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DIFFERENT FEATURES ARE STORED INDEPENDENTLY IN 

VISUAL WORKING MEMORY BUT MEDIATED BY OBJECT-

BASED REPRESENTATIONS 

 

The question whether visual working memory (VWM) stores individual features or 

bound objects as basic units is actively debated. Evidence exists for both feature-based and 

object-based storages, as well as hierarchically organized representations maintaining both types 

of information at different levels. One argument for feature-based storage is that features 

belonging to different dimensions (e.g., color and orientations) can be stored without interference 

suggesting independent capacities for every dimension. Here, whether the lack of cross-

dimensional interference reflects genuinely independent feature storages or mediated by 

common objects. In three experiments, participants remembered and recalled the colors and 

orientations of sets of objects. We independently manipulated set sizes within each feature 

dimension (making colors and orientations either identical or differing across objects). Critically, 

we assigned to-be-remembered colors and orientations either to same spatially integrated or to 

different spatially separated objects. We found that the precision and recall probability within 

each dimension was not affected be set size manipulations in a different dimension when the 

features belonged to integrated objects. However, manipulations with color set sizes did affect 

orientation memory when the features were separated. We conclude therefore that different 

feature dimensions can be encoded and stored independently but the advantage of the 

independent storages are mediated at the object-based level. This conclusion is consistent with 

the idea of hierarchically organized VWM. 
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Introduction 

At every moment of our perception, we interact with different objects, each having a 

number of various features, such as color, shape, size, etc. A limited portion of the information 

about these objects and their features can be used for current tasks and maintained for a short 

period of time in working memory (Baddeley, 1986; Baddeley & Hitch, 1974). It is consistently 

established that the capacity of working memory has serious limitations (e.g., Cowan, 2001; 

Miller, 1956). These fundamental limits are also true for the visual subsystem of working 

memory (VWM) which maintain and operates visual information (Alvarez & Cavanagh, 2004; 

Luck & Vogel, 1997). However, for a correct capacity estimate it is important to determine what 

is represented in VWM as a basic unit of storage. There is a long-lasting debate around this 

question in the VWM literature: Does VWM store whole objects or separate features? 

Existing studies provide evidence that both objects (Kahneman, Treisman, & Gibbs, 

1992; Lee & Chun, 2001; Luck & Vogel, 1997; Luria & Vogel, 2011; Treisman, 1999; Vogel, 

Woodman, & Luck, 2001; Xu, 2002; Xu & Chun, 2006; Cowan, Chen & Rouder, 2004) and 

features (see Brady, Konkle, & Alvarez, 2011, for review; Wang, Theeuwes, Olivers, & Wang, 

2016; Wheeler & Treisman, 2002; Shin & Ma, 2017; Fougnie & Alvarez, 2011) can be units of 

VWM. In their seminal study, Luck and Vogel (1997) demonstrated a strong advantage of 

maintaining any number of features in a limited number of spatially bound objects (at least up to 

four features per object). The prevailing limiting factor for capacity in found by Luck and Vogel 

(1997) was the number of objects (~3-4) rather than the number of features. They concluded that 

objects are units of VWM, showing no limitation in VWM by number of features. However, 

other studies failed to support this strong version of object-based storage suggesting that features 

also can limit VWM (see Brady, Konkle, & Alvarez, 2011, for review). Two major sets evidence 

are used against this purely object-based account. The first set of evidence is based on findings 

that increasing the number of features to be remembered within an object do cause interference. 

For example, the increased number of features belonging to a same dimension per object 

significantly decreases VWM capacity for these objects (Wheeler & Treisman, 2002; Olson & 

Jiang, 2002; Xu, 2002). The same was found for increasing object complexity (Alvarez and 

Cavanagh, 2004; Hardman & Cowan, 2015; Oberauer & Eichenberger, 2013). Other studies 

have found that remembering two features of the same objects impaired the precision of each 

remembered feature, while the capacity is seemingly intact (Fougnie, Asplund, & Marois, 2010; 

Fougnie & Marois, 2009). The second strong line of evidence against the purely object-based 

account of VWM is a number of demonstrations of relative independence between features of 

the same object leading to their selective forgetting or swaps between remembered features of 
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different objects (Bays, Catalao, & Husain, 2009; Bays, Wu, & Husain, 2011; Fougnie & 

Alvarez, 2011; Fougnie, Cormiea, & Alvarez, 2013; Pertzov, Dong, Peich, & Husain, 2012). 

