ST. PETERSBURG DEPARTMENT OF V.A.STEKLOV INSTITUTE OF MATHEMATICS OF
THE RUSSIAN ACADEMY OF SCIENCES

as a manuscript

Pavel Sergeyevich Chuprikov

THEORETICAL AND EMPIRICAL ANALYSIS OF FUNDAMENTAL BOTTLENECKS IN
NETWORKING AND DISTRIBUTED COMPUTING

PhD Dissertation Summary

for the purpose of obtaining academic degree
Doctor of Philosophy in Computer Science HSE

Saint Petersburg — 2019

The PhD dissertation was prepared at St. Petersburg Department of V.A.Steklov Institute of

Mathematics of the Russian Academy of Sciences.

Academic Supervisors:

 Sergey Igorevich Nikolenko, PhD, PDMI RAS, Researcher at Laboratory of Mathematical
Logic

+ Kirill Kogan, PhD, IMDEA Networks Institute, Research Assistant Professor

1 Introduction

This section begins with a brief introduction into the current limitations of big data processing in relation
to computer networks and distributed data processing, which are the primary topics of analysis in this

dissertation, and then states the main goals and objectives of the research.

1.1 Dissertation topic and its relevance

Over the last decades, the volume and variety of data which is necessary to transmit and process has
been increasing exponentially. Between 2013 and 2020, the global data volume is predicted to grow
exponentially, from 4.4 to 44 zettabytes [1]. The expression “big data” usually refers to datasets whose
size is beyond the ability of typical computing platforms to store and analyze. Due to these storage
and computational limitations, data chunks should be distributed over multiple locations for big data
processing. In this case, a network interconnects distributed instances of big data applications.

Big data both aggravates classical challenges of networking and presents new difficulties. For exam-
ple, as one consequence of data growth, traditional cloud computing is increasingly replacing dedicated
hardware by dynamically allocated virtual computing resources. They are usually paid based on allo-
cation rather than actual use, which often leads to customers paying more than necessary. Recently,
serverless architectures have exploded in popularity, and many major players in the cloud computing
market introduced serverless solutions: AWS Lambda [2], Google Cloud Functions [3], Azure Functions
[4], and others.

Although serverless computing is only a special case of cloud computing and is not able to cover every
desired functionality, it remains an important representative case providing cost savings to the end user.
In particular, the “function as a service” paradigm brings new challenges to resource allocation. Recent
works have only begun to pose these questions for serverless computing, studying it in the context of
queueing theory [5] and measuring relevant metrics for already existing solutions [6]. The present thesis
takes the next step towards a theory of serverless cloud computing, proposing a comprehensive and novel
formalization of the resource allocation model for serverless computing and presenting new resource
allocation algorithms supported by both theoretical analysis and a comprehensive evaluation study.

In addition to requiring more flexible resource allocation methods, exascale data amounts and delay-
sensitive objectives of big data applications impose significant feasibility constraints on the cloud com-
puting paradigm. One particular limitation is in deploying a network solely as a simple interconnect.
Although traditional networks mostly operate on partial information from data streams (packet headers),
in some cases network elements are already able to process entire data streams at line-rate (e.g., in case
of encryption). Therefore, exposing the structural layout of packet payloads can allow preprocessing of
transmitted data before it is actually processed by cloud computing resources. According to [7, 8], the
average final output size jobs is 40.3% of the initial data sizes in Google, 8.2% in Yahoo, and 5.4% in
Facebook. The present thesis exploits these properties of data streams and aims to reduce processing load
on traditional cloud computing resources. We use two major innovative approaches to achieve this goal:
(1) intermediate in-network aggregations of data streams and (2) in-network data processing on the data
plane of network elements. Implementations of both approaches extend existing network interconnects.

Finally, the challenges also propagate down to the level of an individual network element. The two
basic functions of a network element are packet classification, i.e., deciding which action to take based on
a packet’s header, and buffer management, i.e., making admission, processing, and transmission decisions

for incoming packets. The present thesis advances both.

1.2 Goals and objectives of the research

In this section, we define the specific objectives that we set for the research outlined in the thesis. We
define four major areas of the results, proceeding from the level of an individual network element up to
the level of large-scale distributed computing: packet classification, buffer management, cost-efficient

serverless computing, and intermediate data aggregations.

Buffer management: multiple packet characteristics. When multiple data streams meet at a network
element, the corresponding data packets are stored in a single network buffer waiting for processing and
transmission. Buffers are controlled by buffer management policies, which play a major role in opti-
mization of the desired objectives. Advanced economic models bring novel objectives, such as weighted
throughput, which are largely not supported by existing policies. In addition, the heterogeneity in pro-
cessing requirements exacerbated by in-network data processing is also not accounted for. The previous
works consider only one of the two packet characteristics: in [9, 10] authors study behavior of a single
queue with heterogeneous processing requirements, while [11] addresses a multi-valued case for FIFO
queues; in addition, more involved buffering architectures [12] (combined input-output switches) and
[13] (crossbar switches) have been considered for multi-valued packets. The interaction of the two char-
acteristics and their impact on weighted throughput optimization has not been studied before. In order
to provide theoretical guidance for the optimal choice of buffer management policy in such a setting for
a single queue buffering architecture, this dissertation aims to: (1) build a model capturing both packet
weights and processing; (2) devise new management policies with worst-case performance guarantees;

(3) evaluate their performance on realistic data traces.

Packet classification: inter-device resource sharing and LPM infrastructure reuse. The basic func-
tion of single packet processing at a network element is packet classification. General-purpose data
stream processing brings new flexibility requirements and adds more complexity to the policies imple-
mented through the packet classification. Current single-switch approaches consist of software-based so-
lutions and hardware-based solutions. The former include decision tree structures [14, 15], hashing [16],
and encoding [17], in general they require modification to the classification algorithm. The latter rely
on ternary content-addressable memory (TCAM) and optimize its space usage [18, 19] and, in particu-
lar, range encoding [20]. On the network-wide level the two existing works [21, 22] present algorithms
that duplicate rules and are hard computationally. It is highly desirable to support the added complex-
ity without expensive infrastructure upgrade, e.g., in the form of additional TCAMs or complex logic
changes. This includes two very specific objectives: (1) first, it should be made possible to implement
general ternary bit string classification using traditional Longest-Prefix-Match (LPM) representation in

an implementation-agnostic way; (2) second, already rising to the network-wide level, an efficient inter-

device resource sharing scheme is necesssary to implement large policies (classifiers) when rule capacity
is limited in each network element.

Serverless computing: cost-efficient resource allocation. The first essential step towards cost-efficient
serverless computing is to construct a model that would realistically capture the costs and constraints of
resource management. These include allocation cost, maintenance cost, and, most importantly, the delay
that resource allocation incurs. For the resulting model, it is then necessary to construct efficient algo-
rithmic solutions that would require no assumptions regarding the arrival patterns of requests and would
have the performance guarantees suitable for an economic setting. In contrast, existing rule-based solu-
tions [23] require deep knowledge of arrival behavior, while learning-based techniques [24] assume the
behavior similar to that seen during the training. Last but not least, it is important to control the latency

the proposed solutions add to the request processing, and understand how it affects the revenue.

Data aggregation: planning with both network infrastructure and applications. In cloud comput-
ing, the network infrastructure with its constraints and objectives and an application with its specific
behavior and its own set of objectives seldom interact in a meaningful way, and there is little informa-
tion exchange between them. For instance, an application aggregating too much data at a single node
may cause performance degradation due to TCP-incast [25] or link overload. To exploit intermediate
data aggregations efficiently, one has to find a way for the two layers to cooperate. The most relevant
work [26] is tied to a specific network topology; [27] introduces implementation support for intermediate
aggregations, and [28] is concerned exclusively with the processing latency and does not take network
infrastructure into account. The specific challenge addressed in the present thesis is to find the minimal
necessary information required to share from each layer that would allow for unified design principles

of aggregation planning.

2 Key results and conclusions

This section summarizes the key contributions of this thesis, addressing specific objectives introduced
above. Here we provide a brief list of key results, and then will expand upon each research direction in

more detail in Section 4.

2.1 New buffer management settings and policies

Buffer management with two packet characteristics. We analyze the buffer management problem for

a single queue that stores packets heterogeneous both in their relative values (rewards) and the amount of

required processing [29]. Previous works [9] addressed either one or the other of the two characteristics.

We prove lower bounds on the competitive ratio (see [30]) for several natural priority-based algorithms,

including a constant general lower bound shown for an arbitrary online algorithm. The main result of
W+2

this part is a (1 + *5-=) upper bound for the special case with only two possible values; here W is the

maximal amount of required processing, and the two possible values are 1 and V. The proof is based

on an inductive argument with a per-packet alignment between optimal and priority-based algorithms

(similar to that in [9]), augmented by special treatment of packets with value 1.

2.2 New packet classification schemes and algorithms

Ternary to LPM transformation algorithms. We have designed two algorithms, MinGroupPartition
and MaxCoveragePartition, for the task of transforming a general ternary bit-string packet classifier
into an equivalent group of more constrained LPM classifiers [31]. The key part of this result is a novel
connection between the ability to construct complex lookup keys and order theory, specifically Dil-
worth’s decomposition theorem [32]. We show that MinGroupPartition minimizes the total number
of groups, while MaxCoveragePartition maximizes the number of rules covered by a given number of
LPM groups. These algorithms prove it possible to represent expressive ternary bit-string classification

rules using traditional longest-prefix match capabilities of existing network infrastructures.

