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The research aims to provide a complex analysis of missing-indicator method’s performance in case 

of a categorical independent variable in regression in comparison with complete case analysis. 

While the latter seems to be the most popular way to handle missing data, the former appears to be a 

simple and effective alternative that allows making a full sample available for analysis. By means of 

a statistical experiment and simulated data, we examined how these methods perform in conditions 

that differ in a mechanism of missingness, proportion of missing data, and model specification. The 

final results show that, overall, both methods produce unbiased estimates of regression coefficients, 

but crucially biased estimates of their standard errors and additional statistics such as R
2
, adjusted 

R
2
, and F-statistic, especially in case of a missing-indicator method. We explain these results by 

contribution of a missing-indicator variable, coefficient of which always turns out to be significant 

and far away from zero. 
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Introduction 

Presence of missing data is a standard problem in quantitative social research: it arises in 

any survey research and becomes even more common in contemporary studies based on so-called 

big data. Traditionally, there are three ways to handle missing data: complete case analysis (also 

known as a listwise deletion), imputation of missing values, and a missing-indicator method. The 

latter corresponds to a situation when all missing data of a variable are coded as a single value and a 

new dummy variable is created that indicates presence or absence of missing data – a missing-

indicator variable. Originally appeared in medical studies devoted to etiology [Miettinen 1985], 

now this approach is becoming popular in social science as well. The missing-indicator method 

deserves attention due to several reasons. First, it does not reduce the statistical power of methods in 

comparison with the complete case analysis. Second, it is much easier to implement and interpret in 

comparison with imputation of missing values (especially multiple imputation) [Groenwold et al. 

2012]. Third, in social research, a missing-indicator variable may reflect a particular substantive 

reason why participants hide some of their characteristics. For example, in the recent study of 

freelance online marketplace, the authors use such variable and assume that freelancers may not 

indicate some of their socio-demographic characteristics (such as sex, age, a country of residence) 

intentionally [Strebkov et al. 2019] – for example, in order to increase their chances to find a job 

and not to be discriminated against in a freelance competition. 

Every approach to handling missing data aims to make a full sample available for analysis 

and reduce parameter estimates’ bias [van Kuijk et al. 2016]. However, the last property in context 

of the missing indicator method is still under discussion. Currently, several studies dedicated to this 

method’s properties are published, and the results obtained in these studies are quite contradictory. 

Hence, the results of some studies show that the missing-indicator method produces the most biased 

estimates in comparison with the other methods of handling missing data [Donders et al. 2006; van 

der Heijden et al. 2006; Henry et al. 2013; Jones 1996; Knol et al. 2010], while in other studies, this 

method does not produce bias at all [Groenwold et al. 2012; White and Thompson 2005]. This 

difference may be explained by the fact that there is no standardized methodology for comparison 

of the methods. Besides, all current studies are medical ones, and we highlight two main reasons 

why the results of these studies should not be directly transferred to social research. Firstly, most
4
 of 

the mentioned studies are based on real data, and, therefore, the results may be influenced by these 

data’s peculiarities. Secondly, the authors of these studies consider mostly continuous variables that 

are quite rare in social research. Indeed, categorical data are the most common in sociological 

practice, and implementation of the missing-indicator method to categorical variables has not yet 

                                                 
4 The only exceptions here are the articles [Choi et al. 2018] and [Donders et al. 2006] where the authors use simulated data but limit 

their analysis to the cases of continuous variables only.  
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been thoroughly investigated
5
. Besides, it seems more appropriate to apply the missing-indicator 

method to categorical data since it is more ‘natural’ to add a discrete category (referred to missing 

data) to a discrete variable rather than to a continuous one [Donders et al. 2006]. 

In our study, we use simulated data and examine how the missing-indicator method 

performs in case of a categorical independent variable. The conducted statistical experiment differ 

in three criteria: a mechanism of missingness, proportion of missing data, and model specification. 

All the results are compared with the situation when the complete case analysis is used. We do not 

consider imputation of missing values since the results may depend on the chosen method of 

imputation [Akande et al. 2017] and aggregation of data [Zangieva and Suleymanova 2016]. The 

final results show that, overall, both methods produce unbiased estimates of regression coefficients, 

but crucially biased estimates of their standard errors and additional statistics such as R
2
, adjusted 

R
2
, and F-statistic, especially in case of the missing-indicator method. We explain these results by 

contribution of a missing-indicator variable, coefficient of which always turns out to be significant 

and far away from zero. 

