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Chapter 1. Introduction

Abstract

This thesis is devoted to classification of reflective hyperbolic lattices, which is an open
problem since the 1970s. The dissertation was written under the supervision of Prof. E. B. Vin-
berg during my postgraduate study at the Department of Higher Algebra of the Faculty of
Mechanics and Mathematics of the Moscow State University.

The thesis consists of five chapters. The first chapter is an introduction to the subject. It
includes only some basic definitions along with a number of known facts and open problems
as well as the formulations of the main results of the dissertation. Chapter 2 contains some
auxiliary results, including a description of models of spaces of constant curvature, acute-
angled polyhedra in them, discrete groups of reflections, and, finally, the fundamentals of
the theory of reflective hyperbolic lattices and arithmetic hyperbolic reflection groups.

The main results of this dissertation are obtained in Chapters 3, 4, and 5. Chapter 3
gives a theoretical description of Vinberg’s Algorithm and also the description of the project
(our joint work with A. Yu. Perepechko) VinAl of a computer implementation of Vinberg’s
Algorithm for hyperbolic lattices over Z. Finally, Chapters 4 and 5 contain the results of
classification of stably reflective hyperbolic lattices of rank 4 over Z and Z[V?2], respectively.

Discrete reflection groups

Let X" be one of the three spaces of constant curvature, that is, either the Euclidean space
E”, or the n-dimensional sphere S”, or the n-dimensional (hyperbolic) Lobachevsky space H".

Consider a convex polytope P in the space X". If we act on P by the group I" generated
by reflections in the hyperplanes of its faces it can occur that the images of this polyhedron
corresponding to different elements of I" will cover the entire space X" and will not overlap
with each other. In this case we say that I' is a discrete reflection group, and the polytope P is
the fundamental polyhedron for I. If the polytope P is bounded (or, equivalently, compact),
then the group I is called a cocompact reflection group, and if the polytope P has a finite
volume, then the group I' is called cofinite or a discrete group of finite covolume.

Which properties characterize such polyhedra P? For example, any two hyperplanes H;
and H; bounding P either do not intersect or form a dihedral angle equal to n/n;;, where
nj; € Z, n;j > 2.

Such polyhedra are called Coxeter polyhedra, since the discrete reflection groups of finite
covolume (hence their finite volume fundamental polyhedra) for X* = E", S” were determined
and found by H.S.M. Coxter in 1933 (see [19]).

In 1967 (see [37]), E.B. Vinberg developed his theory of discrete groups generated by
reflections in the Lobachevsky spaces. He proposed new methods for studying hyperbolic
reflection groups, in particular, a description of such groups in the form of the so-called Cox-
eter diagrams. He formulated and proved the arithmeticity criterion for hyperbolic reflection
groups and constructed a number of various examples.



Arithmetic reflection groups and reflective hyperbolic lattices

Suppose F is a totally real number field with the ring of integers A = Q. For convenience
we will assume that it is a principal ideal domain.

Definition 1. A free finitely generated A-module L with an inner product of signature
(n,1) is said to be a hyperbolic lattice if, for each non-identity embedding o: F — R, the
quadratic space L ® 4 R is positive definite. (The inner product in L is associated with
some admissible quadratic form.)

Suppose that L is a hyperbolic lattice. Then the vector space E"' = L ®q(4) R is identified
with the (n 4+ 1)-dimensional real Minkowski space. The group I' = O’(L) of integer (that
is, with coefficients in A) linear transformations preserving the lattice L and mapping each
connected component of the cone

C=(weE" |(v,v)<0}=CTuUE"

into itself is a discrete group of motions of the Lobachevsky space. Here we mean the vector
model H" given as a set of points of the hyperboloid

veB" | (v,v) = -1},

in the convex open cone €. The group of motions is Isom(H") = O’ (n, 1), which is the group
of pseudoorthogonal transformations of the space E*! that leaves invariant the cone €.