Complex network-wide packet classification. To improve classification across multiple network ele-
ments, we design a simple and space-efficient scheme, called OneBi t, for distributing data flow (stream)
classification rules along a flow’s path [33]. OneBit relies on just a single bit of packet metadata and,
compared to previous work, does not employ any heuristics, is very computationally easy (linear in the
number of rules), and allows for a polynomial time decision procedure for the feasibility of multi-flow
distribution. Similarly to the ternary-to-LPM transformation algorithms above, it allows to implement

very complex policies without any network upgrade.

2.3 New cost-efficient resource allocation for serverless computing

Elastic resource allocation. We have explored the trade-off between delaying user requests and using
available resources efficiently for the elastic resource allocation problem [34]. The proposed model

incorporates an allocation cost @, a maintenance cost 8, 8 < 1, and the time allocation takes (normalized

a
1-a-p

a <1-p. Fora > 1- 3, we present a parameterized algorithm p-AAP that actively delays requests; we

to 1). We have shown a simple greedy algorithm NRAP to be at most 2 - (1 +)—competitive for

prove that p-AAP is % ([%W + 1)-c0mpetitive (with a small amount of extra buffer space). Compared
to previous works [35], which largely relied either on past history or on a deep understanding of request
arrivals, the guarantees we provide in this part of the dissertation are worst-case and thus hold for any

arrival sequence.

2.4 New data aggregation schemes for compute-aggregate tasks

Compute-aggregate task planning. To optimize the placement of intermediate aggregations during
the execution of compute-aggregate tasks, we formally introduce the compute-aggregate minimization
(CAM) problem [36]. The formulation succinctly captures the characteristics of both the network (topol-
ogy and transmission costs) and the application (aggregation size function). We argue that these charac-
teristics are sufficient for the construction of an aggregation plan that effectively exploits intermediate

data aggregations and minimizes the overall transmission cost. In particular, as part of this dissertation,

a hardness result was established for the non-associative case, and the relation between CAM and the
minimum Steiner tree was characterized. Moreover, the aggregation plan, as it is defined in the CAM
problem, does not restrict when exactly transmissions and aggregations happen; it is conveniently decou-
pled both from the network and from the application. Compared to previous work exploiting in-network
aggregation [26], the treatment we present in this thesis is more general (in particular, it does not re-
strict network topology) and, apart from specific new results, provides a novel general framework for

reasoning about compute-aggregate task planning based on the notion of the aggregation size function.

3 Publications and approbation of the research

Each of the key results presented in the previous section has been published in one of the peer-reviewed
research papers listed below.

First-tier publications:

 Chuprikov P., Nikolenko S. I., Davydow A., Kogan K. Priority Queueing for Packets with Two
Characteristics™ // IEEE/ACM Transactions on Networking. 2018. vol. 26 (1). pp. 342-355.

Contribution of the disseration’s author: Theorems 1-3 characterizing the behaviour of priority-
queue (PQ) based policies; Theorem 7 establishing a general lower bound; Theorem 11 presenting
lower bounds for PQ-based policies in a two-valued case; Theorem 12 showing an upper bound
for PQ, _,, in the two-valued case; and Theorem 17 with lower bounds for PQ-based policies with

B-pushout.

 Chuprikov P., Kogan K., Nikolenko S. General Ternary Bit Strings on Commodity Longest-prefix-
match Infrastructures™ // Proceedings of IEEE ICNP 2017.

Contribution of the dissertation’s author: Theorem 1 establishing a necessary and sufficient condi-
tion for prefix-reorderability; the PrefixToLPM algorithm with a proof of correctness in Theorem 2;
the MinGroupPartition algorithm with a proof of correctness in Theorem 3; Theorem 4 showing
a hard example for MinGR; the MaxCoveragePartition algorithm with a proof of correctness in
Theorem 5; bit-expanding heuristic described in Section V; Observations 3 and 4 linking prefix-

reorderability with rule disjointness; implementation of the above algorithms.

 Chuprikov P., Nikolenko S., Kogan K. On Demand Elastic Capacity Planning for Service Auto-
scaling™® // Proceedings of IEEE INFOCOM 2016.

Contributions of the dissertation’s author: Theorems 1 and 2 stating non-competitiveness in a
bufferless setting; A lower bound in a buffered setting with small allocation cost in Theorem 3; the
NRAP algorithm and its competitiveness in Theorems 4 and 5; the p-AAP algorithm and its analysis
in Theorems 6 and 7; Theorem 8-11 providing latency guarantees for NRAP and p-AAP; Theo-
rems 12 and 13 presenting general lower bounds for a bounded-delay (BD) model; Theorem 14
that upper-bounds NRAP in the BD model; Theorem 15 with a general lower bound for limited
resources BD model (LBD); Theorems 16 and 17 providing bounds for NRAP in LBD model;

*The author of the dissertation is the main author of the paper

Second-tier publications:

* Chuprikov P., Davydow A., Kogan K., Nikolenko S. I., Sirotkin A. Formalizing Compute-Aggregate
Problems in Cloud Computing // Proceedings of SIROCCO 2018.

Contributions of the disseration’s author: formalization of a compute-aggregate task planning
problem and nonassociative hardness (Section 3 of the paper); Theorems 2, 6 and 7 connecting

CAM to the minimum Steiner tree problem (Sections 4.1 and 4.2 of the paper).
Other publications:

 Chuprikov P., Kogan K., Nikolenko S. I., How to implement complex policies on existing network
infrastructure™ // Proceedings of ACM SOSR 2018.

Contributions of the dissertation’s author: the OneBit algorithm and its performance guarantees
in Theorem 5.2; a network-wide solution presented in Section 6; performance comparison with
existing algorithms.

The obtained results are supported in two ways. First, in almost all settings considered in this work we
present rigorous proofs of worst-case performance guarantees valid under a realistic model. Second, for
practical purposes where worst-case behavior might be rare, we evaluate proposed solutions on synthetic
traces. Buffer management policies (Section 4.1) were run under traffic based on CAIDA traces [37].
Classifier transformation algorithms (Section 4.2) have been evaluated on the Classbench test suite [38].
Resource allocation algorithms (Section 4.3) were tested using randomly generated network-traffic-like

pattern of arrivals [39].

4 Contents

This Section provides an overview of the research projects that led to the results presented in Section 2 and
describes how these results achieve the objectives stated in Section 1.2. Again, we begin with the level
of an individual network element, presenting our results on buffer management and packet classification,
and then proceed upwards to resource allocation for serverless computing and compute-aggregate task
planning.

4.1 Processing of multiple data streams

Interconnecting infrastructure should support advanced economic models expressed through new types
of objectives. Buffer management policies play a critical role in the optimization of those objectives.
Network traffic is highly heterogeneous, and its characteristics have an impact on the process of opti-
mization, but they are often not being taken into account by buffer management policies. Introduction of
in-network data processing would bring even more heterogeneity into processing requirements, making
the current policies even less efficient. In response to new challenges, the paper titled “Priority Queueing
for Packets with Two Characteristics” (see [29]) studies the effect of two packet characteristics, namely,
processing requirements and value, on the optimization of weighted throughput in a single queue. This

study leads to the first set of results from Section 2, and their overview is presented in this section.

8

The considered model assumes a single queue that is able to hold B unit-sized packets and that all
arriving packets are unit-sized. Each arriving packet p has two characteristics: processing requirements
(work) w(p) € {1,...,W}, and value v(p) € {1,...,V}, we will sometimes denote such p as (w(p) | v(p)).
Both w(p) and v(p) are known at arrival. The time is assumed to be slotted, and each time slot # is sub-
divided intro three phases: (1) admission, when a set of new packets arrives, and the management policy
decides which packets to admit to the queue, possibly pushing out already admitted ones; (2) processing,
when a single packet from the queue is scheduled for processing; and (3) transmission, when a single
fully processed packet, i.e., a packet p that has been scheduled for processing at least w(p) times, is cho-
sen for transmission. Note, the results that follow impose no constraints on the transmission order, so
the transmission decision is trivial: transmit the only fully processed packet if any. The goal is to find a
buffer management algorithm that would maximize the total weighted throughput, i.e., the total value of
all transmitted packets.

Unfortunately, due to the online nature of the problem it is impossible to find an algorithm producing
an optimal solution for every sequence of requests. The performance guarantees are, thus, provided
relative to an unknown optimal solution using competitive analysis [30]. An online algorithm ALG is
called a-competitive for some « > 1 iff for any finite arrival sequence o the total weighted throughput

is at least 1/« times the total weighted throughput of an optimal offline algorithm OPT.

Algorithms. The previous works have demonstrated that if either V = 1 or W = 1, then simple priority-
based algorithms that prefer either higher value or lower processing requirement are, in fact, optimal
[9]. For that reason, priority-based algorithms are natural candidates for the model described above.
The difference is that here the choice of the priority (the admission/processing order) is not obvious. A

generalized notion of a priority-queue-based algorithm is defined next.

Definition. Let f be a function of packets, f(p) € R, with the intuition that better packets have larger
values of f. Then the PQ; processing policy is defined as follows:

* PQy is greedy, i.e., it accepts incoming packets as long as there is space in a buffer;
* PQy is work-conserving, i.e., it processes a packet as long as its buffer is not empty;
* PQy orders and processes packets in its queue in the order of decreasing values of f;

* PQy pushes out a packet p and adds a new packet p’ to the queue at time slot t if the buffer is full, p is
currently the worst packet in the buffer and p’ is better than p: f(p) = minq e f(q), and f(p') >
f(p). Here IB?¥ denotes the set of packets in PQ +5 buffer on the current timeslot.