Approaches to handle missingness of categorical data 

In this chapter, we examine the mentioned alternatives for handling missingness (complete 

case analysis, imputation of data, and the missing-indicator method) and describe whether they 

solve the problem of making a full sample available for analysis, how do they handle continuous 

and categorical variables, and how they are affected by the type of a missingness mechanism. We 

adopt the three types of a missingness’ mechanism defined in [Rubin 1976]: i) data are missing 

completely at random when missingness does not depend on either observed or unobserved data, ii) 

data are missing at random when missingness depends on observed data, and iii) data are missing 

not at random when missingness depends on unobserved data, i.e., on missing values themselves. 

Obviously, among the mentioned three alternatives, the complete case analysis neither 

solves the problem of making a full sample available for analysis nor differs in how it handles 

variables of different types. There may be a misconception that this approach is not affected by the 

type of the missingness generating mechanism. Indeed, it is appropriate only under the condition of 

the missingness completely at random since in this case ‘the reduced sample of individuals with 

only complete data can be regarded as a simple random subsample from the original data’ [Ratner 

2008: 270]. Nevertheless, an exploration of a missingness mechanism is conducted and mentioned 

in published studies rarely, and the complete case analysis still seems to be the most widespread 

way to handle missing data in real research. 

                                                 
5 The exception is paper [Henry et al. 2013] where the variable of race contains missing values, but in this study, the authors use the 

real data and do not control any factors that may affect the results of comparison. 
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Among the methods of data imputation, most were directed to handle continuous variables 

originally; then, lots of them were adapted to handle missingness of categorical data, in particular, 

multiple imputation approaches. One of the first proposed approaches for multiple imputation of 

categorical data was log-linear analysis [Schafer 1997] that allows testing even high-level 

interactions of categorical data but may be applied only to few variables at once since this method 

requires to build a multivariate contingency table [Vermunt et al. 2008]. An alternative popular 

approach is to use a multivariate normal model, which was actually developed for continuous 

variables, and round the outcome to obtain discrete values [Alisson 2000]. Some studies, however, 

confirm that this approach leads to a crucial bias of estimates, and the authors conclude that this 

approach should never be applied, especially to categorical variables [Alisson 2005]. Besides, this 

approach does not allow to test possible interactions of categorical variables automatically as well 

as other methods based on linear models [Akande et al. 2017]. Another possible alternative called 

hot-deck imputation uses the principle of a near neighbor and also results in biased estimates 

[Schafer and Graham 2002]. Two modern methods of multiple imputation – latent class analysis 

[Vermunt et al. 2008] or correspondence analysis [Greenacre and Pardo 2006; Hendry et al. 2017; 

Stavseth et al. 2019] – potentially overcome all the mentioned restrictions and do not produce bias, 

but their performance has not yet been widely examined under different research circumstances and 

compared to other methods. In regard of the missingness mechanism, all methods of multiple 

imputation require missing data to be generated at random [Rubin 1976], and this requirement is 

easily violated in real research [Ratner 2008: 270]. 

Under such circumstances, the missing-indicator method appears to be a noteworthy 

alternative. This method has earned popularity, especially in computer science, where some 

methods of analysis (primarily decision trees) use this approach by default [Gentle et al. 2012; 

Rokach and Maimon 2010]. In studies based on big data, in which a proportion of missing values of 

some variables often exceeds 50% and may even reach 90% or more, the missing-indicator method 

becomes the only possible solution to handle missingness and remain an available sample for 

analysis. Besides, in many social studies (including those based on surveys), this method is used as 

well. While it is impossible to collect and present precise statistics on this issue, here are some 

recent examples of social studies in which the missing-indicator method is applied: [Chen and 

Hossler 2017; Gesser-Edelsburg et al. 2018; Rickles et al. 2018; Strebkov et al. 2019; Trevizo and 

Lopez 2016; Weiss et al. 2017; Zhelyazkova and Ritschard 2018]. 

Nonetheless, there is still no consensus on how the missing-indicator method performs even 

in case of continuous data. Most of current studies based on real data reveal that the missing-

indicator method results in biased estimates [Donders et al. 2006; van der Heijden et al. 2006; 

Henry et al. 2013; Jones 1996; Knol et la. 2010], but in such studies, authors are not able to control 
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all factors associated with obtained results. There is a limited number of simulation studies (for 

example, [Choi et al. 2018; Zhuchkova and Rotmistrov 2018]), but their authors either do not pay 

attention to categorical data or do not consider different mechanisms of missingness. Our research 

aims to fill this gap and provide complex analysis of how the missing-indicator method performs in 

different analytical situations. 

Methodology 

The main method of this research is a statistical experiment. In a statistical experiment, it is 

assumed that all true parameters of a model are known, and a researcher may estimate how these 

parameters are affected by any changes he or she makes. In relation to our experiment, the idea 

behind it was the following: to simulate data that correspond to a regression model with specific 

parameters and examine how the use of the missing-indicator method affects these parameters. 