Whatsoever, even in the presence of these feature-based limitations, VWM still consistently 

benefits from object-based representations: It is easier to remember several features of one object 

than the same number of features distributed across several objects (Fougnie et al., 2010; 

Fougnie et al., 2013; Wheeler & Treisman, 2002). To account for this, theorists suggested that 

not objects or features alone can be the units of VWM. Rather, the units are hierarchically 

structured “feature bundles” containing both integrated object and feature representations 

hierarchically linked (see Brady et al., 2011, for review; Fougnie et al., 2010). Similar ideas that 

VWM can be constrained by both objects and features in different ways have been proposed by 

other authors (Olson & Jiang, 2002; Shin & Ma, 2017; Xu & Chun, 2006). 

The complicated pattern of evidence for feature-based vs. object-based storage in VWM 

is additionally complicated by an unclarity regarding the structure of feature memories. 

Specifically, it was noted that VWM performance can depend on whether remembered and 

tested features belong to same or different dimensions. Most experiments on features were the 

same dimension (Wheeler & Treisman, 2002; Olson & Jiang, 2002; Xu, 2002) which typically 

constitute different parts of an object (Alvarez & Cavanagh, 2004) show a significant decrement 

in performance with an increasing number of features per object (but see Luck & Vogel, 1997; 

Vogel, Woodman & Luck, 2001 for an opposite conclusion). There is no such interference 

between features from the same dimension (e.g., Wheeler & Treisman, 2002). This leaves room 

for a theory that feature-based VWM is in fact a multistorage system having separate capacities 

for features from different dimensions. This theory was directly tested and supported in recent 

studies where researchers independently manipulated the memorized set size for features from 

two separable dimensions, color and orientation (Wang, Cao, Theeuwes, Olivers, & Wang, 

2017). They found that VWM capacity for a given feature depended on the set size in the 

corresponding dimension rather than joint set size in both dimensions. For example, if observers 

are shown six isosceles triangles, each triangle having one of two possible colors (color set size 

is two) and one of two possible orientations (orientation set size is also two), their ability to spot 

a change in either of the dimensions is rather high. If color size becomes six (each triangle has a 

unique color) and orientation set size remains two, it selectively impairs change detection for 

color but not for orientation (and vice versa if color set size stays small and orientation set size 

increases). These separate storages can provide an advantage when the selective encoding of one 

dimension and ignoring another can be required (Shin & Ma, 2017; Woodman & Vogel, 2008). 

However, it is important to note that independent set size manipulations in the 

experiments by Wang et al. (2017) concerned features but not objects these features belonged to. 
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In all experiments, colors and orientations were tested in a same set of objects. If object 

representations facilitate feature storage in general, can they mediate the advantage of the 

independent feature capacities? Alternatively, these independent capacities can be purely feature-

based in which case they should manifest in both unitary and separate objects. 

To address this question, we have run three experiments testing VWM for color and 

orientation. The general approach was similar to that used by Wang et al. (2017): We 

orthogonally manipulated the set size within each dimension by assigning either a single or three 

different values and measured VWM for both dimensions. Critically, colors and orientations 

could be assigned to same objects (Experiment 1), different parts of spatially integrated objects 

(Experiment 3), or spatially separated objects (Experiment 2). Unlike Wang et al. (2017), we 

used a continuous report task (Wilken & Ma, 2004; Zhang & Luck, 2008) instead of a change 

detection task. It is justified by a fact that the former paradigm allows parametric estimation of 

both capacity and fidelity of VWM (Zhang & Luck, 2008), that are both known to be sensitive to 

feature-based and object-based load (Fougnie et al., 2010). 

Experiment 1 

In Experiment 1, we tested VWM for colors and orientations in a same set of three 

objects. In different conditions of the experiment, we assigned either three different values or a 

single value to each object in each dimension orthogonally. This manipulation affected both 

within-dimension and joint set sizes in a manner similar to that in the experiments by Wang et al. 

(2017). Hence, the main goal of this experiment is to test whether the principal finding of 

independent storages for color and orientation is replicated in our paradigm. 