In short, on admission PQ, considers new packets and buffered packets together keeping those with
higher value of f; for processing PQ, chooses a packet p with the highest f(p). There are three promising
candidates for the priority function f; in what follows, v and w denote, respectively, value and current
processing requirements: (1) PQ, _,, = PQ,_,, /1) that prefers packets with higher value, ties given to
lower processing; (2) PQ_,,, = PQ_,4+,/v+1) that prefers packets with lower processing, ties given to
higher value; and (3) PQ,,, that prefers packets with higher value-to-work ratio. The example of their

behavior is shown in Figure 1.

arrivals PQ..,v PQ.,.w PQuw

\6315[52]43 1] [th(s]2][4]3) ¢ [5]2][4]3]1]1 before
(5[2)(4[3)1T1) [s]2)(¢[3)[]a) [6]a][«[3]1]1) 2,
5[52]4301552 63 335\63]4301 igﬁ%‘iressing
 (s[2)f4[3) [5]2][6]3)[3]3 6]3)(4]3] {2 icsion

Figure 1: A sample time slot of PQ_,,,, PQ, _,,, and PQ,,,.

Lower Bounds. However promising, all three algorithms turn out to perform badly in terms of com-
petitiveness. The next theorem combines Theorems 1, 2, and 3 from [29] demonstrating that each of the
three policies has an approximation ratio linear either in W or V, suggesting that the interplay between

the two packet characteristics makes the buffer management problem substantially more difficult.

Theorem. For a buffer of size B, maximal amount of required processing W, and maximal value V:
* PQ_,,, is exactly V-competitive;
* PQ,_,, is at least (W - Y=L — o(1))-competitive; and
* PQ,,y is at least min{V, W }-competitive.

The bounds presented above hold only for specific algorithms and do not imply that an optimal one
does not exist. For the latter kind of result, a general lower bound is required, constructing an adversarial
input sequence able to “fool” any online algorithm. Section V of [29] presents a number of general lower
bounds" that are polynomial in either V or W. The bounds differ in constraints imposed on an algorithm’s
implementation: FIFO processing order, fixed buffer size B, or being based on priority (PQ). A bound

free of constraints is much weaker, but is still able to show that no optimal online algorithm exists.

Theorem. For a buffer of size B, maximal packet required processing W, and available packet values 1

and V > 1, every online deterministic algorithm ALG is at least (1 + % -0 (%))-competitive.

Two-valued case (an upper bound). The lower bounds demonstrate that in general natural priority-
based algorithms are far from optimal and are even far from general lower bounds. The logical step is
to add additional restrictions to the problem. One such restriction is to assume that there are only two
possible values, i.e. either v(p) = 1 or v(p) = V. It corresponds to a scenario where all packets are
divided into “commodity” packets (w | 1) and “golden” or high-priority packets (w | V).

Theorem. For a buffer of size B, maximal required processing W, and available packet values 1 and V:
1. PQ_,,, is at least V-competitive;
2. if W > V then PQ,, Is at least V-competitive;

3. PQ,_, is at least (¥ + o(1))-competitive.

TNot a part of this dissertation.

10

First, note that if W < V then PQ,,;,, operates exactly as PQ, _,, since any (w | V) is better than (w’ | 1).
Second, the bound for PQ, _,, has become much less strict, which is intuitive: if a processing of a given
higher-valued packet was a wrong decision, loss per time slot should not exceed % \& % In fact, the

intuition is (almost) true.

Theorem. For a buffer of size B, maximal required processing W, and available packet values 1 and V

PQ,—,, is at most (1 + L2)-competitive.

The proof of the above result is based on an inductive argument similar to that in [9] comparing sorted
(according to priority) sequences of packets in PQ, _,,’s and OPT’s buffers. The novelty is in the mapping
between “commodity” (w | 1) packets processed by OPT and processing cycles spent by PQ, _,,. Given
the V-competitiveness of PQ_,,,, PQ, _,, and PQ_,,, come very close to a min{V, W /V} lower bound’ on

priority-based algorithms (Theorem 6 in [29]).

Beta push-out case. The previous discussion treated a decision to drop a newly arrived packet and a
decision to push-out an already admitted one equally. However, there are reasons to prefer the former
to the latter (e.g., the latter consumes more resources on a network device). The work [9] introduced
a copying cost model to account for the difference; in that model, each admitted packet reduces the
objective function by «. Similarly to [9] a modified version of the PQ, family of algorithms, PQ? is

considered here. PQ? only pushes out a packet if a new packet is 8 times better (8 > 1).

Theorem. For a buffer of size B, maximal required processing W, and maximal packet value V:
(1) PQ@W’V is at least V-competitive both in the case of arbitrary values and in the two-valued case;

2) PQf I is at least min{V, W }-competitive in the case of arbitrary packet values and is at least V-

competitive in the two-valued case with BW > V;

3) PQﬁ_W is at least (@W - 0(1))-competitive in the case of arbitrary packet values and at least

(¥ + o(1))-competitive in the two-valued case.

Results summary. Table 1 summarizes all the theoretical results presented in [29]. In the simulation
study based on CAIDA [37] traces, the throughput of PQ, ;,, has mostly remained within 90% of optimal
(we used an overapproximation) with PQ, _,, showing similar performance when there are only two packet
values (see Figure 5 in [29]).

4.2 Packet classification: a basic network function for single packet processing

As we have stated earlier, packet classification is one of the core functionalities behind single packet
processing, and it directly affects the performance of every network element. The purpose of packet
classification is to distinguish among different types (classes) of packets in order to perform class-specific
handling. This is useful both as a form of data processing, and as a way to differentiate among multiple

data streams.

TNot a part of this dissertation.

11

Processing policy \ General case \ Two-valued case

Adversarial general lower bounds

. 2
Any online algorithm min{ AW, V-1t |, Y2 -0(w)
Any priority queue VWt min{V,W/V}T
Any FIFO online algorithm (*/TW +1- %)T yABoLT
Lower and upper bounds for specific algorithms

Processing policy Lower bound Lower bound Upper bound
PQ_y.vs P,y % 1% 1%
PQu.-w» POy P - o(1) ¥ +o(1) 1+ W2
PQuw, W2V \%4 \%
P, BW = V 14 14
PQujw, W <V W ¥ +o0(1) 2+ 2

Table 1: Results summary for buffer management: lower and upper bounds.

K | #1 #2 #3 #4 | Action KB | #1 #2 #3 #4 | Action
Rl 0O 1 0 0 |4 RE[T 0O 0 1 0 [A
Ry | O * * * | Ao Rg 0 * * % | Ag
Ry| 1 0 1 = |As RE| 1 1 0 = |A;
Ry | 1 * 0 * | Ag Rf 1 0 * * | Agq
(a) Original classifier K (b) A B-reordering of K, where B = (1, 3,2,4)

Figure 2: An example of a packet classifier with four rules and a packet header’s width w = 4.

An input to the classification process is a packet header H that is represented by a sequence of bits
(hy,...,hy) over the {0, 1} alphabet and the output is an opaque action to be applied to the packet. The
w above is the classification width. The classification behavior is defined by a packet classifier K =
(Ry,...,RN)<, which is an ordered (prioritized) by < set of rules. Each rule R; consists of a filter F; and
an action A;. The filter defines constraints on a packet header and is represented by a sequence of ternary
bits (fi,. .., fiv) over the {0, 1, *} alphabet, * representing “don’t care”. A header (41,...,h,) matches a
filter (or a rule containing it) (f1, . . ., fi,) iff for all i either ; = f; or f; = . To classify a packet, a lookup
into a classifier is performed, and an action of a rule whose filter matches a packet’s header is returned
as a result. If there are two rules R and R’ that intersect, i.e., there exists a header matching both, the
action from the higher priority rule is returned. A toy example of a packet classifier K is presented in
Figure 2(a), higher priority rules are at the top.

The discussion that follows is largely concerned with transforming one classifier K into another
classifier K”. It is absolutely required that the transformation does not change K’s semantics, in other
words K and K’ must be equivalent. Formally, two classifiers K and K’ are equivalent iff for every
header the lookup results for K and K’ are the same.

Section 4.2.1 gives an overview of an approach published in a paper titled “General ternary bit strings
on commodity longest-prefix-match infrastructure” (see [31]) corresponding to the second result from
Section 2. Section 4.2.2 describes a paper “How to implement complex policies on existing network

infrastructure” (see [33]) where the third result from the Section 2 is presented.

12

4.2.1 Representing general ternary bit strings on LPM infrastructure

A general packet classifier without any further constraints is called a ternary classifier. Ternary classifiers
are the most powerful, they are found in modern packet processing abstractions [40] and are required for
certain applications (e.g., [41]). Unfortunately, software-based implementations of ternary classifiers are
inefficient: they require either too much space or time [42]; hardware solutions (TCAMs) being very
expensive and power hungry are not present in sufficient capacity on commodity network devices. In
contrast, once a classifier satisfies LPM constraints (to be defined shortly), it becomes much easier to
represent the classifier efficiently, so the support for LPM classification is widely available. Formally,
an LPM classifier satisfies the following: (1) all *s come after all Os and 1s (e.g., rules Ry and Rj3 in
Figure 2(a)), in other words, the classifier must be prefix; (2) given any two intersecting rules the one
with a longer prefix has a higher priority (e.g., rules R2B and Rg in Figure 2(b) violate the property). The
mismatch between application requirements and infrastructure capabilities demands a solution able to
represent an arbitrary ternary classifier K on an LPM infrastructure with classification width at most
wrpm (usually, wy py is either 32 or 128 bits).