Here, we consider only regression modeling among other methods of data analysis since the 

missing-indicator method is widely used specifically in regression. In contrast to previous studies, 

we use simulated data in order to avoid a hypothetical influence of real data’s peculiarities and, 

thus, be able to control all the experiment’s factors, make the experiment as ‘pure’ as possible. 

In our experiment, we consider three factors, or criteria, that may determine the missing-

indicator method’s effect: a mechanism of missingness, a proportion of missing data, and a model’s 

specification. Below, we justify the necessity of these criteria and describe how they were 

implemented in our study. 

1. The mechanism of missingness (considered in the preceding chapter): completely 

at random (MCAR), at random (MAR), and not at random (MNAR). According to the previous 

studies, the mechanism of missingness is regarded as one of the most important factors related to 

the missing-indicator method’s performance. But current results are rather counterintuitive: one of 

the last relevant study’s authors conclude that the missing-indicator method produces unbiased 

results in randomized trials, in which missingness is not associated with any studied characteristics, 

and biased results in nonrandomized trials, in which missingness is likely associated with other 

variables and external factors [Groenwold et al. 2012]. The former corresponds to MCAR, and the 

latter corresponds to MAR and MNAR. At the same time, if a missing-indicator variable indicates 

the presence of some hidden reason why data are not presented, then its missing values should be 

understood as MNAR. As it was mentioned above, the practice of providing a new variable to 

indicate the substantive reason for missing data is becoming popular in social science. Thus, when 

missingness is associated with some hidden reason and regarded as just additional substantive value 

of a variable, it is expected to produce unbiased results – that is why we find the current findings 

counterintuitive. This argumentation is partly confirmed by the findings of [Choi et al. 2018]. 
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In our research, MCAR data are those that were chosen randomly by means of a random 

number generator, MAR data depend on values of another observed variable, and MNAR data are 

those that depend on the same variable, values of which are replaced with missing values. 

2. A proportion of missing data: 10%, 25%, 50%. It is obvious that the results of 

modeling should become worse with an increasing number of missing data, but the question is to 

what extent this effect occurs with a different proportion of missing values. Thus, in [Zhuchkova 

and Rotmistrov 2018], a statistical experiment on missing data was conducted with CHAID – a 

method that treats missing values as a single value by default. It is necessary to point out that only 

the data missing completely at random were considered in that study. It was revealed that low 

(10%) and medium (25%) proportions of missing data lead to similar results that do not 

significantly differ from the benchmark. In contrast, a high proportion (50%) causes misleading and 

incorrect results. Practically, this criterion may be helpful to get a threshold of a missingness 

proportion when a researcher should refuse to use the missing-indicator method as a strategy of 

handling missing data. 

3. A model specification: a model with one categorical regressor, or with one 

categorical and one continuous regressor, or with one categorical regressor, one continuous 

regressor, and their interactions. This criterion aims to overcome the previous studies’ limitations 

with respect to the simplicity of investigated models and their relevance to social science. While 

authors of previous studies operated with simple linear regression containing a single continuous 

predictor, here we also consider multiple regression and pay special attention to categorical 

predictors that are widespread in social research. The need to add another predictor into a model is 

explained by the fact that a coefficient of one variable may be influenced by coefficients of other 

variables, so it is not enough to limit hypothetical situations to a model with a single explanatory 

variable. In addition, we also extended our models with interactions of both predictors since 

interactions may play a significant role in modeling complex social phenomena [Morgan and 

Sonquist 1961]. 

In order to simulate regression, it is necessary to start with generating independent variables, 

and a dependent variable is then modeled on the basis of these variables (including an intercept and 

a random error). In our case, we simulated data based on a model containing one categorical, one 

continuous regressor, and their interactions. A categorical regressor (variable ‘A’) with three valid 

categories was randomly simulated from a discrete uniform distribution (and then dichotomized) 

while a continuous regressor (variable ‘B’) and a random error were randomly simulated from a 
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normal distribution with different parameters
6
. Then, a dependent variable (variable ‘C’) was 

received by means of these variables. 

One additional binary variable (variable ‘D’) was created to use it when simulating the 

MAR data. The sample size was 2000, since samples in sociological surveys usually are of this size 

or somewhat less. All the true parameters of the models are presented in Appendix 1. 

To conduct future analysis of bias provided by different methods of handling missing data, 

we should have got not only point estimates of initial parameters but also their interval estimates. 

