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Work characteristic

Actuality of the work.

During the last decade the sub-field of machine learning called deep learn-
ing [1; 2] has been rapidly developing. The main feature of this sub-field is a
successful training of neural networks with complex and deep architectures. Compu-
tational approaches associated with deep learning brought several areas of computer
science to a new level. The related research directions include complex problems
such as image processing, natural language generation and understanding, and speech
recognition. In many areas and specific tasks, approaches based on deep learning
methods have become recognized as industrial solutions [3]. At the same time, new
problems and tasks emerge [2;4], while their research prospects are not yet exhausted.

The success of neural networks is explained by several factors. The first
one lies in theoretical possibility to approximate arbitrary functions using neural
networks [5; 6]. The second factor is the rescaling simplicity of the whole learn-
ing process. The network learning technique called back propagation makes it easy
to compute the gradient of the loss function by the model parameters and do it in
parallel. Definitely, the third component is the growth of computing power. The
scalability of learning processes would worth nothing if it were not for the ability to
scale all the involved computations. The emergence of high-power graphical cards
(also known as Graphical Processing Units or GPU) allows training of neural net-
works cheaply and quickly.

At the same time, neural networks have their shortcomings and peculiarities.
For example, despite the fact that from a theoretical point of view neural networks
are considered as a universal approximator, currently there is no constructive way to
build neural networks for any specific tasks. There are no methods that allow just
choosing topology (e.g., specifying the number layers and their size) of the neural
network for a particular task. In practice, specialists have to select hyperparameters
responsible for the network topology during the learning process.

Another important drawback becomes obvious when there is a need to use
neural networks on any devices: for example, mobile phones, TVs, vacuum clean-
ers or even refrigerators. Here, among the target problems audio signal processing,
object recognition, keyboard suggestions or e-mail prompts can be mentioned. Typ-
ically, such devices do not have powerful processors and large amount of memory.

At the same time, neural networks are demanding for both.
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This drawback makes the problem of compression of neural networks relevant
for their placement on various devices!?3.

In this dissertation study, we consider the problem of compression of neu-
ral networks in the context of natural language modeling; here, we work mainly with
recurrent neural networks. This allows us to take into account several important char-
acteristics of this class of problems and adapt our methods for their solution. At the
same time, most of the described methods are applicable in a wider context, i.e. for
arbitrary neural networks.

The basic formulation of the language modeling problem assumes prediction
of the next word from a previous sequence of words or, in other words, from the left
context. The very first methods for solving this problem were based on the direct
storage of all possible options. At the moment of prediction, the most probable op-
tion was chosen or sampling was made from the saved distribution. This approach
has problems associated with taking into account long-distance dependencies and the
need to store all the options. For example, all possible sequences of length four for
real-world dictionaries can not longer be stored in the memory of computers, while
recurrent neural networks are partially capable of simulating long-distance depen-
dencies and do not require direct memorization of all variants.

However, they are still too large for their widespread use on the aforemen-
tioned devices that are usually very demanding of memory and speed. A natural
requirement for building language models is the need to keep a dictionary of several
thousand words (for example, about 20 thousand words cover only 80% of the Rus-
sian language). In addition, it is often necessary to solve the problem of predicting
the next word or, to put it in terms of machine learning, to solve the problem of classi-
fication into several thousand (or even tens of thousands) classes. Therefore, despite
the fact that neural networks occupy much less space than simple statistical models,
the problem of neural networks compression is relevant for their widespread use.