An approach presented here is agnostic to any particular LPM implementation. Its high-level overview
is the following: first the classification width is reduced to wy py, then using a novel prefix-reorderability
property the result is made prefix, and, finally, the priorities are adjusted to satisfy LPM constraints. The

main contribution of the paper is the ternary-to-prefix transformation, to be explained first.

Prefix-reorderability. Network elements are capable of constructing complex lookup keys, in par-
ticular, they are able to reorder bits of a header. Reordering of header’s bits allows for reordering of
classifier’s bits, which is a kind of transformation potentially able to turn the classifier into a prefix one.
Formally, let B = (b1,bo,...,by), k < wand 1 < b; < w, be a sequence of distinct bit indices represent-
ing the new bit order. Then for a header H = (hy, hs, ..., h,,) and a filter F = (f1, fo,. .., fiv), we define
HB = (hp,, hpy,. .. hp,) and FB = (fy,, fops - - -» fi,)- Finally, for arule R = (F, A), RB = (FB, A). The B-
reordering of a classifier KX = (R, Ry ..., Ry) is a classifier KB = (RB, Rg, .. .,Rf,), where before each
lookup an input header H is replaced with H®. For example, a prefix (1,3,2,4)-reordering of a classifier
from Figure 2(a) is presented in Figure 2(b). It is not hard to see that if B is a permutation of (1,...,w)
then classifiers K and K are equivalent. The question is whether there exists a permutation B such that
KB is a prefix classifier, i.e., whether K is prefix-reorderable.

It turns out useful to consider for a rule R = (F, A) a set of bit indices i such that f; # * denoted
by exact(F), e.g., in Figure 2(a) exact(R;) = {1,3}. A curious observation is that if K2 is prefix,
then for any R € K bits from exact(R) must precede in B bits from {1,...,w} \ exact(R); otherwise,
the rule R would not be prefix. The observation imposes constraints on B, which may contradict each
other: consider a classifier with F; = (0 %) and F5 = (* 1). Generally, if K contains two rules R and
R’ such that neither exact(R) C exact(R’) nor exact(R’) C exact(R), then K is not prefix reorderable.
The first theorem shows that the above condition is sufficient and is easy to check; in what follows
exact(K) = {exact(R) : R € K}:

Theorem (chain criterion). A classifier K is prefix-reorderable iff for every E1,Es € exact(K) either
E| C Ey or E5 C E; holds, i.e., exact(K) can be reordered to form a “chain”: E;, € ... C Ei netiro)”

13

K | #1 #2 +#3 #4 | Action Ky | #1 #2 #3 #4 | Action
R1 0 0 0 * A1 R1 0 0 0 * A1
Ry| O 0 1 * | Ag Ry | O 0 1 * | Ag
R3 * 1 0 0 A3 R4 0 0 * * A4
R4 0 0 * * A4 R7 * 0 * * A7
R5 * 0 1 * A5 .
R | * 1 0 x| Ag Ko | #1 #2 3 #4 | Action
R7 % 0 " % A7 R3 * 1 0 0 A3

R5 * 0 1 * A5

Rs * 1 0 * | Ag

(a) An original classifier K

(b) A prefix-reorderable partition of K

Figure 3: An example of a non-prefix-reorderable classifier

The permutation of bit indices can be found in O(|K| - w) time (if one exists).

Once a permutation B witnessing K’s prefix-reorderability is found, it only remains to transform the
prefix classifier %8 into an LPM classifier, which can be done with a trie-based algorithm PrefixTolLPM
in O(|K| - w) time (Theorem 2 in [31]). Note, neither transformation increases the number of rules.

Next, there will be considered two approaches dealing with non prefix-reorderable classifiers. The
first approach relaxes the prefix-reorderability property and takes advantage of the parallelism available
at network devices, and the second uses additional rules.

Minimal multi-group representation. Assume that classifier’s rules are partitioned into prefix-re-
orderable groups. Then each group can be transformed into an equivalent LPM classifier using the algo-
rithms discussed above. Since modern network devices are able to perform several lookups at line rate, it
is feasible to perform a lookup in each of the constructed classifiers and return the highest priority result
as a final answer. For example, the classifier K in Figure 3(a) is not prefix reorderable, nevertheless, it
can be partitioned into K; and K, as in Figure 3(b). Both K and K> are prefix-reorderable; hence, once
they are transformed into LPM form, two LPM lookups would be enough to implement %K. The number

of lookups supported at line rate is limited, thus it is desirable to minimize the number of groups.

Problem (MinGR). Find a partition of rules of a given classifier K into a minimal number of disjoint

prefix-reorderable groups.

The crucial step towards a solution for MinGR is to move from partitioning of X to partitioning of
exact(K). From the chain criterion it is known that K" C K is prefix reorderable iff exact(%") is a chain.
It follows that given a solution to MinGR it is possible to produce a chain cover of exact(K) of the
same size. In the opposite direction, from any chain cover of exact(K) it is possible to build group-wise
prefix-reorderable partition of K of the same size by grouping the rules according to exact. The MinGR
problem is, thus, equivalent to the problem of finding the smallest chain partition of exact(K).

Note, the last problem is expressed solely in terms of a partial order exact(K) with relation C, and
we can employ existing algorithmic solutions to the chain cover problem running in O(| exact(%)|*/?)
time [32]. Adding the time to construct a partial order and the time to recover rule partitions leads to
the MinGroupPartition algorithm. It is expected in practice (and was confirmed in evaluation) that
| exact(K)| is much less than |K]|.

14

Theorem. The MinGroupPartition algorithm finds an optimal solution for the Min GR problem in time
O(| exact(%)|°/2 + |K|*w).
The number of groups produced by MinGroupPartition and, hence, the number of lookups required,

can still be too large to implement at line rate on the LPM infrastructure.

Theorem. There exists a classifier K with |K| = O(V%ZW/ 2y such that an optimal solution for the

MinGR problem requires exactly |%| groups.

Even though such a degenerate case as in the previous theorem is unlikely to occur, there may ex-
ist some small subset of rules that are “bad” for prefix-reorderablity rendering a soultion produced by
MinGroupPartition infeasible to implement. The remedy to the issue is a “mixed” representation, where
some part of the classifier is represented using traditional non-LPM techniques (e.g., in a small TCAM).

The optimization objective is to minimize the size of that part given a limit on the number of LPM groups.

Problem (MaxCov). Given a classifier K and a constant 8 > 0, partition the largest possible subset of

‘K’s rules into at most 3 prefix-reorderable groups.

To solve the MaxCov problem a MaxCoveragePartition algorithm slightly alters the underlying

graph from [32] and runs minimum weight matching to account for “non-covered” rules.

Theorem. The MaxCoveragePartition algorithm produces an optimal solution for the M axCov in time
O(| exact(K)|?|K| + |K|*w).

A nice property that both MaxCoveragePartition and MinGroupPartition share is that non-prefix-
reorderable classifiers are handled without increasing the number of rules. Still, sometimes it might be
worthwhile to trade some memory for a smaller number of groups or a smaller size of the traditionally-

represented part.

Problem (MaxCov-m). Given a classifier K, a constant § > 0, and a maximal number of rules M,
find the largest subset K’ C K and a multigroup classifier K* equivalent to K’ with |K*| < M such that

K™ can be split into at most 3 prefix-reorderable groups.

As the M.axCov—m problem does not restrict the ways in which K” can be modified, it is unlikely
that an optimal solution can be found efficiently. A proposed heuristic repeatedly takes a rule R that
cannot be fit into any of K™’s groups, and adds more indices to exact(R) by expanding non-exact bits in
the R’s filter, essentially duplicating the rule.

Shrinking the classification width. It still may be the case that the classification width of the input
classifier K may be larger than wy py; supported by the infrastructure. To reduce the width in [18] authors
suggest exploiting a rule-disjointness property. A classifier K is rule-disjoint on a set of bit indices B
iff in %? no two rules intersect. If K is rule disjoint on B, then K is equivalent to K? with each action
augmented by a false-positive check against the corresponding rule from K. The width is reduced if
|B| < w. A notable observation is that rule-disjointness and prefix-reorderability do not conflict with

each other. Nevertheless, it is unclear which property should be satisfied first for the best performance.

Implementation and Evaluation. The optimizations described above were implemented in a platform-

agnostic way using the P4-language infrastructure [40]. They also were evaluated based on synthetic

15

classifiers from the Classbench [38] suite. A heuristic that first splits the rules into rule-disjoint groups
and then into LPM groups while doing bounded “don’t care” bit expansions performed the best. For
instance, we were able to represent on 32-bit-wide LPM infrastructure 80% to 99% of rules for ACL-
based classifiers, 38% to 100%—for firewall-based, and almost 100%—for IP-chain-based (see Tables
I and IT in [31]).

4.2.2 Representing complex policies

The previous section approached the representation of complex policies on existing infrastructures from
the point of view of a single network element. To satisfy network-wide rule capacity constraints, [21]
and [22] suggested a “virtual pipeline” approach to resource sharing. In particular, [22] introduced the
splitting of a policy among the switches on the path of a network flow as a building block in the network-
wide policy representation. Formally, given a classifier K, the splitting of K is defined as a sequence
of classifiers that is equivalent to K. A lookup into a sequence Ki, Ko, . ..,K; is performed through a
sequence of lookups into each of %; in order, each time applying an action returned from the ith lookup
before proceeding to the (i + 1)th. The intuition is that if % represents a policy for a given flow, then K;
should be stored on the ith switch along the flow’s path. An [-splitting of a classifier K is a splitting of

K having [/ elements. The formal problem is stated below.