It is known from the general theory of arithmetic discrete groups (A. Borel & Harish-
Chandra [11] and G. Mostov & T. Tamagawa [24] in 1962) that if F = Q and the lattice L
is isotropic (that is, the quadratic form associated with it represents zero), then the quotient
space H" /T' (the fundamental domain of I') is not compact, but is of finite volume (in this case
we say that I' is a discrete subgroup of finite covolume), and in all other cases it is compact.
For F = Q, these assertions were first proved by B.A. Venkov in 1937 (see [16]).

Definition 2. Two subgroups I'y and I'; of some group are said to be commensurable
if the group I'y N I’y is a subgroup of finite index in each of them.

Definition 3. The groups I" obtained in the above way and the subgroups of the group
Isom(H") that are commensurable with them are called arithmetic discrete groups of the
simplest type. The field F is called the definition field (or the ground field) of the group I
(and all subgroups commensurable with it).

A primitive vector e of a quadratic lattice L is called a root or, more precisely, a k-root,
where k = (e,e) € A, if 2(e, x) € kA for all x € L. Every root e defines an orthogonal reflection
(called a k-reflection if (e, e) = k) in the space L ®iq(a) R
2(e, x)

e,
(e, e)
which preserves the lattice L. In the hyperbolic case, R, determines the reflection of the space
H" with respect to the hyperplane

R, :xH x—

H,={xeH"| (x,e) =0},

called the mirror of the reflection R,.
We denote by O, (L) the subgroup of the group O’ (L) generated by all reflections contained
in it.



Definition 4. A hyperbolic lattice L is said to be reflective if the index [0’ (L) : O,(L)] is
finite.

Theorem 1. (Vinberg, 1967, see [37])

A discrete reflection group of finite covolume is an arithmetic group with a ground field
F (or an F-arithmetic reflection group) if it is a subgroup of finite index in a group of the
form O’ (L), where L is some (automatically reflective) hyperbolic lattice over a totally real
number field F.

Now we formulate some fundamental theorems on the existence of arithmetic reflection
groups and cocompact reflection groups in the Lobachevsky spaces.

Theorem 2. (Vinberg, 1984, see [41])

1. Compact Coxeter polyhedra do not exist in the Lobachevsky spaces H" for n > 30.

2. Arithmetic reflection groups do not exist in the Lobachevsky spaces H" for n > 30.

The next important result belongs to several authors.

Theorem 3. Foreachn > 2, up to scaling, there are only finitely many reflective hyper-
bolic lattices. Similarly, up to conjugacy, there are only finitely many maximal arithmetic
reflection groups in the spaces H".

The proof of this theorem is divided into the following stages:

» 1980, 1981 — V. V. Nikulin proved that there are only finitely many maximal arithmetic
reflection groups in the spaces H" for n > 10, see [26, 28];

« 2005 — D.D. Long, C. Maclachlan and A.W. Reid proved the finiteness of maximal
arithmetic reflection groups in dimension n = 2, see [21];

« 2005 — I. Agol proved the finiteness in dimension n = 3, see [1];

« 2007 — V. V. Nikulin proved by induction the finiteness in the remaining dimensions
4<n<9,see[31];

» 2008 — 1. Agol, M. Belolipetsky, P. Storm, and K. Whyte independently proved the
finiteness theorem for all dimensions by their spectral method, see [2] (see also the
recent survey [7] of M. Belolipetsky).

The above results give the hope that all reflective hyperbolic lattices, as well as maximal
arithmetic hyperbolic reflection groups can be classified.

Open problems

Our discussion above leads us to the following fundamental open problems connected
with the theory of discrete reflection groups and Coxeter polytopes in the Lobachevsky spaces
H".



Problem 1. Which is the maximal dimension of the Lobacheuvsky space in which there
exist compact Coxeter polytopes? A similar question is open for Coxeter polytopes of finite
volume.