To get it, we used bootstrapping – a statistical technique of generating new samples with 

replacement out of an original sample [Efron and Tibshirani 1993]. Generally, the experiment’s 

design included nine steps: 

1. generate a new sample (N = 2000) with replacement from the initial simulated data, 

2. dichotomize the categorical variable ‘A’ and estimate parameters of all three models’ 

specifications – estimation of true parameters, 

3. choose 10%, 25%, or 50% of observations (depending on the necessary proportion of 

missing data) from that sample using the following rule: for MCAR, choose randomly; for MAR, 

choose randomly those observations that have a certain value for the additional variable ‘D’; for 

MNAR, chose randomly those observations that do not have the certain value for the variable ‘A’, 

4. for the chosen observations, replace values of the original non-dichotomized variable 

‘A’ with missing values, 

5. recode the missing values into a new single value (‘4’), as it is required by the 

missing indicator method, 

6. dichotomize the updated variable ‘A’ and estimate the parameters of all three 

models’ specifications – the missing indicator method, 

7. ignore observations with the value ‘4’ for the variable ‘A’ and estimate parameters of 

all three models’ specifications using the rest observations – the complete case analysis, 

8. repeat the steps 1-7 2000 times, 

9. calculate point and interval estimates of all required parameters using the data 

obtained from 2000 repetitions. The point estimate of the parameters was calculated as a mean of all 

the estimates, and bounds of the confidence intervals were obtained as 2.5 and 97.5 percentiles of 

the estimates. The gained point estimates expectedly appeared statistically similar to the respective 

initial coefficients. 

Since we fixed the same value of random seed before every set of the experiment’s 

iterations, every set was carried out on the same sample. It means that 2000 estimates with 25% of 

                                                 
6
 All the simulations were carried out using ‘numpy’ [Oliphant 2006; van der Walt et al. 2011] and ‘pandas’ [McKinney 

2010] python modules, and all the regression models were built using ‘statsmodels’ python module [Seabold and 

Perktold 2010]. All the technical files are available upon request. 
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missing data simulated as MNAR using the missing-indicator method were obtained from the same 

data as 2000 estimates with the same criteria but using MAR or MCAR. Analogously, 2000 

estimates with 25% of missing data simulated as MNAR using the missing-indicator method were 

obtained from the same data as 2000 estimates with the same criteria but using the complete case 

analysis, and so on. This approach allows us to be sure that there is no influence of uncontrolled 

factors, compare the estimates directly, and replicate the experiment in the future. 

Along with regression coefficients and their standard errors, we also estimated some 

additional parameters such as R
2
, adjusted R

2
, and F-statistic. The point estimates of parameters 

were compared directly, and the respective interval estimates were compared using the following 

metric: 

𝛥 =  
|𝑈𝑡−𝑈𝑒|+|𝐿𝑡−𝐿𝑒|

𝑈𝑡−𝐿𝑡
∗ 100%,     (1) 

where Ut and Lt are upper and lower bounds of the true 95% confidence interval respectively, and 

Ue and Le are upper and lower bounds of the estimated 95% confidence interval respectively. The 

metric was introduced in the studies of a similar topic [Zangieva and Suleymanova 2016; Zangieva 

and Timonina 2014], and it indicates a relative degree of deviation of confidence intervals. This 

metric is easy to interpret: the closer the value to zero, the more similar the confidence intervals are. 

Thus, we are interested in smaller values of this metric. When comparing values of this metric, we 

consider the difference equal to or less than 10 as non-significant difference. 

Based on the literature and our experience, we stated the following hypotheses according to 

the criteria of the experiment: 

Hypothesis 1 (the mechanism of missingness). The complete case analysis performs better 

in case of the missingness completely at random (MCAR), and the missing-indicator method 

performs better in case of the missingness not at random (MNAR). As we explained above, when 

data are missing completely at random, the subsample remained for the complete case analysis 

becomes a random subsample of the initial data. When data are missing not at random, an additional 

category created for the missing-indicator method may be regarded as a ‘natural’ category of the 

initial variable.  

Hypothesis 2 (proportion of missing data). In general, with an increasing proportion of 

missing data, both methods produce more biased estimates, but the missing-indicator method 

results in more biased estimates in comparison with the complete case analysis. Here, we base on 

the results of previous studies, according to which the missing-indicator method, overall, performs 

worse than the complete case analysis [Jones 1996]. 

Hypothesis 3 (model specification). For the missing-indicator method, the more 

complicated a model specification is, the more biased parameter estimates become. We suppose 
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that the missing-indicator binary variable added to the model may affect all the rest coefficients of 

the model, and the more predictors the model has, the greater changes the missing-indicator variable 

makes. 