Methods 

Participants 

Twenty students from the Higher School of Economics (17 female) participated for extra 

course credits. The participants ranged in age from 18 to 25 years (average age was 19.93 years) 

and reported having normal or corrected to normal visual acuity, no color blindness and 

neurological problems. Before the beginning of the experiment, they signed an informed consent 

form. In this and subsequent experiments, sample sizes were determined based on similar studies 

addressing the issue of feature storage and binding in VWM and using a continuous report task 

(from 10 to 16; for example, Fougnie & Alvarez 2011; Fougnie et al., 2010; Bays, Catalao, & 

Husain, 2009; Pertzov, Dong, Peich, & Husain, 2012). The planned sample size also included a 

few extra participants considering a possibility of technical problems or poor performance in 

some participants.  
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Apparatus and stimuli 

Stimulation was developed and presented through PsychoPy (Pierce, 2007) for Linux 

Ubuntu. Stimuli were presented on a standard VGA monitor with a refresh frequency of 75 Hz 

and 1024×768-pixel spatial resolution. Stimuli were presented on a homogeneous gray field. 

Participants sat approximately at 47 cm from the monitor. From that distance, screen subtended 

approximately 42.44 × 32.5 degrees of visual angle. 

Sample displays consisted of one or three colored isosceles triangles presented in 

randomized positions along an imagery circumference 4.35º away from a monitor center (Figure 

1). Each triangle had sides of .6º, 1.2º, and 1.2º in length. To set the positions of the three 

triangles on the imaginary circumference, we first generated a random rotational angle from 1º to 

360º for a first triangle and then positioned the rest two triangles 120º and -120º away from the 

first with a ±30º-jitter. For color assignment, we used the hue wheel in the 360º HSV (hue-

saturation-value) space, and for orientation assignment, we used the 360º orientational 

circumference. As color and orientation had the same dimensionality as spatial positions, we 

applied the rotational algorithm described above to set three colors and three orientations. When 

an experimental condition required a single color, a single orientation, or a single item to be 

presented, the color, orientation, or position was chosen randomly. 

For memory test, outline circles were presented at the locations of sample triangles, with 

one thick outline indicating the location of a probed item. In trials where color was probed, the 

test display was surrounded by an HSV color wheel 4.35º in radius (Figure 1). In trials where 

orientation was probed, the test display was surrounded by a black orientational wheel with 

white ticks marking 30º steps (Figure 1). The probed outline turned into a solid colored circle (if 

color was probed) or a white oriented triangle (if orientation was probed) upon mouse click on a 

wheel (Figure 1). 

Procedure 

Each experimental trial stared with a 500-ms presentation of a sample display. 

Participants were instructed to memorize both color and orientation of the triangles. The sample 

was followed by a 1-second delay (retention interval) that, in turn, was followed by a probe 

screen (Figure 1). Clicking on a color or orientation wheel, participants had to adjust a 

corresponding attribute of the probe item to match the sample attribute presented at that location. 

At the beginning of the experiment, participants completed a training session. The total duration 

of the experiment varied between 45 and 60 minutes. 
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Figure 1. The time course of a typical trial in Experiment 1. 

Design and data analysis 

Five conditions of the Sample type were tested in Experiment 1 (Figure 2A). In four of 

these conditions, we orthogonally varied color and orientation set sizes in three triangles: (1) all 

different features (three colors and three orientations), (2) color identical (one color and three 

orientations), (3) orientation identical (three colors and one orientation), (4) all identical features 

(one color and one orientation). Condition (5) contained a single object and was used as a 

baseline. This baseline, in comparison with the “all identical” condition, aimed to test whether 

three identical feature values of three objects are indeed encoded like a single feature. In a 

within-subject experiment, each participant was exposed to 5 (Sample type) × 2 (Probed 

dimension: Color vs. Orientation) × 47 repetitions = 470 trials. 
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Figure 2. Example of stimuli for three experiments for five conditions (objects with all different 

features, objects with different color and identical orientation, objects with different orientation 

and identical color, objects with all identical features, one pair of features). (a) Experiment 1 

with bound features in object. (b) Experiment 2 with features distributed across segregated 

objects. (c) Experiment 3 with features distributed across spatially overlapped objects. 