Problem 2. Classification of reflective hyperbolic lattices and maximal arithmetic hy-
perbolic reflection groups.

Remark 1. The problem of classification of reflective hyperbolic lattices was actually
posed in cited work of Vinberg in 1967. Further results obtained in the 1970-80s (and also
some recent results) definitely confirm that there is a hope to solve these problems.

A very efficient tool for solving problems 1 and 2 is Vinberg’s Algorithm (1972, see [38])
of constructing the fundamental polyhedron for a hyperbolic reflection group. Practically it
is efficient for arithmetic reflection groups. It enables one given a lattice to determine if this
lattice is reflective.

The record example of a compact Coxeter polyhedron was found by V.O. Bugaenko for
n = 8 (see [15]), although the maximal possible dimension is bounded by the inequality
n < 30 (see Theorem 2 above).

A record example of a Coxeter polyhedron of finite volume belongs to R. Borcherds in the
dimension n = 21 (see [12]). It is known that the Coxeter polytopes of finite volume can exist
only for n < 996 (see papers [33] of M. Prokhorov and [20] A. Khovanskii, 1986).

Both examples came from arithmetic reflection groups. Bugaenko’s polyhedron is the
fundamental polyhedron for some arithmetic reflection group over the field Q[v2] in the
space H®, the Borcherds polyhedron is the fundamental polyhedron for some arithmetic group
of reflections over a field Q in the space H?!.

Moreover, D. Allcock, using an elegant and a simple doubling trick, has constructed in-
finite series (see [3]) of finite volume Coxeter polytopes in Lobachevsky spaces through di-
mension 19, and also of compact Coxeter polytopes through dimension 6. We also note that
in dimensions 7 and 8 they can be taken to be either arithmetic or nonarithmetic.

As for the second problem, it is also far from being completely solved. An effective descrip-
tion of all discrete reflection groups in the spaces H" is obtained only for » = 2 (H. Poincaré,
1882, see [32]) and for n = 3 (the famous theorems of E. M. Andreev, 1970, see [5] and [6]).

In the classification of arithmetic hyperbolic reflection groups a more significant success
has been achieved. Over the definition field Q, the reflective hyperbolic lattices are classified
for n = 2 (V.V. Nikulin, 2000, see [30], and D. Allcock, 2011, see [4]), n = 4 (R. Sharlau and
C.Walhorn, 1989-1993, see [35, 43]), n = 5 (I. Turkalj, 2017, see [36]) and in the noncompact
(isotropic) case for n = 3 (R. Sharlau and C. Walhorn, 1989—1993, see [34, 35]).

A classification of reflective hyperbolic lattices of signature (2, 1) with the definition field
Q[V2] was obtained by A. Mark in 2015, see [22, 23].

In all other cases, Problem 2 remains open.

Chapter 2. Discrete reflection groups

Chapter 2 contains some auxiliary results, including a description of models of spaces
of constant curvature, acute-angled polyhedra in them, discrete groups of reflections, and,



finally, the fundamentals of the theory of reflective hyperbolic lattices and arithmetic reflec-
tion groups. Here we define the Coxeter diagrams and we also give a list of connected elliptic
and parabolic Coxeter diagrams.

Chapter 3. Vinberg’s Algorithm

Project VinAl: for hyperbolic lattices over Z

This chapter is devoted to Vinberg’s algorithm and the creation of a tool for solving prob-
lem 1 and 2. With the help of different computer implementations of Vinberg’s algorithm, the
reflectivity was investigated for dozens of hyperbolic lattices over Z and Z[V2]. In this way,
was obtained a large number of previously unknown arithmetic compact Coxeter polytopes
in Lobachevsky spaces.