Problem (FlowSplit). Given a classifier K and a sequence of switch capacities c1,ca,. . .,c;, find an
[-splitting K1, Ko, . . ., K; of K such that K; has at most c; rules.

The complexity of the FlowSplit problem comes from intersecting rules, i.e., rules that match the
same header. For instance, if a classifier K in Figure 4(a) is split arbitrarily as in Figure 4(b), then the
equivalency may be lost: a header (1 0 1 0) is matched twice: first in R; and then in Ry. A possible fix
is to add nop-rules to K5 as shown in Figure 4(c).

There are two existing solutions to the issue of intersecting rules. Palette [21] expands * bits, so
that rules could be split into non-intersecting groups, i.e. no two K; and K, i # j, would match the
same header. The optimization problem that arises from such approach is computationally hard, forcing
Palette to resort to heuristics. The other approach, One Big Switch (0BS) [22], allows rules at different
switches to intersect. To construct K; OBS chooses a multidimensional rectangle r; and sets %; to be a
“projection” of all remaining (not covered by K, j < i7) rules on r;. To preserve the equivalency, in
every later switch K, j > i, a special high priority rule is added, mapping r; to the nop action (similar to
Figure 4).

A boolean minimization technique. The first technique, introduced in this dissertation, takes the iter-
ative approach of 0BS as a basis, but allows %; to represent an arbitrary subset of rules, not necessarily a
rectangle. The price of that flexibility is a larger number of nop-rules introduced to subsequent switches.

The technique relies on Boolean Minimization [43] and is called BM. It operates in [steps, the ith step,
1 <i <[, takes as input a classifier K0~V (X®) = K) and using a heuristics (an algorithm’s parameter)
selects a subset X! € KU~V. Then, % is set to KU~ with all rules not in K7 having the nop action,
and boolean minimization is then run over %;. If the result fits in ¢;, K® is constructed similarly to %K,

except that all rules in K7 are being mapped to nop. The (i + 1)th step begins next. Figure 4 shows one

16

K | #1 #2 #3 #4|Action Ky | #1 #2 #3 #4|Action K| #1 #2 #3 #4 | Action
Ry * * 1 0 A1 Ry * * 1 0 A1 Ry * * 1 0 nop
R2 1 0 * * A2 R3 0 0 * * Ag RQ 1 0 * * A2
R3 | O 0 * * | Ag Rs | O 0 * * | nop
Ry * * 1 1 Ay ;0 #1 #2 #3 #4 Action Ry * * 1 1 Ay
R2 1 0 * * A2
R4 * * 1 1 A4

(a) An original classifier K (c) A version of K5 augmented with

(b) Not a splitting of K nop-rules to preserve equivalency

Figure 4: An example of a classifier splitting
possible result of BM. The subset-selection heuristic can supply more than one candidate for K.

One-bit of metadata. It can be shown (see Section 4 in [33]) that all three approaches BM, Palette, and
OBS are incomparable in general. Still, they all share three common limitations: (1) memory expansion
due to either nop rules (OBS, BM) or rule duplication (Palette); (2) slow running times due to hard under-
lying optimization problems; and (3) lack of support for dynamic fields, i.e., the fields that are changed
by actions and are also used for classification. A solution avoiding all three limitations and requiring just
one bit of metadata is presented next.

Consider a naive approach of putting first (according to priority) c; rules of K into K7, then next
co rules into K5, and so on until all rules have been assigned. The only thing that may go wrong is that
a header first matched at some ; would be matched again at K, j > i since the first match in such a
scheme is always the right one. A simple fix for repeated matching implemented in a OneBit algorithm
introduces a special matched bit to a header indicating whether the header has already been matched, the
classification is then performed only if matched is not set. Every action in each K; is modified to set the
matched bit, and the default action (applied in case of no-match) of K; resets matched. The following
theorem states that OneBit has indeed avoided the limitations of the earlier approaches.

Theorem. Given a FlowSplit’ instance (K, {c;};) with }; ¢; > |K]|, the OneBit algorithm constructs in
O(|K|) time an [-splitting of K that remains correct in the presence of dynamic fields and requires |'K|
rules in total.

Network-wide solution. The OneBit algorithm solves the policy-representation problem only for a
single flow. Network-wide, there are multiple flows, each is a subject to its own policy and has its own
forwarding path. In [22] the following joint policy placement problem was stated:

Problem (MultiFlowSplit). Given a set of nodes V, node capacities ¢ : V — N, and a set of k
path/classifier pairs (P;,K;), where P; is a sequence of vertices (vi,. . .,vfi), find a capacity allocation
a:V X |k] — N such that Zle a(v,i) < ¢(v), and a solution for each FlowSplit problem with K = K;
and c; = a(v;'.,i) forj=1,...,1L.

To solve MultiFlowSplit OBS’s authors suggested an iterative heuristic that repeatedly refined per-
flow capacity allocation, attempting to solve individual FlowSplit problems on every iteration using
OBS technique. There was no bound on the number of iterations since there was no criterion for OBS to

succeed in policy splitting. In contrast, the simplicity of a similar criterion for OneBit leads to a one-shot

17

solution to the MultiFlowSplit problem via a reduction from the per-flow capacity allocation problem

to the maximum flow problem.

4.3 Elastic processing

Elasticity offered by the cloud allows for greater flexibility and operational savings. To be efficient,
the resource capacity should match the offered load as close as possible. Since it is infeasible to adjust
the capacity instantaneously, some degree of capacity planning is required. Traditionally, it has been a
user’s responsibility, but recently, a new “pay-per-use” approach has emerged in the form of serverless
computing [2, 3, 4], where users only pay for actually processed requests. The work “On demand elastic
capacity planning for service auto-scaling” (see [34]) addresses the challenges of building an efficient

capacity planning scheme in a serverless setting, it constitutes the fourth set of results from Section 2.

Model description. The time is assumed to be slotted. While a given request may need different types
of resources (e.g., memory, processing, or network bandwidth), all are jointly modelled as a single (vir-
tual) resource unit. Every request r has an associated value v(r) and is considered processed if it has been
allocated exactly one resource unit for exactly one time slot. Once processed, r adds v(r) to the revenue;
the scaling is such that min,{v(r)} = 1. Reflecting operational expenses, the allocation of a resource
unit costs @, and keeping a resource unit allocated has a maintenance cost 5 per time slot. Finally each
time slot 7 is divided into three phases: (1) arrival: a set A; of new requests arrives; (2) processing: a
set P; of requests is chosen for processing, |P;| must be less than »;, the number of allocated resources;
(3) prediction the resource capacity N, is planned for the next time slot. Note, phases (2) and (3) can
be handled in parallel, the essential constraint is that the prediction happens before the next arrival to
account for the allocation delay. The set of requests to choose P; from depends on the ability to delay
request processing, the study of a fundamental trade-off between delaying requests and dropping them

altogether is the main topic of [34].

Objective. The objective is to minimize }.,(3,cp, v(r) — BN; — ¢;), where ¢, is the cost of changing the
resource capacity from N; to N;;1. Hereafter a linear cost model is assumed, i.e., ¢; = max{0, N;+1 — N, }.
In the economic setting, average case guarantees are insufficient, so the competitive worst-case analysis
[30] is used instead. A given online algorithm ALG is called a-competitive, « > 1, if for any finite
sequence of requests o ALG’s objective value ALG(c) is at least OPT(o")/a, where OPT(o) is an objective

value of the optimal offline algorithm OPT; ALG is not competitive if no such « exists.

Bufferless setting. If a request cannot be delayed, i.e., P, C A; must hold, then such a setting is called
BufferLess with Heterogeneous values (BLH). Unfortunately, even if it is profitable to process one request

alone (@ < 1 — 8), there is no competitive algorithm:
Theorem. If < 1 — 3, then in BLH any deterministic online allocation policy is non-competitive.

The above theorem relies on the inability to predict the right amount of resources for the first arrival:

there may always arrive more requests. To make the setting more realistic, an upper bound B on the

18

number of allocated resource units is imposed in the Bounded BufferLess setting with Heterogeneous

values (BBLH). Nonetheless, B can be arbitrarily large, so non-competitiveness still holds:

Theorem. If @ < 1 — 3, then in BBLH any deterministic online allocation policy is non-competitive.

Buffered setting. Motivated by the negative results of the bufferless setting, a buffer of size B is in-
troduced into the model. Requests from A, that have not been immediately serviced during ¢ are hold in
the buffer (at most B in total) for later processing. There are two variations of the model: Buffered with
Heterogeneous values (BH) useful for upper bounds (as a more general one) and Buffered with Uniform
values (BU) for lower bounds. Still, no optimal online algorithm exists.

Theorem. If @ < 1 — B, then in BU every online algorithm is at least (2 - ﬁ)—competitive.

The first strategy that takes advantage of the buffer is called NRAP.

Definition. Next Round Allocation policy (NRAP) operates as follows:

* on arrival: requests are accepted as long as there is room in the buffer; if the buffer is full then

higher-valued requests always push out lower-valued ones from the buffer;

* on processing: either requests left from the previous time slot or those that have pushed them out

are chosen for processing;

» on prediction: k resource units are predicted iff there are going to be k requests in the buffer by

the end of the timeslot (i.e., not counting the requests under processing).