 

For each trial, the error was calculated as an angular difference between the correct 

feature value and that adjusted by a participant. The distribution of errors was then analyzed 

using the mixture model (Zhang & Luck, 2008) implemented in MemToolbox for Matlab 

(Suchow, Brady, Fougnie, & Alvarez, 2013). The standard mixture model has two different 

parameters obtained from fitting two components of the error distribution. The first parameter is 

the standard deviation (SD) of the von Mises distributional component, that is supposed to reflect 

the precision of a noisy representation that is present in memory. The second parameter is the 

probability of random guess (Pguess) can be estimated as an area below the uniform component of 

the mixed distribution; this component is supposed to reflect randomly chosen answers when a 

probed item is likely to be absent in the memory (not encoded or forgotten). Reverse Pguess is 

used as an estimate for a probability that a probed element is held in VWM: Pmemory = 1 – Pguess.  

To evaluate the effect of Sample type, we applied the standard frequentist and Bayesian 

one-way repeated measures ANOVA to the SD and Pmemory for color and orientation. The Bayes 

factor (BF10) was calculated using JASP 0.9.0.0 (JASP Team, 2018; Wagenmakers et al., 2017) 

and interpreted using the standard Jeffrey’s scale (1961). The Bayesian approach estimates odds 

of H1 to H0 (Rouder, Speckman, Sun, Morey, & Iverson, 2009).  
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Results and discussion 

One participant was excluded from the analysis because she showed nearly 100% guess 

rate in all conditions. The results of the Experiment 1 for Pmemory and SD are summarized on the 

Figure 3. 

 

Figure 3. Results of Experiment 1: (A) Pmemory and (B) SD as a function of Sample type. Error 

bars depict 95% CIs. 

 

Pmemory for color. We found a strong effect of Sample type on Pmemory for color (F (4, 72) 

= 65.92, p < .001, η² = .786, BF10 > 10
20

). Pmemory was greater in conditions where the color was 

identical across objects (color identical, all features identical, and one object) compared to 

conditions where colors differed across (all different features and orientation identical) – t(18) 

>= 7.348, p < .001, Bonferroni corrected α = .005, Cohen’s d >= 1.686, BF10 > 10
4
. There were 
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no significant differences between conditions with identical color across objects (color identical, 

all features identical, and one object) and also between conditions with different color across 

objects (all different features and orientation identical). 

Pmemory for orientation. We found a strong effect of Sample type on Pmemory for orientation 

(F (4, 72) = 28.53, p < .001, η² = .613, BF10 > 10
10

). Pmemory was greater in samples where 

orientation was identical across objects (orientation identical, all identical features, and one 

object) compared to samples where orientation differed across objects (all different features and 

color identical) – t(18) >= 4.537, p < .001, Bonferroni corrected α = .005, Cohen’s d >= 1.041, 

BF10 > 122. There were no significant differences between conditions with identical orientation 

across objects (orientation identical, all identical features, and one object) and also between 

conditions with different orientation across objects (all different features and color identical). 

SD for color. We found a strong effect of Sample type on SD for color (F (4, 72) = 6.115, 

p < .001, η² = .254, BF10 = 217.3). In all different features and in identical orientations, SD for 

color was greater compared to all identical features (t(18) = 3.312, p = .0039, Bonferroni 

corrected α = .005, Cohen’s d = .760, BF10 = 11.53) and one object (t(18) = 3.312, p = .0004, 

Bonferroni corrected α = .005, Cohen’s d = 1.003, BF10 = 88.89). In all other comparisons there 

were no significant differences. 

SD for orientation. We found a strong effect of Sample type on SD for orientation (F (4, 

72) = 30.66, p < .001, η² = .630, BF10 > 10
10

). SD was lower in samples where orientation was 

the same across objects (only orientation identical, all features identical and one object) 

compared to conditions where orientation was different through objects (all features different 

and only color identical) – t(18) >= 5.327, p < .001, Bonferroni corrected α = .005, Cohen’s d >= 

1.222, BF10 > 559. There were no significant differences between conditions with identical 

orientation across objects (orientation identical, all identical features, and one object) and also 

between conditions with different orientation across objects (all different features and color 

identical). 