Modern compression methods include both simple methods such as pruning
of matrices or quantization of the representation of numbers and more complex ones
based on decompositions of matrices or Bayesian techniques. Among the works
based on pruning of matrices and quantization papers [7; 8] can be noted. Methods

based on matrix decompositions can be classified into several categories. First of all,

Thttps://os.mbed.com/blog/entry/uTensor-and-Tensor-Flow-Announcement/
Zhttps://towardsdatascience.com/why-machine-learning-on-the-edge-92fac32105¢6
3https://petewarden.com/2017/05/08/running-tensorflow-graphs-on-microcontrollers/
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it is possible to decompose matrices into low-rank factors [9], thereby achieving a
certain level of compression. Secondly, it is possible to use matrices of special types,
for example, URNN [10] or Toeplitz matrices [9]. Finally, Tensor Train decompo-
sition of layers can be used [11]. The variational dropout technique was originally
used to adjust the individual dropout degree for each neuron [12]. In [13], the au-
thors showed that variational dropout is able to eliminate certain neurons, thereby
providing compression. If a prior distribution on individual weights is imposed, then
we obtain sparse matrices. As in the case of ordinary pruning, this is not very con-
venient, therefor, in subsequent work, it is proposed to do structural compression,
imposing a prior distribution immediately on the rows and columns of input matri-
ces [14]. In this dissertation study, we analyzed in detail the current methods of
compression of neural networks and proposed several new algorithms that solve this
problem more effectively.

The goal of this dissertation study is the development of new algorithms of
neural networks compression for natural language processing task. The proposed al-
gorithms should solve the problem of compression more efficiently: they should use
less resources (memory and processor power) of end devices, for example, mobile
phones.

To achieve the goal, it is supposed to investigate various methods of compres-
sion of neural networks and to propose neural network architectures based on them
that are of relatively small size and effectively solve applied problems. The main
tasks of the study can be formulated:

1. An empirical analysis of neural network compression algorithms based on
pruning and quantization techniques, matrix and tensor decompositions,
and Bayesian methods.

2. Developing new and modifying existing neural networks compression
algorithms, taking into account the peculiar properties of the natural lan-
guage processing tasks and typical recurrent neural network architectures.

3. Adaptation of the developed algorithms to meet the specified characteris-
tics for use on various devices such as mobile phones.

Main provisions for defense:

1. Development of matrix factorization based algorithms for compression of

hidden layers of neural networks in the language modeling problem.



Effective and efficient solution of classification problem for large number
of classes (10,000-30,000) based on matrix factorization techniques for

the input and output layers of a given neural network

. Adaptation of Bayesian dropout techniques to recurrent neural networks

for the language modeling problem.
Efficient porting of recurrent neural networks to mobile devices and testing
in laboratory settings.

The novelty:

l.

This is the first time when TT-decomposition has been applied for recur-
rent neural networks in the language modeling problem. Moreover, the
application of low-rank matrix factorization to the problem and the whole
class of models based on recurrent neural networks have been investigated.
This is the first time when double stochastic variational inference algo-
rithm has been applied to the recurrent neural network compression in the

language modeling task.

. Compressed models were ported to mobile devices. At that time (accord-

ing to publications at leading conferences) it was the first implementation
(documented in [15]) of neural networks (especially compressed) on a mo-
bile GPU.

A general compression pipeline for recurrent neural networks for the lan-

guage modeling problem have been proposed.

Theoretical and practical significance. In this work new methods for re-

current neural networks compression has been developed. These methods belong
to different types: e.g., matrix-based and Bayesian. They take into account the
high-dimensional input-output subproblem in the language modeling problem. An
on-device implementation of these models to mobile GPUs has also been developed.
It expands the scope of applications for recurrent neural networks and allows their

more efficient exploitation on user devices.

Reliability of the results obtained is supported by mathematically correct

compression models as well as by a large number of experiments with various ar-
chitectures and data sets. The results are comparable with the state-of-the-art works

of other authors.

Publications and probation of the thesis.

The main results of the thesis are published in [15-18].
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First-tier publications

— Artem M. Grachev, Dmitry I. Ignatov and Andrey V. Savchenko. Neural
Networks Compression for Language Modeling. — Pattern Recognition
and Machine Intelligence - 7th International Conference, PReMI 2017,
Kolkata, India, December5-8, 2017, Proceedings. — 2017. — Pp. 351-35.

— Elena Andreeva, Dmitry I. Ignatov, Artem M. Grachev and Andrey V.
Savchenko. Extraction of Visual Features for Recommendation of Prod-
ucts via Deep Learning. — Analysis of Images, Social Networks and Texts —
7th International Conference, AIST 2018, Moscow, Russia, July 5-7, 2018,
Revised Selected Papers. — 2018. — Pp. 201-210.