It follows that NRAP never allocates more resources than necessary, but being to eager it may spend a

lot on (de-)allocation. Nevertheless, NRAP has constant competitiveness once @ < 1 — 3:

Theorem. If @ < 1 — B, then in BH the NRAP algorithm is at most (2 . 1};€ﬁ)-competitive.

The @ < 1 — B condition is essential for NRAP to stay competitive since in general it performs one
allocation per processed request. If allocation cost is higher and approaches 1 then NRAP’s competitiveness

tends to infinity.
Theorem. If @ < 1 — S, then in BU the NRAP algorithm is at least (1 + ﬂﬁ) -competitive.

In order to support allocation costs greater than 1 — (3, the next capacity planning algorithm, called
p-AAP, does not allocate a resource unit until there is a sufficient number of pending requests to cover the

allocation cost. Each resource unit has its own batch of pre-assigned requests.

Definition. The Amortizing Allocation Policy p-AAP with parameter p > 1 operates as follows.

* onarrival: incoming requests are accepted as long as the remaining buffer capacity plus the number
of allocated resource units is more than (B — [1_ﬁ])/([1_ﬁ] +1) - |'] (positive integer for
simplicity); only requests accepted in the current time slot are allowed to be pushed out.

* on processing: for each allocated resource unit choose one of preassigned requests for processing.
* on prediction: while the total value of non-preassigned requests in the buffer is at least ['|

— predict that an additional resource unit v’ will be needed for the next time slot;

19

— preassign to v’ as few as possible non-preassigned requests with total value at least [{— L2]

for every allocated resource unit with preassigned requests, predict that this unit will be needed
for the next timeslot; deallocate those units that do not.

The following theorem summarizes the competitiveness guarantees of the p-AAP policy. For a simpler

analysis p-AAP is given small extra buffer space compared to OPT.
Theorem. If @ > (1 — B), the p-AAP algorithm with a buffer of size B + [ﬂ] has competitive ratio at
most p%l ([W + 1) in BH and at least (|' '| + 1) in BU against OPT with a buffer of size B.

Latency analysis. To maintain quality of service it is important to control latency experienced by
requests. If a request r arrives at time slot #,(r) and leaves the system at 7;(r), then lat(r) = #;(r) —
t,(r). For an algorithm ALG there are two possible definitions of latency: worst case latency lat(ALG) =
sup,- max,¢, lat(r); and average case latency lat,yg(ALG) = sup, (2, lat(r)/|o|).

While latency of the NRAP algorithm is optimal, p-AAP may hold requests indefinitely until enough
of them are accumulated. In order to perform latency analysis for p-AAP, we assume that at least one
request arrives every time slot. We introduce a modified version of p-AAP, called p-AAPm, that drops all

non-preassigned requests if no requests arrive.
Theorem. In the BH model: (1) lat(NRAP) = 1; (2) latays(NRAP) = 1; (3) lat(p-AAPM) = [ﬁ] and
(4) latayg(p-AAPM) > 2 |—(1 ﬂ)-l +

Bounded Delay Model. Instead of bounding latency a posteriori, latency can be incorporated into the
model. In the Bounded Delay (BD) model each request r comes with a deadline d(r) > 1, s.t., if r arrives
on t,(r) it is automatically dropped after z,(r) + d(r). The number of resources and the buffer size are
unbounded. There is still an implicit bound on the buffer size: maximal arrival rate x maximal deadline.

The BD model does not allow for competitiveness even under a weaker assumption than BU.
Theorem. If @ > 1 — 3, then in BD any deterministic online policy is not competitive.

The NRAP policy given an unbounded buffer never pushes out requests and, hence, always processes

the request from the previous time slot, allowing to achieve constant competitiveness once @ < 1 — S:

Theorem. If « < 1 -, then in BD any deterministic online policy is at least (1 + 2(1_La_ﬂ))-competitive,

and NRAP is at most (1 +) -competitive

Tha
The last setting called Limited buffer Bounded Delay (LBD) imposes a fixed bound B on the number

of allocated resources. Compared to BD the LBD model only slightly affects competitiveness.
Theorem. If @ < 1 — 3, then in LBD any deterministic online policy is at least (2 + 1_;%a)-competitive,
while NRAP is at most 3(1 + 7 (”ﬁ 1-5—) and at least 3 competitive.

The experimental evaluatlon (see Section VIII in [34]) using synthetically generated traces has shown
that if the allocation cost a remains small and the buffer size B is large, the proposed algorithms outper-

form learning-based straw-man approaches. As the allocation cost grows p-AAP looses noticably due to

being over-cautious and underutilizing available resources.

20

4.4 Optimizing Compute-Aggregate Task Planning

An important class of big data processing applications are compute-aggregate systems where several
data chunks must be aggregated at a given location. These systems are being optimized for latency and
cost-efficiency, but rarely does the optimization take network constraints into account leading to TCP-
incast [25] issues and link overload. The full joint optimization problem contains many moving parts,
for which reason we introduce two independent phases; (1) finding the cheapest possible aggregation
plan; and (2) performing actual aggregations and data transmissions while optimizing desired objectives.
In a paper titled “Formalizing Compute-Aggregate Problems in Cloud Computing” the focus is on the
first phase and, in particular, on the unified properties of compute-aggregate tasks that lead to efficient
aggregation plans, which is the last result from Section 2

The network is modelled as an undirected graph G = (V, E), where V is a set of computing nodes,
and E is a set of connecting links. The compute aggregate task is represented by a target vertex t € V
where the final result aggregated, and a set of initial data chunks C = { x1J,. .., }, where each chunk
x has a location denoted by v((x)) € V and a size denoted by size((x)) € Rsg. To combine a multitude
of possible optimization objectives (e.g., latency, throughput, avoidance of congestion) a single per-link

cost function ¢ : E « Ry is used: to transmit (x] through ¢ € E one must pay c(e) - size(x)).

Move to root is suboptimal. The processing scheme that currently prevails is to send every chunk
to the root ¢ and perform all aggregations there. It may be suboptimal or infeasible for three reasons:
(1) insufficient memory capacity for low-latency in RAM applications; (2) data is sent to the root simul-
taneously causing TCP-incast [25]; (3) suboptimal transmission cost (as defined earlier). It is possible
to improve on the first two issues by sending data chunks to ¢ one by one and immediately aggregat-

ing as they arrive. To gain more flexibility in the aggregation order operations should be associative:

aggr((x),aggr((), @)) = aggr(aggr(x,), @), and commutative: aggr((x), 1)) = aggr(), @)

Intermediate Aggregations. The principle of moving computation to data is widely used in big data
processing to reduce network traffic. In this work we further extend that principle to moving aggregation
to data, which allows data aggregation to happen at intermediate nodes. The extension is formalized
as follows: an aggregation plan P is a sequence of operations (01,03, ...,0,), where each o; is either
move([x),v) that moves a chunk to a vertex v; or aggr((x), () that merges two chunks and ()
located at the same vertex, which results in a new chunk (xy). After P has been entirely processed, there
must remain a single chunk (z), s.t., v(@) = .

Every aggregation plan P has an associated transmission cost cost(P) that is a sum of costs of all
P’s operations: cost(move(x),v)) = size(x)) - d(v((x)),v), where d(u,v) is the cheapest (# ~» v)-path
according to ¢, and cost(aggr(x),))) = 0 since no data transmission is taking place.

Compared with the move to root strategy, intermediate aggregations: (1) reduce incoming traffic
of individual nodes, improving TCP-incast behavior; (2) reduce aggregated data at individual nodes,
improving memory efficiency; and (3) reduce overall amount of transferred data and, as a result, the
transmission cost. Also, note that an aggregation plan is fully decoupled both from the network transport

responsible for data transmission and from the application responsible for aggregation.

21

Aggregation size function. To state the problem formally, it remains to define size(xy)) for any
aggr((x), ()) operation. Knowing the exact value is infeasible during the planning phase: the value
may depend on (x)’s and (3)’s content, and it may require to actually perform the aggregation. As a
trade-off between accuracy and feasibility each application is asked to provide a size-based approxima-
tion in the form of an aggregation size function u : R>op X R>g — R, so that the following equality
holds (on execution it holds only approximately) size((xy)) = u(size((®),size((y))). The u function
must satisfy the same commutativity and associativity constraints as aggr. These are some examples of
w: p(a, b) = const for finding the top k elements; u(a, b) = min(a, b) or u(a, b) = max(a, b) for choosing
the best data chunk; u(a,b) = a + b for concatenation or sorting; max(a,b) < u(a,b) < a + b for set

union.

Problem (CAM — compute-aggregate minimization). Given a connected undirected graph G = (V,E),
a cost function c, a target vertex t, a set of initial data chunks C, and an aggregation size function u, the
CAM[u] problem is to find an aggregation plan P such that cost(P) is minimized.

There are two important special cases of CAM: CCAM and TCAM. In the first, for security reasons
it is prohibited to aggregate chunks at intermediate nodes. As a result, the set of vertices where initial

chunks are located becomes equal to V. In the second case we restrict the topology G to a tree.

Hardness and connection to the minimum Steiner tree problem. Interestingly, without the associa-
tivity constraint on u, there does not exist a polynomial time algorithm with a constant approximation
factor unless P = NP. The proof of the following theorem is based on a reduction from the knapsack

problem.

Theorem. Unless P = NP, there is no polynomial time approximation algorithm for CAM without as-

sociativity constraint on u even if G is restricted to two vertices.