In total, in Experiment 1 we observed a consistent pattern across both probed dimensions 

and both estimated VWM parameters. Specifically, we found that a greater Pmemory (roughly 

corresponding to capacity in items) and a lower SD (corresponding to better precision) take place 

in those clusters of conditions where the tested features have been identical across objects. More 

importantly, within these clusters, there were no differences there were found no effect of 

whether a second dimension has been represented by identical or different features. Hence, we 

found that both Pmemory and SD for a given dimension depended only on the set size within that 

dimension and not on the joint set size. Additionally, we found that all identical features are 

encoded as efficiently as a corresponding feature in one object. Overall, the results of 
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Experiment 1 replicate Wang et al.’s (2017) finding in favor of independent storages for features 

from different dimensions. 

Experiment 2 

In Experiment 2, we modified stimuli so that colors and orientations belong to different 

spatially separated objects (exactly like in Fougnie et al., 2010). This would allow us to test 

whether dimension independence is preserved when there is no object-based advantage for 

storing the features together and when object-based load is increased. 

Methods 

Participants 

Nineteen students from the Higher School of Economics (14 female) participated for 

extra course credit. They ranged in age from 18 to 22 years (average age is 18.52 years) and 

reported having normal or corrected to normal visual acuity, no color blindness and no 

neurological problems. Before the beginning of the experiment, they signed an informed consent 

form. 

Apparatus and stimuli 

Apparatus and stimuli were similar to Experiment 1, except that colors and orientations 

were distributed across spatially separated objects. This led to duplicated numbers of objects 

from Experiment 1 (from three to six and from one to two). Objects were located along an 

imaginary circumference with a radius of 4.35º. If there were six objects on a screen, each object 

was separated by 60º of rotation ±15º jitter from its neighbors (Figure 2B). When there were two 

objects on a screen, each object was separated by 180º of rotation from another (presented 

symmetrically across the center of the screen, Figure 2B). There were two types of objects 

depending of which dimension was relevant for memorization. “Color” objects were the circles 

whose colors were set using the coloring algorithm from Experiment 1. “Orientation” objects 

were the isosceles triangles whose orientations were set using the orientation rotation algorithm 

from Experiment 1. “Color” objects alternated with “orientation” objects on the imaginary 

circumference forming two overlapping triangular groups (this was exactly the same method of 

positioning as that used by Fougnie et al., 2010, Figure 2B). When two objects were presented, 

one was a “color” object, and another was an “orientation” object. 

Procedure 

The procedure of Experiment 2 was the same as in Experiment 1, except for a difference 

in instruction. Participants were instructed to memorize only orientations of white triangles and 

only colors of color circles. 

Design and data analysis 



12 
 

Design of Experiment 2 was the same in terms of Sample types, two tested dimensions, 

and number of trials. The only nominal change was that the baseline “one object” condition from 

Experiment 1 was renamed to “two objects” for clarity (but they were equal in terms of feature 

set sizes). Data analysis was identical to Experiment 1. 

Results and discussion 

The results of the Experiment 2 for Pmemory and SD are summarized on the Figure 4.  

Pmemory for color. We found an effect of Sample type on Pmemory for color (F (4, 72) = 

69.53, p < .001, η² = .794, BF10 > 10
20

). Pmemory for was greater in samples where color was 

identical across “color” objects (color identical, all identical features) or belonged to a single 

“color” object compared to samples where colors were different across objects (all different 

features different and orientation identical) – t(18) >= 8.426, p < .001, Bonferroni corrected α = 

.005, Cohen’s d >= 1.993, BF10 > 10
6
. There were no significant differences between conditions 

with identical color across objects (color identical, all features identical, and single “color” 

object) and also between conditions with different color across objects (all different features and 

orientation identical). This result replicates the respective pattern from Experiment 1.  

Pmemory for orientation. We found an effect of Sample type on Pmemory for orientation (F 

(4, 72) = 19.03, p < .001, η² = .514, BF10 > 10
8
). As in Experiment 1, Pmemory was greater in 

samples with all identical features or in a single “orientation” object (two objects) compared to 

conditions where orientations differed across objects (all different features and color identical; 

comparison: t(18) >= 3.375, p <= .0034, Bonferroni corrected α = .005, Cohen’s d >= .774, BF10 

> 12.981). However, unlike Experiment 1, we found that Pmemory for orientation suffered from the 

increased color set size (orientation identical condition). Specifically, Pmemory in that condition 

was lower than in two other conditions with a single orientation (all identical features and two 

objects; comparison: t(18) = 3.368, p = .0018, Bonferroni corrected α = .005, Cohen’s d = .842, 

BF10 = 22.689), although it was greater than in the two conditions with three different 

orientations (all different features and color identical; comparisons: t(18) >= 3.375, p <= .0034, 

Bonferroni corrected α = .005, Cohen’s d >= .774, BF10 > 12.981). In all other comparisons there 

are no significant differences. 