— Artem M. Grachev, Dmitry 1. Ignatov and Andrey V. Savchenko. Com-
pression of Recurrent Neural Networks for Efficient Language Modeling.
— Applied Soft Computing — 2019. — Vol. 79. — Pp. 354 — 362.

Other publications

— Maxim Kodryan*, Artem Grachev*, Dmitry Ignatov and Dmitry Vetrov.
Efficient Language Modeling with Automatic Relevance Determination in
Recurrent Neural Networks — ACL 2019, Proceedings of the 4th Workshop
on Representation Learning for NLP, August 2, 2019, Florence, Italy

Reports at conferences and seminars.

— 7th International Conference on Pattern Recognition and Machine Intelli-
gence (06.12.2017, Kolkata, India). Topic: “Neural network compression
for language modeling”.

— PhD seminar at the Faculty of computer science, National Research Univer-
sity Higher School of Economics (2017, Moscow, Russia). Topic: “Neural
network compression for language modeling”.

— Open Systems publisher’s conference on “Machine learning technology”
(October 2018, Moscow, Russia). Topic: “Neural Networks for mobile
devices”.

— Seminar “Automatic text processing and analysis™ at the National Research
University Higher School of Economics (20.04.2019, Moscow, Russia).
Topic “Methods of Recurrent Neural Network Compression for Natural

Language Processing”.



— Seminar at Samsung R&D Russia (2017, Moscow, Russia). Topic: “Meth-
ods of Recurrent Neural Network Compression for Natural Language
Processing”.

— Seminar at Samsung R&D Russia (2019, Moscow, Russia). Topic: “DSVI-
ARD compression in neural networks”.

The works [15—17] are recorded in the scientific citation system Scopus. The
article [17] in the journal Applied Soft Computing [17] falls in Q1 by Scopus and
Q1 by Web of Science. The work [18] was published in the workshop at the CORE
A* conference and is included in ACL Anthology.

Personal contribution into the main provisions for defense. The results

are personally obtained by the author, except the results obtained in collaboration
with E. Andreeva in the paper [16] and M. Kodryan in the paper [18].

Contents of the work

Volume and structure of the work. The thesis contains an introductory

chapter, four main chapters, and a concluding chapter. The full volume of the thesis
is 105 pages, including 17 figures and nine tables. The list of references contains
84 items.

In introduction, we discuss the relevance of the research studies presented in

this thesis; the goals and tasks of the work are formulated; the scientific novelty of
the work and the main provisions for defense are described.

The first chapter is introductory. Let us consider the language modeling

problem, where it is required to estimate the probability of a sentence or sequence

of words (wq,...,wr) in a language L.
P(wl, . ,wT) = P(wl, . ,wT_l)P(wT|wl, . ,wT_l) =
= H F’(wﬂwl7 e wt_l) (1)
=1

This problem is relevant as a single one as well as in the context of various
applications. For example, such language models are directly used in mobile key-
boards (see Fig. 1).
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Figure 1 — An example of the industrial application of the language modeling task:

a mobile keyboard.

Further in this chapter various ways to solve this problem are discussed. For
a long time, /N-gram models [19;20] and their various variations were widely used
here. Then they were slowly replaced by recurrent neural networks [21;22]. RNN’s

cell can be described as follows:

ZE ZWZSUZ_l + Ug:ljz_l + b (2)
) =tanh(=}), 3)

where ¢t € {1,...,N} is a current time step, ¢{ € {1,..., L} is a current layer, W,
and U, are the matrices of weights for layers ¢, and tanh is a hyperbolic tangent,
which is often used as an activation function in recurrent neural networks. A vector
!, is an output vector for the layer ¢ at the time step ¢. We analyze such networks
in detail. We consider their variations such as LSTM and GRU and also discuss
the technique of backpropagation through time [23—25], which is used for training of
such networks. We also discuss how the solution quality is measured in the context of
this problem and various techniques that are used to improve convergence properties
during the training phase.

