3D orientation of a triangle is 

represented by slant σΔ, tilt τΔ, and roll ρΔ. This representation is common in Psychophysics and 

makes the solution easier. 

The XYZ Cartesian coordinate system of a 3D scene and the xy Cartesian coordinate system 

of a 2D image in the scene are set as follows: (i) the Z-axis of the 3D coordinate system is 

perpendicular to the image plane ΠI and ΠI is Z = f where f is a constant and can be arbitrary, (ii) the 

Z-axis is normal to ΠI and intersect with ΠI at the origin of the 2D coordinate system, and (iii) the X- 

and Y-axes of the 3D coordinate system are parallel to the x- and y-axes of the 2D coordinate system, 

respectively. A 2D orthographic projection of a point [X3D  Y3D  Z3D]
T
 in a 3D scene is [x2D  y2D]

T
 = 

[X3D  Y3D]
T
. 

                                                 
5 Epstein, Bontrager, and Park (1962) did not clearly specify shapes of triangles used in their experiments. 
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A triangle ABC is planar and a shape of ABC can be determined using a 2D coordinate 

system: A = [0 0]
T
, B = [1 0]

T
, and C = [XC YC]

T
. Any shape of ABC is characterized by the x- and y-

coordinates xC and yC of C. The triangle ABC in the 3D scene can be written as: 

 𝑇∆ + 𝑅𝑍(𝜏∆)𝑅𝑌(𝜎∆)𝑅𝑍(𝜌∆) (
𝐴 𝐵 𝐶
0 0 0

) (1) 

𝑇∆ = [
𝑋∆
𝑌∆
𝑍∆

] , 𝑅𝑌(𝜃𝑌) = (
cos 𝜃𝑌 0 sin 𝜃𝑌
0 1 0

− sin 𝜃𝑌 0 cos 𝜃𝑌

) , 𝑅𝑍(𝜃𝑍) =  (
cos 𝜃𝑍 −sin 𝜃𝑍 0
sin 𝜃𝑍 cos 𝜃𝑍 0
0 0 1

) 

where TΔ represents a translation, RY and RZ represent rotations about the Y- and Z- axes, and XΔ, YΔ, 

ZΔ, τΔ, σΔ, and ρΔ are free parameters. A 3D orientation of ABC is determined by slant (σΔ), tilt (τΔ), 

and roll (ρΔ) and its 3D position is determined by TΔ. Then, a 2D orthographic projection with a 

uniform scaling of ABC in the 3D scene is:  

 
𝑠𝛥 [

𝑋𝛥
𝑌𝛥
] + 𝑠𝛥𝑅2𝐷(𝜏𝛥) (

cos 𝜎𝛥 0
0 1

)𝑅2𝐷(𝜌𝛥)(𝐴 𝐵 𝐶) (2) 

𝑅2𝐷(𝜃2𝐷) =  (
cos 𝜃2𝐷 −sin 𝜃2𝐷
sin 𝜃2𝐷 cos 𝜃2𝐷

) 

where R2D represents a 2D rotation on the image plane ΠI and sΔ is a factor of the uniform scaling. 

Note that sign of sΔ depends on where ΠI is for the perspective projection approximated by this 

orthographic projection. The sign of sΔ is negative (sΔ < 0) if ΠI is behind of the center of projection 

relative to the 3D scene (e.g. retinae of eyes and sensors/films of real cameras). The sign is positive 

(0 < sΔ) if ΠI is in front of the center of projection (e.g. image screens of virtual cameras in many 

computer vision or computer graphics applications; see Figure 1 in the main text for an example). 

Equation (2) shows that the retinal image (the 2D orthographic projection with the uniform scaling) 

of ABC is an Affine transformation of ABC:  

 (𝑎 𝑏 𝑐) = 𝑇2×1 +𝑀2×2(𝐴 𝐵 𝐶) (3) 

𝑇2×1 = [
𝑡1
𝑡2
] ,𝑀2×2 = (

𝑚11 𝑚12

𝑚21 𝑚22
) 

where a = [xA yA]
T
, b = [xB yB]

T
, and c = [xC yC]

T
 are the orthographic projections of A, B, and C. 

 Next, consider estimating the 3D position TΔ and the 3D orientation (τΔ, σΔ, ρΔ) of the 

triangle ABC and the uniform scaling sΔ from its retinal image abc. A shape of ABC and its 

projection abc are given. All the elements of T2×1 and M2×2 can be computed from A, B, C, a, b, and 
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c by solving Equation (3). The 3D position TΔ can be estimated except for its Z-coordinate ZΔ: [XΔ 

YΔ]
T
 = [t1 t2]

T
. From Equations (2) and (3):  

 

{

𝑚11 = 𝑠𝛥 cos 𝜎𝛥 cos 𝜌𝛥 cos 𝜏𝛥 − 𝑠𝛥 sin 𝜌𝛥 sin 𝜏𝛥
𝑚12 = −𝑠𝛥 cos 𝜎𝛥 sin 𝜌𝛥 cos 𝜏𝛥 − 𝑠𝛥 cos 𝜌𝛥 sin 𝜏𝛥
𝑚21 = 𝑠𝛥 cos 𝜎𝛥 cos 𝜌𝛥 sin 𝜏𝛥 + 𝑠𝛥 sin 𝜌𝛥 cos 𝜏𝛥
𝑚22 = −𝑠𝛥 cos 𝜎𝛥 sin 𝜌𝛥 sin 𝜏𝛥 + 𝑠𝛥 cos 𝜌𝛥 cos 𝜏𝛥

 (4) 

Equation (4) can be re-written as: 

 

{
 

 
𝑚22 +𝑚11 = 𝑠𝛥(1 + cos 𝜎𝛥) cos(𝜌𝛥 + 𝜏𝛥)

𝑚21 −𝑚12 = 𝑠𝛥(1 + cos 𝜎𝛥) sin(𝜌𝛥 + 𝜏𝛥)

𝑚22 −𝑚11 = 𝑠𝛥(1 − cos 𝜎𝛥) cos(𝜌𝛥 − 𝜏𝛥)

𝑚21 +𝑚12 = 𝑠𝛥(1 − cos 𝜎𝛥) sin(𝜌𝛥 − 𝜏𝛥)

 (5) 

For a given sign of sΔ, cos(σΔ), τΔ, and ρΔ can be uniquely estimated by solving Equation (5).
6
 A sign 

of the slant σΔ cannot be determined because cos(σΔ) = cos(˗σΔ). It is depth reversal ambiguity. From 

these facts, any Affine transformation T2×1 and M2×2 between abc and ABC can be decomposed into 

parameters that represent the 3D position and the 3D orientation of ABC with the depth reversal 

ambiguity. Namely, there are always 2 possible 3D interpretations of the given triangle ABC for the 

given retinal image abc under an orthographic projection. 
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