SD for color. We did not find convincing evidence for a reliable effect of Sample type on 

SD for color (F (4, 72) = 2.865, p = .029, η² = .137, BF10 = 2.735). We conclude, therefore, that 

memory set size manipulation did not have a strong effect on the precision of color encoding. 

SD for orientation. We found a strong effect of Sample type on the SD for orientation (F 

(4, 72) = 71.02, p < .001, η² = .798, BF10 > 10
12

). Like in Experiment 1, SD was lower in samples 

where orientations were identical across “orientation” objects (identical orientation and all 

identical features) or belonged to a single “orientation” object (two objects condition) compare to 
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conditions where orientations were different across objects (all different features and identical 

color; comparisons: t(18) >= 8.059, p < .001, Bonferroni corrected α = .005, Cohen’s d >= 

1.849, BF10 > 10
5
). We also found that, in identical color samples (but different orientations), SD 

was smaller than in samples with all different features (t(18) = 3.867, p = .0011, Bonferroni 

corrected α = .005, Cohen’s d = .887, BF10 = 33.281), that suggests that color set size interfered 

with the precision of VWM for orientation. In all other comparisons, we found no significant 

differences. 

Overall, in Experiment 2 we replicated the finding from Experiment 1 and from the 

literature (Fougnie et al., 2010; Wang et al., 2017; Zhang & Luck, 2008) that the set size 

increment within the same dimension makes Pmemory for that dimension dropping and SD for that 

dimension raising. However, unlike Experiment 1, we also found evidence for a detrimental 

effect of VWM load in one dimension on feature storage in another dimension. Specifically, 

when orientation load was kept low but color load increased (all identical features vs. orientation 

identical) it impaired Pmemory for orientations. When orientation load was high and color load 

increased (color identical vs. all different features) the precision of orientation estimates 

decreased substantially (Figure 4B). This effect was not mirrored in memory color. One possible 

explanation of this asymmetry could be that colors were more prioritized for encoding, so it did 

not suffer from overall feature load as much as less prioritized orientation memory. One finding 

can seemingly contradict to this interpretation, namely, the fact that Pmemory for color drops much 

stronger when color set size increases than Pmemory for orientation drops when orientation set size 

increases (Figure 4A). However, this fact may suggest that remembering three colors is generally 

a more difficult task than remembering three orientations. This suggestion does not rule out the 

possibility that observers put higher priority to color (note that in Experiment 1, the relative 

Pmemory decrement for color was also greater despite the absence of interference between color 

and orientation set sizes, Figure 3A). Although this asymmetry between color and orientation 

needs further research, our major result indicates that there is interference between color VWM 

and orientation VWM when these features are distributed between different objects.  
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Figure 4. Results of Experiment 2: (A) Pmemory and (B) SD as a function of Sample type. Error 

bars depict 95% CIs. 

 

Experiment 3 

The interference pattern that we found in Experiment 2 for orientation memory under the 

increasing color memory load, can have an alternative explanation apart from spatial separation 

of colors and orientations. Overall stimulus complexity was greater than in Experiment 1 that 

could become an extra source of noise (some items were circles, and some were triangles, some 

were white and some had different colors). Moreover, the instruction requiring to selectively 

encode different features in different objects could be also more difficult than in Experiment 1. 

To control for these possible confounds, we have run Experiment 3. Here, we presented 

participants with spatially integrated objects and asked to remember the color and orientation 
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information about each of the object, like we did in Experiment 1. However, each of the object 

consisted of two overlapping parts, one corresponding to a “color” object and another 

corresponding to the “orientation” object from Experiment 1 (for similar manipulations, see 

Fougnie et al., 2010; Xu, 2002). So, each object presented in Experiment 3 had the same amount 

of complexity as two separate objects in Experiment 2. Also, the instruction in Experiment 3 

required selective encoding of orientation information from one part of an object and of color 

information from another part. 

Methods 

Participants 

Nineteen students from the Higher School of Economics (14 female) participated for 

extra course credits. They ranged in age from 18 to 22 years (average age is 19.03 years) and 

reported having normal or corrected to normal visual acuity, no color blindness and no 

neurological problems. Before the beginning of the experiment, they signed an informed consent 

form.  