In the second chapter we consider recurrent neural networks in terms of the

used space on devices. Thus, all parameters of a neural network can be divided into
two types. Parameters of the hidden layers and parameters of the input and ouput
layers, the number of which closely related with the vocabulary size. We can count



the total number of parameters as follows:
Niotat = SLE* + 2|V |k, (4)

where L is the number of hidden layers, k is the size of hidden layers, |V]| is the
vocabulary size, and 8 is a constant corresponding to the number of matrices in the
hidden layer (8 is the number of matrices for an LSTM cell, while for GRU it is six
and two for RNN, respectively).

The remainder of this chapter provides an overview of the main approaches
to compression of neural networks. There are two main directions: matrix decompo-
sitions based methods and methods based on matrix pruning. The chapter concludes
with two basic approaches to compression: pruning and quantization.

Pruning is a method for reducing the number of parameters of a neural net-
work by removing the weights that are nearly equal to zero. We can fix a threshold
C' and nullify all the weights that are less then C' in absolute value, i.e. |w;;| < C.

Quantization is a method for reducing the size of a compressed neural network
in memory. In this technique, each floating-point value of a weight is packed into,
e.g., 8-bit integer representing the closest real number in one of 256 equally-sized
intervals within the whole range of the weight’s values. Thus, if initially our number
was stored in memory as a 32-bit float, now it is stored as an 8-bit integer and occupies
four times less space.

Pruning and quantization have common disadvantages since they do not sup-
port training from scratch. Moreover, their practical usage is quite laborious. The
reason for such behaviour of pruning mostly lies in the inefficiency of sparse com-
puting. In the case of quantization, the model is stored in an 8-bit representation, but
32-bits computations are still required. It means that we do not obtain advantages us-
ing in-memory techniques at least until the special processors (like tensor processing
unit, TPU) are not used. They are adapted for effective 8- and 16-bits computations.

The third chapter deals with compression methods that are related to matrix

decompositions. Matrix multiplication operations are well optimized on modern pro-
cessors* and the speed of their multiplication directly depends on the matrices size.
That is, by reducing the size of the weights’ matrices in the neural network, we simul-

taneously reduce the number of parameters and increase the speed of computations.

4Intel matrix multiplication
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In this study, we applied low-rank matrix decomposition and Tensor Train decompo-
sition [26] to recurrent neural network compression. For example, for a usual RNN

cell, such a low-rank decomposition can be applied as follows:

r! = tanh [M/ﬁmf_l + Uimi™ + bl] (5)
mf = (]lbx}5 (6)
(7)

Here U, Wi € R¥*" and U} € R"™*, k are the original sizes of hidden layers, and r
is a decomposition rank. The reduction of parameters is achieved due to the choice
of the rank r under condition that r < k. Fig. 2 presents an illustrative example
that shows how we apply matrix decomposition. In the thesis, we describe in details
how this type of decomposition can be applied to various types of recurrent neural
networks, such as LSTM and GRU.

Another decomposition we used here is the Tensor Train decomposition (TT-
decomposition). It is one of the possible generalizations of SVD to tensors of
dimension greater than two. The use of TT-decomposition is motivated by the pos-
sibility of converting matrices into their corresponding tensors, after which they are
decomposed and compressed. Due to the fact that in the tensor we have several di-
mensions at once, we get a potentially higher compression rate and greater flexibility
in compression.