To understand the connection between CAM and the minimum Steiner tree problem (MSt1) it is
instructive to consider a special case where all initial chunks have equal sizes and u(x, x) = x. With such
a choice of y it is always beneficial to merge chunks; hence, the aggregation would happen strictly along
the tree. Note, the cost of the aggregation plan would be equal to the total cost of the tree multiplied by
x, and we see that the CAM problem becomes equivalent to MStT. In a general case we would need
to pay a multiplicative factor, equal to the ratio between maximum and minimum chunk size among all

possible chunks. Using commutativity and associativity we can express both extrema as follows: let
Welp] = maxcrcc{u(C’)} and we[u] = minercc{u(C')}.

Theorem. If there exists a polynomial a-approximate algorithm for M.StT, then there exists a polynomial

Welpul
weu]

There is a simple 2-approximation to the MStT based on the minimum spanning tree of the G’s

algorithm that solves CAM| u] with approximation factor «

distance closure and a much more involved algorithm leading to @ = In4 + € < 1.39 [44]. The two
special cases, namely CCAM and TCAM, when viewed from MStT perspective become the minimum
spanning tree and the unique Steiner tree, respectively. Both can be found in polynomial time, and hence
in the above theorem has @ = 1 for CCAM and TCAM.

Corollary. There exist polynomial algorithms that solve CCAM|[u] and TCAM][u] on a set of chunks C

22

. . . Welul
with approximation factor J5h.

Furthermore, if we know that min{a, b} < u(a,b) < max{a, b}, then We[u] = We = maxcc{size(c)}
and we[u] = we = mingec{size(c)}. As aresult, it is possible to obtain a multiplicative factor which is

independent of the exact choice of u:

Theorem. If min{a, b} < u(a,b) < max{a, b} for all a,b and there exists a polynomial a-approximate
algorithm for MStT, then there exists a polynomial algorithm that solves CAM| u| with approximation
factor a‘:vv—g.

Corollary. If min{a,b} < u(a,b) < max{a,b} then there exist polynomial algorithms that solves

CCAM|u] and TCAM|[u] with approximation factor %

Finally, when u(a, b) > a + b, then it never makes sense to merge chunks and we are able to treat all

the chunks independently reducing the CAM to the problem of finding shortest paths from ¢.

Theorem. If y(a,b) > a + b for all a,b then there exists a polynomial optimal algorithm for CAM[pu],
CCAM[u], and TCAM[u]; for TCAM]|u] the running time is O(|C| + |G]|).

5 Conclusion

This dissertation addresses fundamental scalability constraints of modern computing infrastructures, fol-
lowing the specific goals and objectives introduced in Section 1.2.

First, we have made important progress in the field of in-network data processing. To support new ob-
jectives and data stream characteristics during processing of multiple data streams, we performed worst-
case performance analysis for several natural priority-based buffer management policies (Section 4.1).
This analysis has for the first time jointly considered two characteristics, value and processing require-
ments. This has allowed us to make an optimal choice of the management policy in such a setting. In
particular, we have shown that prioritizing according to value-to-work ratio is not always the best option,
contrary to natural intuition.

Second, it has been proven possible to represent complex classification policies on existing network
infrastructure through: (1) novel ternary-to-LPM classifier transformation algorithms (Section 4.2.1),
and (2) an efficient but simple scheme for network capacity sharing (Section 4.2.2). As a result, we
have introduced and justified techniques that achieve the expressiveness required for in-network data
processing without excessive costs.

Third, for efficient serverless computing we have studied the trade-off between delaying service re-
quests and revenue maximization in the serverless setting, using a novel formalization of serverless eco-
nomics (Section 4.3). As part of this study, we have developed and studied two novel capacity plan-
ning algorithms, providing worst-case (assumption-free) performance guarantees and latency analysis
for each. One major benefit of these contributions lies in cost efficiency improvements for the most
elastic (i.e., flexible) computing paradigm.

Fourth, to exploit intermediate data aggregations we have developed a two-phase approach (Sec-
tion 4.4). The first phase optimizes for budget constraints based only on the information necessary to
construct an efficient aggregation plan. Desired objectives (e.g., latency or throughput) are captured

indirectly and optimized by the network during the second phase. By separating the two phases, we

23

make network transport less reactive, reducing its task to scheduling of aggregations according to the
constructed aggregation plan. Intermediate aggregations used in that plan bring an additional advantage
that many aggregation issues (e.g., TCP-incast or memory capacity constraints) should become much
less pronounced.

In total, this thesis represents significant progress towards the direction of exascale big data process-
ing in a networked environment. This progress exposes a great potential of the underlying interconnecting
infrastructure that has not seen much attention before. Taken together, our results allow to significantly
enhance big data processing in computer networks without a radical redesign of underlying infrastruc-

tures.

24

References

[1] Hajirahimova Makrufa Sh., Aliyeva Aybeniz S. About Big Data Measurement Methodologies and
Indicators // Intl. J. Modern Education and Computer Science. — 2017. — Vol. 9, no. 10. — P. 1-9.

[2] Amazon. AWS Lambda. — 2017. — https://aws.amazon.com/lambda/.
[3] Google. Cloud Functions. — 2017. — https://cloud.google.com/functions/.

[4] Microsoft. Azure Functions.— 2017.— https://azure.microsoft.com/en-us/services/

functions/.

[5] Reserved, on demand or serverless: Model-based simulations for cloud budget planning / E. F. Boza
[etal.]//2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). — 2017. — Oct. — P. 1—
6.

[6] Lloyd Wes [et al.]. Serverless Computing: An Investigation of Factors Influencing Microservice
Performance // IC2E. — 2018. — P. 159-1609.

[7] Dean Jeffrey, Ghemawat Sanjay. MapReduce: simplified data processing on large clusters // Com-
mun. ACM. — 2008. — Vol. 51, no. 1. — P. 107-113.

[8] The Case for Evaluating MapReduce Performance Using Workload Suites / Yanpei Chen [et al.] //
MASCOTS. — 2011. — P. 390-399.

[9] Providing Performance Guarantees in Multipass Network Processors / Isaac Keslassy [et al.] //
IEEE/ACM Trans. Netw. — 2012. — Vol. 20, no. 6. — P. 1895-1909.

[10] Online Scheduling FIFO Policies with Admission and Push-Out / Kirill Kogan [et al.] // Theory of
Computing Systems. — 2016. — Feb. — Vol. 58, no. 2. — P. 322-344. — URL: https://doi.org/
10.1007/s00224-015-9626-4.

[11] Andelman Nir, Mansour Yishay, Zhu An. Competitive Queueing Policies for QoS Switches // Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. — SODA
’03. — Philadelphia, PA, USA : Society for Industrial and Applied Mathematics, 2003. — P. 761—
770.— URL: http://dl.acm.org/citation.cfm?id=644108.644235.

[12] Kesselman Alex, Kogan Kirill, Segal Michael. Improved Competitive Performance Bounds for
CIOQ Switches // Algorithmica. — 2012. — Jun. — Vol. 63, no. 1. — P. 411-424. — URL: https:
//doi.org/10.1007/s00453-011-9539-9.

[13] Kesselman Alex, Kogan Kirill, Segal Michael. Packet mode and QoS algorithms for buffered cross-
bar switches with FIFO queuing // Distributed Computing. — 2010. — Nov. — Vol. 23, no. 3. —
P. 163-175.— URL: https://doi.org/10.1007/s00446-010-0114-4.

[14] Gupta P, McKeown N. Classifying packets with hierarchical intelligent cuttings // IEEE Micro. —
2000. — Jan. — Vol. 20, no. 1. — P. 34-41.

25

https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
http://dx.doi.org/10.1109/ETCM.2017.8247460
http://dx.doi.org/10.1007/s00224-015-9626-4
http://dx.doi.org/10.1007/s00224-015-9626-4
http://dx.doi.org/10.1007/s00224-015-9626-4
https://doi.org/10.1007/s00224-015-9626-4
https://doi.org/10.1007/s00224-015-9626-4
http://dl.acm.org/citation.cfm?id=644108.644235
http://dx.doi.org/10.1007/s00453-011-9539-9
http://dx.doi.org/10.1007/s00453-011-9539-9
http://dx.doi.org/10.1007/s00453-011-9539-9
http://dx.doi.org/10.1007/s00453-011-9539-9
https://doi.org/10.1007/s00453-011-9539-9
https://doi.org/10.1007/s00453-011-9539-9
http://dx.doi.org/10.1007/s00446-010-0114-4
http://dx.doi.org/10.1007/s00446-010-0114-4
http://dx.doi.org/10.1007/s00446-010-0114-4
http://dx.doi.org/10.1007/s00446-010-0114-4
https://doi.org/10.1007/s00446-010-0114-4
http://dx.doi.org/10.1109/40.820051
http://dx.doi.org/10.1109/40.820051
http://dx.doi.org/10.1109/40.820051

[15] Vamanan Balajee, Voskuilen Gwendolyn, Vijaykumar T. N. EffiCuts: Optimizing Packet Classi-
fication for Memory and Throughput / SIGCOMM Comput. Commun. Rev. — 2010. — Aug.. —
Vol. 40, no. 4. — P. 207-218. — URL: http://doi.acm.org/10.1145/1851275.1851208.

[16] Fast packet classification using bloom filters / S. Dharmapurikar [et al.] // 2006 Symposium on
Architecture For Networking And Communications Systems. — 2006. — Dec. — P. 61-70.

[17] Compressing Forwarding Tables for Datacenter Scalability / O. Rottenstreich [et al.] // IEEE Journal
on Selected Areas in Communications. — 2014. — January. — Vol. 32, no. 1. — P. 138-151.