As mentioned above, Vinberg’s algorithm is an efficient tool for constructing the fun-
damental polyhedra for arithmetic reflection groups. Some efforts to implement Vinberg’s
algorithm by using a computer have been made since the 1980s, but all of them dealt with par-
ticular lattices, usually with an orthogonal basis. Such programs are mentioned, e.g., in the
papers of Bugaenko (1992, see [15]), Scharlau and Walhorn (1989—1993, see [35]), Nikulin
(2000, see [30]), and Allcock (2011, see [4]). But the programs themselves have not been
published; the only exception is Nikulin’s paper, which contains a program code for lattices
of several different special forms. The only known implementation published together with a
detailed documentation is Guglielmetti’s 2016 program’, processing hyperbolic lattices with
an orthogonal basis with square-free invariant factors over several ground fields. Gugliel-
metti used this program in his thesis to classify reflective hyperbolic lattices with an orthog-
onal basis with small inner squares of its elements. His program works fairly efficiently in all
dimensions in which reflective lattices exist.

In this paper, we present our own implementation of Vinberg’s algorithm for arbitrary
integral (with the ground field Q) hyperbolic lattices subject to no constraints. The project is
written jointly with A.Yu. Perepechko in the Sage computer algebra system. It is available in
the Internet (see [9]), and it was published with a detailed description (see [45]).

The program was tested on a large number of known examples of reflective hyperbolic
lattices. We have also found a series of new reflective lattices.

Some results yielded by the program are presented in Table 1. In the table, U = [?}]
denotes the standard two-dimensional hyperbolic lattice and A, denotes the Euclidean root
lattice of type A,. All lattices in this table, excepting [-1] ® A3 and [-4] ® A3, are new.

Moreover, we have proved the reflectivity of the lattices

[2]eAy@[l]®...®[1]
n—-1
for n < 6.

At present, the program works effectively for 2 < n < 5. Thus, it turns out to be useful,
e.g., for solving the open problem of classifying reflective lattices in the dimension n = 3;
it has already been successfully applied by the author to obtain partial classification results.
We plan to optimize the program so as to make it efficient for n < 10.

see project AlVin https://rgugliel . .github.io/AlVin
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Table 1: Lattices of type k| ® A3, [-k] & [1] ® A, for some k < 15, and U & [36] & [6].
L

L # faces | 1 (sec) # faces | t (sec)
[-1] @ A; 4 0,7 -1l @ [1] ® A 4 0,6
[-2] ® A3 5 1,9 2] @ [1] ® A, 6 0,8
[-3] ® A3 5 1,0 3] @ [1] ® A, 5 0,6
[—4] ® A3 4 0,66 4] [1] ® A, 5 1,02
[-5] @ A3 6 1,56 [-5] @ [1] ® Ag 7 1,9
[—6] ® A3 6 1,5 [—6] & [1] ® A, 8 1,2
[-8] @ As 7 1,72 -7 @[l @A, 11 19,2
-9 ® A3 9 79,5 -8 @ [1] ® A, 6 1,02
[-10] ® A3 12 1,72 9@ [1] ® A, 5 0,9
[-12] ® A3 5 1.02 [-10] @ [1] ® A 11 11
[-15] ® A3 12 28,7 [-15] @ [1] ® A 15 44
U & [36] @ [6] 15 56,6 [-30] @ [1] ® A 20 36,6

Table 2: Unimodular lattices over Q[V13] u Q[V17].

L n | # faces L n | # faces
Bl je.. .ol [2] 4 |[4-ViMelle..e[]|2] 4
2 Elgle.. . e1]|3]| 9 |[4-Viele..e[]][3] 6
3 Blee.. . e1] 4] 40 |[4-ViTe[lle..e[1][4] 20

Vinberg’s Algorithm for hyperbolic lattices over Z[Vd]

Since we also investigate the reflectivity of lattices over Z[V?2], the author decided to write
a program for Vinberg’s Algorithm over quadratic fields. At the moment the author has a
program for lattices over Z[V2], which requires some minor editing for each new lattice. This
program enables one to investigate a lattice without orthogonal bases.