Apparatus, stimuli, and procedure 

In general, apparatus and stimuli were the same as in two previous experiments with 

some differences. Each object consisted of two parts: an oriented white triangle overlaid with a 

color circle (see Figure 2C for examples). Object positioning was the same as in Experiment 1. 

The procedure was the same as in Experiment 1 with an addition that participants were instructed 

to remember the color of the circular part and the orientation of the triangular part of each object. 

Design and data analysis were the same as in Experiment 1. 

Results and discussion 

The data from four participants were excluded from analysis because they showed nearly 

100% guess rate in all conditions. The results of the Experiment 3 for Pmemory and SD are 

summarized on the Figure 5. 
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Figure 5. Results of Experiment 3: (A) Pmemory and (B) SD as a function of Sample type. Error 

bars depict 95% CIs. 

 

Pmemory for color. We found the strong effect of Sample type on Pmemory for color (F (4, 

56) = 69.53, p < .001, η² = .808, BF10 > 10
20

). Pmemory for color was higher in all conditions 

where color was identical across objects (color identical, all identical features, and one object) 

compared to the conditions where color differed across objects (all different features and 

orientation identical; comparisons: t(14) >= 7.916, p < .001, Bonferroni corrected α = .005, 

Cohen’s d >= 2.044, BF10 > 10
5
). In all other comparisons, we found no significant differences. 

Pmemory for orientation. We found the strong effect of Sample type on Pmemory for 

orientation (F (4, 56) = 14.37, p < .001, η² = .506, BF10 > 10
6
). Pmemory was greater in all 

conditions where orientation was identical across objects (identical orientation, all identical 
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features and one object) compared to the conditions where orientations differed across objects 

(all different features and identical color; comparisons: t(14) >= 3.450, p <= .0039, Bonferroni 

corrected α = .005, Cohen’s d >= .891, BF10 > 12.18). In all other comparisons, we found no 

significant differences. 

SD for color. We found no effect of Sample type on the color SD (F (4, 56) = .726, p = 

.578, η² = .049, BF10 = .139). There were no significant differences in SD for color between 

conditions.  

SD for orientation. We found the strong effect of Sample type on the orientation SD (F 

(4, 56) = 40.92, p < .001, η² = .745, BF10 > 10
13

). SD was lower in all conditions where 

orientation was identical across objects (identical orientations, all identical features, and one 

object) compared to the conditions where orientation differed across objects (all different 

features and identical colors; comparisons: t(14) >= 6.008, p < .001, Bonferroni corrected α = 

.005, Cohen’s d >= 1.551, BF10 > 781.92). In all other comparisons, we found no significant 

differences. 

Therefore, the results of Experiment 3 basically replicated the principal results of 

Experiment 1 regarding the absence of interference between color and orientation VWM 

parameters. We conclude that VWM can support the independent storage of features from 

different dimensions in spatially integrated objects. 

Comparisons between experiments 

To get a more picture of feature separation vs. feature integration on VWM for both color 

and orientation, we directly compared the results of all three experiments. Data from 53 

participants were analyzed. In Figure 6, we plotted the results of all experiments together. 

There were no significant differences between experiments in Pmemory for both colors 

(F(2, 50) = 1.434, p = .248, η² = .054, BF10 =.106) and orientations (F (2, 50) = .699, p = .502, η² 

= .027, BF10 =.123). Yet, these differences were substantial in SD for both color (F (2, 50) = 

15.67, p < .001, η² = .054, BF10 = 415) and for orientation (F (2, 50) = 14.51, p < .001, η² = .367, 

BF10 = 246). These differences were provided by Experiment 2 (Figure 5B) where SD’s were 

overall greater than in Experiment 1 (color SD: t = 5.242, p < .001, Bonferroni corrected α = 

.017, Cohen’s d = .720, BF10 = 20,176; orientation SD: t = 4.224, p < .001, Bonferroni corrected 

α = .017, Cohen’s d = .580, BF10 = 218) and Experiment 3 (color SD: t = 4.196, p < .001, 

Bonferroni corrected α = .017, Cohen’s d = .576, BF10 = 213; orientation SD: t = 4.936, p < .001, 

Bonferroni corrected α = .017, Cohen’s d = .678, BF10 = 3,293). Together these results 

demonstrate that both color and orientation were encoded and stored with a substantial loss in 

precision when they belonged to different rather than same objects. This finding is in line with 
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the previous evidence for object-based advantage for storing features in VWM (Fougnie et al., 

2010; Fougnie et al., 2013; Wheeler & Treisman, 2002). 