[18] SAX-PAC (Scalable And eXpressive PAcket Classification) / Kirill Kogan [et al.] // Proceedings
of the 2014 ACM Conference on SIGCOMM. — SIGCOMM ’14. — New York, NY, USA : ACM,
2014. — P. 15-26.

[19] Space and speed tradeoffs in TCAM hierarchical packet classification / Alexander Kesselman
[et al.] // Journal of Computer and System Sciences. — 2013. — Vol. 79, no. 1.— P. 111 — 121. —
URL: http://www.sciencedirect.com/science/article/pii/S0022000012001237.

[20] Bremler-Barr A., Hendler D. Space-Efficient TCAM-Based Classification Using Gray Coding //
IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications. —
2007. — May. — P. 1388-1396.

[21] Kanizo Y., Hay D., Keslassy I. Palette: Distributing tables in software-defined networks // 2013
Proceedings IEEE INFOCOM. — 2013. — April. — P. 545-549.

[22] Optimizing the ”One Big Switch” Abstraction in Software-defined Networks / Nanxi Kang [et al.] //
Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technolo-
gies. — CoNEXT ’13. — New York, NY, USA : ACM, 2013. — P. 13-24.

[23] Amazon AutoScaling. — http://aws.amazon.com/autoscaling/.

[24] Han R., et al. Lightweight Resource Scaling for Cloud Applications // CCGrid. — 2012. — P. 644—
651.

[25] Understanding TCP Incast Throughput Collapse in Datacenter Networks / Yanpei Chen [et al.] //
Proceedings of the 1st ACM Workshop on Research on Enterprise Networking. — WREN ’09. —
New York, NY, USA : ACM, 2009. — P. 73-82.

[26] Camdoop: Exploiting In-network Aggregation for Big Data Applications / Paolo Costa [et al.] //
Presented as part of the 9th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 12). — San Jose, CA : USENIX, 2012. — P. 29-42.

[27] Map-reduce-merge: Simplified Relational Data Processing on Large Clusters / Hung-chih Yang
[et al.] // Proceedings of the 2007 ACM SIGMOD International Conference on Management of
Data. — SIGMOD ’07. — New York, NY, USA : ACM, 2007.— P. 1029-1040. — URL: http:
//doi.acm.org/10.1145/1247480.1247602.

26

http://dx.doi.org/10.1145/1851275.1851208
http://dx.doi.org/10.1145/1851275.1851208
http://dx.doi.org/10.1145/1851275.1851208
http://dx.doi.org/10.1145/1851275.1851208
http://doi.acm.org/10.1145/1851275.1851208
http://dx.doi.org/10.1145/1185347.1185356
http://dx.doi.org/10.1109/JSAC.2014.140113
http://dx.doi.org/10.1109/JSAC.2014.140113
http://dx.doi.org/10.1109/JSAC.2014.140113
http://dx.doi.org/10.1145/2619239.2626294
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2012.06.001
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2012.06.001
http://www.sciencedirect.com/science/article/pii/S0022000012001237
http://dx.doi.org/10.1109/INFCOM.2007.164
http://dx.doi.org/10.1109/INFCOM.2007.164
http://dx.doi.org/10.1109/INFCOM.2013.6566832
http://dx.doi.org/10.1109/INFCOM.2013.6566832
http://dx.doi.org/10.1145/2535372.2535373
http://aws.amazon.com/autoscaling/
http://dx.doi.org/10.1145/1592681.1592693
http://dx.doi.org/10.1145/1247480.1247602
http://doi.acm.org/10.1145/1247480.1247602
http://doi.acm.org/10.1145/1247480.1247602

[28] Optimal communication structures for big data aggregation / W. Culhane [et al.] // 2015 IEEE Con-
ference on Computer Communications (INFOCOM). — 2015. — April. — P. 1643-1651.

[29] Priority Queueing for Packets With Two Characteristics / P. Chuprikov [et al.] / IEEE/ACM Trans-
actions on Networking. — 2018. — Feb. — Vol. 26, no. 1. — P. 342-355.

[30] Borodin Allan, El-Yaniv Ran. Online Computation and Competitive Analysis. — New York, NY,
USA : Cambridge University Press, 1998. — ISBN: 0-521-56392-5.

[31] Chuprikov P., Kogan K., Nikolenko S. General ternary bit strings on commodity longest-prefix-
match infrastructures // 2017 IEEE 25th International Conference on Network Protocols (ICNP). —
2017.—Oct. — P. 1-10.

[32] Fulkerson D. R. Note on Dilworths decomposition theorem for partially ordered sets // Proc. Amer.
Math. Soc. — 1956.

[33] Chuprikov Pavel, Kogan Kirill, Nikolenko Sergey. How to Implement Complex Policies on Existing
Network Infrastructure // Proceedings of the Symposium on SDN Research. — SOSR ’18. — New
York, NY, USA : ACM, 2018. — P. 9:1-9:7.— URL: http://doi.acm.org/10.1145/3185467.
3185477.

[34] Chuprikov P., Nikolenko S., Kogan K. On demand elastic capacity planning for service auto-
scaling / IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer
Communications. — 2016. — April. — P. 1-9.

[35] Lorido-Botran Tania, Miguel-Alonso Jose, Lozano Jose A. A Review of Auto-scaling Techniques
for Elastic Applications in Cloud Environments // Journal of Grid Computing. — 2014. — Dec. —
Vol. 12, no. 4. — P. 559-592.

[36] Formalizing Compute-Aggregate Problems in Cloud Computing / Pavel Chuprikov [et al.] // Struc-
tural Information and Communication Complexity / Ed. by Zvi Lotker, Boaz Patt-Shamir. — Cham :
Springer International Publishing, 2018. — P. 377-391.

[37] for Internet Data Analysis CAIDA The Cooperative Association. — [Online] http://www.caida.
org/.

[38] Taylor David E., Turner Jonathan S. ClassBench: A Packet Classification Benchmark // IEEE/ACM
Trans. Netw. — 2007. — Jun.. — Vol. 15, no. 3. — P. 499-511.

[39] Zukerman M., Neame T., Addie R. Internet traffic modeling and future technology implications //
INFOCOM. — Vol. 1. — 2003. — March. — P. 587-596 vol.1.

[40] P4: Programming Protocol-independent Packet Processors / Pat Bosshart [et al.] // SIGCOMM
Comput. Commun. Rev. — 2014. — Jul.. — Vol. 44, no. 3. — P. 87-95.

[41] Fast Regular Expression Matching Using Small TCAM / Chad R. Meiners [et al.] / IEEE/ACM
Trans. Netw. — 2014. — Vol. 22, no. 1. — P. 94-109.

27

http://dx.doi.org/10.1109/INFOCOM.2015.7218544
http://dx.doi.org/10.1109/TNET.2017.2782771
http://dx.doi.org/10.1109/TNET.2017.2782771
http://dx.doi.org/10.1109/TNET.2017.2782771
http://isbndb.com/search-all.html?kw=0-521-56392-5
http://dx.doi.org/10.1109/ICNP.2017.8117542
http://dx.doi.org/10.1109/ICNP.2017.8117542
http://dx.doi.org/10.1109/ICNP.2017.8117542
http://dx.doi.org/10.1145/3185467.3185477
http://dx.doi.org/10.1145/3185467.3185477
http://dx.doi.org/10.1145/3185467.3185477
http://doi.acm.org/10.1145/3185467.3185477
http://doi.acm.org/10.1145/3185467.3185477
http://dx.doi.org/10.1109/INFOCOM.2016.7524616
http://dx.doi.org/10.1109/INFOCOM.2016.7524616
http://dx.doi.org/10.1109/INFOCOM.2016.7524616
http://dx.doi.org/10.1007/s10723-014-9314-7
http://dx.doi.org/10.1007/s10723-014-9314-7
http://dx.doi.org/10.1007/s10723-014-9314-7
http://dx.doi.org/10.1007/s10723-014-9314-7
http://www.caida.org/
http://www.caida.org/
http://dx.doi.org/10.1109/TNET.2007.893156
http://dx.doi.org/10.1109/TNET.2007.893156
http://dx.doi.org/10.1109/TNET.2007.893156
http://dx.doi.org/10.1109/TNET.2007.893156
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2656877.2656890

[42] Gupta P., McKeown N. Packet classification on multiple fields // SIGCOMM. — 1999. — P. 147—
160.

[43] Minimizing Disjunctive Normal Form Formulas and ACDY Circuits Given a Truth Table / Eric Al-
lender [et al.] // STAM J. Comput. — 2008. — Vol. 38, no. 1. — P. 63-84.

[44] An Improved LP-based Approximation for Steiner Tree / Jaroslaw Byrka [et al.] // Proceedings of
the Forty-second ACM Symposium on Theory of Computing. — STOC ’10. — New York, NY,
USA : ACM, 2010. — P. 583-592. — URL: http://doi.acm.org/10.1145/1806689.1806769.

28

http://dx.doi.org/10.1145/1806689.1806769
http://doi.acm.org/10.1145/1806689.1806769

	Introduction
	Dissertation topic and its relevance
	Goals and objectives of the research

	Key results and conclusions
	New buffer management settings and policies
	New packet classification schemes and algorithms
	New cost-efficient resource allocation for serverless computing
	New data aggregation schemes for compute-aggregate tasks

	Publications and approbation of the research
	Contents
	Processing of multiple data streams
	Packet classification: a basic network function for single packet processing
	Representing general ternary bit strings on LPM infrastructure
	Representing complex policies

	Elastic processing
	Optimizing Compute-Aggregate Task Planning

	Conclusion
	References