For lattices with an orthogonal basis was used the program of Guglielmetti mentioned
above. The work of author’s program was partly verified on the lattices from Table 5. In
the nearest future we plan to merge the author’s programs for lattices over Z[V2] with the
VinAl project. Further work on the project that implements Vinberg’s algorithm for arbitrary
lattices over the quadratic fields Z[Vd] is being carried out jointly with A. Yu. Perepechko.

As the result of experiments with different programs were obtained some new series of
reflective hyperbolic lattices of different ranks over different quadratic fields. Some of these
results were obtained jointly with A. A. Kolpakov in 2017-2018.

The results obtained are presented in Tables 2—5. In these tables we indicate first the
form of the lattice of signature (n, 1), then we specify the dimension » of the corresponding
Lobachevsky space, and then the number of faces for the fundamental Coxeter polytope of
the corresponding reflection group.

Chapter 4. Stably reflective hyperbolic Z-lattices of rank 4

Definition 5. A number k € A, k > 0 is said to be stable if k | 2 in the ring A.
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Table 3: Some lattices over Q[V5].
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For example, if F = Q, A = Z, then the definition holds for numbers k < 2. For A = Z[ 2]
the stable numbers are 1, 2, and 2 + V2.

Definition 6. A reflection R, is called stable if the number (e, e) is stable.

Let L be a hyperbolic lattice over a ring of integers A. We denote by S (L) the subgroup of
O’(L) generated by all stable reflections.

Definition 7. A hyperboliclattice Lis said to be stably reflective if the index [O(L) : S (L)]
is finite.

Remark 2. Inthe articles [8], [44], and [10], stably reflective Z-lattices are called (1,2)-
reflective, since for A = Z only the numbers 1 and 2 are stable.

Definition 8. A hyperbolic Z-lattice L is called 2-reflective if the group O'(L) is up to
finite index generated by 2-reflections.

Remark 3. All 2-reflective hyperbolic Z-lattices are already classified: for rank + 4 this
was done by V. V. Nikulin in 1979, 1981 and 1984, see [25, 27, 29], and for the rank 4 this
was done by E. B. Vinberg in 1981—2007 (see [42]). Presumably, stably reflective lattices
should form wider class of reflective lattices then 2-reflective.

The main task in this chapter is a classification of stably reflective hyperbolic Z-lattices
of rank 4. The author hopes that the method of the outermost edge (which is a modification
of the method of narrow parts of polyhedra, applied by V. V. Nikulin) will be applicable for
classifying all reflective anisotropic hyperbolic lattices of rank 4.

Let P be an acute-angled compact polytope in H* and let E be some edge of it. We denote
by F; and F, the faces of the polytope P, containing the edge E. Let u3 and uy be the unit
external normals to the faces F3; and F, containing the vertices of the edge E, but not the
edge itself.

Definition 9. The faces F5; and F, are called the framing edges of the edge E, and the
number |(us, u4)| is its width.

We associate with the edge E the set @ = (@12, @13, @23, @14, @24), Where «;; is the angle
between the faces F; and F ;.

Theorem 4. The fundamental polyhedron of every Q-arithmetic cocompact group of
reflections in H? has an edge of width less than 4.14.

In fact, a stronger result is obtained. Namely, it is proved that there is an edge of width
tz, where 7; < 4.14 is a number depending on the set @ of dihedral angles around this edge.

To obtain this result, the following method is used. Let P be the fundamental polytope of
a Q-arithmetic cocompact reflection group in H?. Following Nikulin, we consider a point O
inside the polyhedron P. Let E be the outermost® edge from it. We denote the vertices of the
edge E by V; and Vs, and the dihedral angles between the faces F; and F; will be denoted by
a;j.

Let E, and E3 be the edges of the polytope P outgoing from the vertex V; and let E, and
E, be the edges outgoing from V, such that the edges E, and E, lie in the face F,. The length



Fig. 1. The outermost edge
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of the edge E is denoted by a, and the plane angles between the edges E; and E are denoted
by «; (see Figure 1).
The following result is true for an arbitrary compact acute-angled polytope in H3.