 

 

Figure 6. Results of Experiment 1-3: (A) Pmemory and (B) SD as a function of Sample type and 

Experiment. Error bars depict 95% CIs. 

 

General discussion 

Our principal research question was about the relationship between feature-based and 

object-based unit organization in VWM. In particular, we tested whether the finding that features 

from two different dimensions, color and orientation, can be stored without substantial 

interference (Wang, et al., 2017; Wheeler & Treisman, 2002) is related to object-based 

coordination between these features. In other words, we tested whether the absence of 

interference is due to the fact that each particular color goes with a certain orientation within a 
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unitary object (Duncan, 1984; Luck & Vogel, 1997). In our experiments, we implemented the 

same approach as Wang et al. (2017) used in their work to test independence or interdependence 

of VWM resources for color and orientation. This approach is based on the orthogonal 

manipulation with set sizes in each dimension. Our critical addition to this manipulation was 

spatial separation vs. spatial integration of features from different dimensions in a paradigm very 

much resembling that used by Fougnie et al. (2010). It is supposed that spatial separation would 

cause features to be perceived and encoded as belonging to different objects, whereas spatial 

integration would cause the features to be encoded as belonging to same objects. One could 

question object unity in Experiment 3 where two geometrical shapes were overlaid, but in fact 

spatial overlap seems to be a strong factor that aids the formation of object-like units (Rensink, 

2002; Trick & Pylyshyn, 1993; Wolfe & Bennett, 1997; Xu, 2002). 

Using the continuous report paradigm, we replicated the basic finding made by Wang et 

al. (2017) in the change detection paradigm. When colors and orientations belonged to a same set 

of objects (Experiments 1 and 3), we found no evidence of cross-dimensional interference. Both 

capacity (Pmemory) and precision (SD) for colors stayed intact when the number of orientations 

increased, and vice versa. Together with intra-dimensional interference remarkably growing with 

set size, this supports the conclusion of independent capacity for features from different 

dimensions (Shin & Ma, 2017; Wang et al., 2017; Wheeler & Treisman, 2002). However, the 

pattern was different in Experiment 2 where colors and orientations were separated between 

different objects. Here, we found some signs of cross-dimensional interference, although they 

manifested only in the orientation domain. This can indicate that object separation violates the 

independent storage of features from different dimensions. 

This pattern of results leads us to a conclusion that may seem paradoxical. On one hand, 

we demonstrated that features from different dimensions can be stored independently from each 

other. On the other hand, this independence is better supported by their belongingness to 

common objects. In general, this supports the idea both separate features and integrated feature 

“bundles” can be hierarchically stored by VWM (Brady et al., 2011; Fougnie et al., 2010, 2013) 

in such a way that the “bundles” facilitate the encoding and retrieval of features. Interpreting 

their results from the paradigm similar to our present paradigm, Wang et al. (2017) also 

speculated about the possibility of the hierarchically organized memories about features and 

objects. Our experimental manipulations with feature separation and integration provided an 

additional empirical support for this suggestion. 

How can the object-based advantage mediate the feature independence? One possibility is 

that, when features are separated between different objects, observers have to spread their 

attention across a greater number of locations and, thus, each feature representation is noisier 
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than when two features are integrated in one location. We did find evidence that all features in 

general were represented with the greater noise in Experiment 2 with feature separation (see also 

Fougnie et al., 2010). Viewing the noise as an important source of interference in VWM (Bays, 

2015; Wilken & Ma, 2004), we could explain the cross-dimensional interference in spatially 

separated features by overall noisier representations. However, this explanation can be 

insufficient. Most importantly, it does not account for interference specificity towards a feature 

dimension. Therefore, structural links between individual feature representations can be 

important for understanding the difference between integrated and separated features. Our 

experiments were not devised to explore particular structures. Future theoretical analysis and 

following experiments would be necessary in that field to advance our understanding of VWM 

beyond the dichotomous “feature-based vs. object-based” scale. 
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