Let us describe how we apply this decomposition for NN compression. Con-
sider, for example, the weights matrix W € R¥** of the RNN layer (2). One
can arbitrarily choose the numbers ki, ..., k; such that ky X ... X kg = k X k,
and reshape the weights matrix to a tensor W € RFM>*->ki Here, d is the or-
der (degree) of a tensor, k1, ..., ks are the sizes of each its dimension. Thus, we
can perform the TT-decomposition of the tensor VV and obtain a set of matrices
Gulim] € Rm-r"m 4. = 1,.... kp, m = 1,...,dand 1y = r4 = 1 such that
each tensor element can be represented as W(iy, ia, . . ., ig) = G1]i1]Galia] . . . Gglig].
Here, ry, .. .7, are the ranks of the decomposition. This TT-decomposition can be
efficiently obtained with the TT-SVD algorithm described in [26]. In fact, each
G,, € R'm—1xkm>Tm ig a three-dimensional tensor with the second dimension k,,, cor-
responding to the dimension of the original tensor and two ranks r,, 1, r,,, that, in a

certain sense, represents the size of an internal representation for this dimension. It
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is necessary to emphasize that even with the fixed dimensions number of reshaped
tensors and their sizes, we still have plenty of variants to choose the ranks in the
TT-decomposition.

We denote both operations, converting the matrix W into the tensor
mathcalWW and decomposition into the Tensor Train format, as a single operation
TT(W). Applying it to both matrices W and V' in the recurrent layer (2), we get the
TT-RNN layer in the following form:

zp = tanh(TT(W))x)_, + TT(U))zh ™" + by). (8)

b)
Figure 2 — Neural Network Architecture: (a) original LSTM 650-650 and (b) its

low-rank model.

We conducted a series of experiments with different types of cells and their
various sizes. It was shown that the main gain that we get from the compression of
recurrent neural networks using low-rank matrix decompositions in comparison with
pruning and quantization is almost no loss of computation speed. The gain in mem-
ory is almost directly transferred to the gain in speed. On the other hand, methods

that work with sparse matrices result in larger compression in terms of memory used,
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but work longer in terms of computation time. Our experiments with models on mo-
bile phone devices confirmed that low-rank compression of the LR LSTM 650-650
model is the most effective in terms of both memory and computational complexity.

In the fourth chapter, we consider Bayesian methods for neural networks

compression. In this context, Bayesian methods can be considered as mathematically
better justified form of pruning. At the beginning of the chapter, we describe the
general principles of Bayesian methods, then we consider the use of a variational
dropout (VD) [27] for neural network pruning.

Next, we present a new method for compression of recurrent neural networks,
which is based on automatic relevance determination with double stochastic varia-
tional inference (ARD DSVI). The main idea of this method lies in applying the
method of searching for relevant features to the output layer of a neural network.
Due to the fact that in our problem we usually deal with a large vocabulary, we get
a high-dimensional problem. To solve it, we use stochastic approximation. In Eq. 9
the final functional is presented. Optimization of this functional leads to the opti-
mal parameters of the posterior distribution ¢ (W | u, o), and also the optimal \*

for the prior distribution.
L (q (W ‘ H, U) 7A*) — ]EWNq(W\/L,O') [logp(Y ‘ W7 X)] +

D K 2
1 055 (9)
+ 3 E E log — > max

2

Choosing the clipping level A5, On the validation set, we can choose the
level at which we get the maximum compression rate with almost no loss of quality.

We adopted this method for pruning the output layer in our model. In addition,
we first (by our best knowledge) considered the use of Bayesian pruning methods
together with the use of weights sharing technique for the input-output layer. From the
results of the experiments we can see that it is possible to achieve compression rate of
the output layer up to 50 times in comparison with the original model (removal of 98%
of the parameters). Certainly, this is even higher than using the matrix decomposition
technique, but with the price of worse perplexity.

Bayesian compression methods allow us to achieve much bigger compression
rate than, for example, matrix decomposition methods, but the question of the effec-

tive implementation of such methods for specific devices still remains open. At the
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end of the chapter some ideas towards research prospects and further development

of these methods are formulated.

In the conclusion the main results of the work are summarized:

1. Matrix factorization based algorithms for compression of hidden layers of
neural networks in the language modeling problem have been developed;

2. The classification problem for large number of classes (10,000-30,000)
has been effectively and efficiently solved based on matrix factorization
techniques for the input and output layers of a given neural network;

3. Bayesian compression techniques have been adopted to recurrent neural
networks for the language modeling problem;

4. Efficient porting of recurrent neural networks to mobile devices and testing
in laboratory setting have been done.
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