Theorem 5. The length of the outermost edge satisfies the inequality

tanh(ln(ctg(‘%)))] '\ aresinh [tanh(ln(ctg(‘%))))
tan (%3) tan (%) '

Then it remains to estimate, by using a linear inequality, the width of the edge through its
length. To do this, we use the fact that we initially considered the fundamental polyhedron
of the Q-arithmetic cocompact reflection group in H?. As we see, the estimates in Theorem
5 depend on the set of angles around this edge, therefore, the estimates for the width of the
edge also depend on it.

To formulate the results of classification of stably reflective lattices we introduce some
notation for hyperbolic lattices:

a< arcsinh[

e [C] is a quadratic lattice whose inner product in some basis is given by a symmetric
matrix C,

 d(L) := det C is the discriminant of the lattice L = [C],

L & M is the orthogonal sum of the lattices L and M,

[k|L is the quadratic lattice obtained from L by multiplying all inner products by € A.
is the adjoint lattice.

2In an acute-angled polyhedron the distance from an interior point to a face (of any dimension) is equal to
the distance to the plane of this face.



Theorem 6. Any stably reflective anisotropic hyperbolic lattice of rank 4 over Z is ei-
ther isomorphicto [-7|@ [1]®[1] & [1] or [-15] @ [1] @ [1] & [1], or to an even index 2 sublattice
of one of them.

Actually, these lattices are even 2-reflective (see [42]).

Chapter 5. Stably reflective Z[V2]-lattices of rank 4

Theorem 7. The fundamental polyhedron of any Q[V2]-arithmetic group of reflections
in H3 has an edge of width less than 4.14.

As above, actually a stronger result is obtained. Namely, it is proved that there is an edge
of width 7;, where 7; < 4.14 is a number depending on the set @ of dihedral angles around this
edge.

Theorem 8. Any maximal stably reflective hyperbolic lattice of rank 4 over Z[V?2] is
isomorphic to one of the following seven lattices:

No L # faces | Discriminant
1 1-V2el]el]e[l] 5 -1-12
2 | [F1-2V2]el]e[1]e[1] 6 —1-22
3] [-5-4V2]e[l]e[l]e][l] 5 ~5-412
4 | [F11-8V2je[lje[l]e[1] 17 -11-8v2
5 V2lel]el]e[l] 6 -V2
2 -1 -\
6 l—1 2 V2-1|el] 6 -2
-V2 V2-1 2-+2
7 [FT-5V2le (e[l ®[1] 5 ~7-52

Approbation of the work

The results of the thesis have been reported at the following meetings:

« the seminar “Lie groups and invariant theory”, led by E.B. Vinberg, D.A. Timashev and
I.V. Arzhantsev, the Faculty of Mechanics and Mathematics, Moscow State University,
May 2016 and October 2017;

« the Sixth School-Conference “Lie Algebras, Algebraic Groups and Invariant Theory”,
MSU & IUM, Moscow, Russia, January—February 2017;

« S.P. Novikov’s Seminar “Geometry, topology and mathematical physics”, the Faculty of
Mechanics and Mathematics, Moscow State University, March 2017;

« the international conference “Geometry and Topology” in honor of C. Bavard, Institute
of Mathematics, Bordeaux, France, November 2017;

« the seminar “Hyperbolic geometry and combinatorial structures”, Institute of Mathe-
matics, Neuchatel, Switzerland, November 2017;
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« the seminar “Automorphic forms and their applications”, led by V.A. Grytsenko, the
Faculty of Mathematics, HSE, Moscow, Russia, February 2018;

« theinternational conference “Automorphic forms and algebraic geometry”, PDMI Steklov
Institute of RAS, St. Petersburg, Russia, May 2018.
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