Results 

For assessing how the complete case analysis and the missing indicator method (hereinafter 

– CCA and MIM respectively) perform, we aggregated Δ-metrics (presented in Appendix 2) 

through all the relevant specifications. For instance, aggregated Δ-metric for Intercept is an average 

value of Δ-metrics for Intercepts from Specifications 1-3, since all the specifications contain their 

Intercepts. Analogously, since only Specifications 2 and 3 contain continuous variable ‘B’, 

aggregated Δ-metric for ‘B’ is an average value of Δ-metrics for variable ‘B’ from Specifications 2 

and 3. The point estimates and original, non-aggregated Δ-metrics are presented in Appendices 1 

and 2. 

Testing Hypothesis 1 requires to compare values from Table 1, from the columns related to 

CCA and MIM. The closer a value of Δ-metric to zero, the more similar the confidence intervals 

are, and the better a method of handling missingness performs. Within column MCAR, MAR, and 

MNAR, CCA and MIM perform almost identically. Thereof, the bias of regression coefficients is 

roughly similar if handling missingness by both CCA and MIM. 

Unexpectedly, additional pattern appears. From Table 1, it is well seen that Δ-metrics 

strongly differ within columns MCAR/MAR and MNAR for both CCA and MIM. In other words, 

both methods of handling missingness perform worse if missingness is not at random than if it is 

completely at random or at random. 

Tab. 1. Regression coefficients in context of the different mechanisms of missingness: a degree 

of deviation (Δ) of the confidence intervals 

Parameter 
Complete Case Analysis Missing-Indicator Method 

MCAR MAR MNAR MCAR MAR MNAR 

Intercept 22 24 44 21 23 45 

A_2 27 26 54 27 26 54 

A_3 20 20 30 20 20 29 

B 22 27 41 23 24 39 

A_2*B 21 25 52 21 25 52 

A_3*B 19 21 24 19 21 24 

In regard to the first part of Hypothesis 2, indeed, both methods produce more biased 

estimates with an increasing proportion of missing data. Thus, if shifting from the left to the right 

through columns within CCA in Table 2, the values of Δ-metric rise. They do the same within the 

columns of MIM. But the second part of Hypothesis 2, postulating that MIM performs worse than 

CCA, appears to be disproved by the experiment, because for each level of the missingness’ 

proportion, the values within CCA and MIM are quite similar.  
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For example, taking point estimates from Appendix 1, Intercept in Specification 1 under 

conditions of MCAR and 10% of missingness is, on average, 248,7 for both CCA and MIM. If a 

missingness’ proportion grows up to 25%, Intercept is, on average, 248,8 for both methods. And if a 

missingness’ proportion grows up to 50%, Intercept is, on average, 248,9 for both methods. 

Meanwhile, the true value of Intercept equals 248,5. 

If, then, analogously taking the respective interval estimates’ Δ-metric from Appendix 1, 

they equal 8, 21, and 49 for both CCA and MIM. The pattern of the similarity of both point and 

interval estimates of regressions coefficients for CCA and MIM seems to be more or less general 

for all the specifications. 

Tab. 2. Regression coefficients in context of different proportions of missing data: a degree of 

deviation (Δ) of the confidence intervals 

Parameter 
Complete Case Analysis Missing-Indicator Method 

10% 25% 50% 10% 25% 50% 

Intercept 7 20 63 6 20 62 

A_2 11 25 71 11 25 71 

A_3 5 15 50 5 15 49 

B 10 23 58 10 23 53 

A_2*B 10 22 66 10 22 66 

A_3*B 7 14 44 7 14 44 

Hypothesis 3 was dedicated to a model specification. Examined Specifications 1-3 are 

presented in columns within CCA (on the left) and MIM (on the right) in Table 3. Moving through 

columns 1-3 within MIM, we might not distinguish a clear pattern of changing the values. Thereof, 

Hypothesis 3 seems to be refused. Additionally, the same pattern is seen in columns 1-3 within 

CCA; and comparing the left and the right sides of the table, it is clearly seen that the values are 

almost identical. Hence, it corroborates the regularity that CCA and MIM perform roughly similarly 

regarding regression coefficients irrespectively the mechanism of missingness, a proportion of 

missing data, and a model specification’s complexity. 

Tab. 3. Regression coefficients in context of model specifications: a degree of deviation (Δ) of 

the confidence intervals 

Parameter 
Complete Case Analysis Missing-Indicator Method 

1 2 3 1 2 3 

Intercept 34 28 28 34 26 28 

A_2 38 36 33 38 36 33 

A_3 26 24 20 26 24 20 

B 

 

25 35 

 

23 35 

A_2*B 

  

33 

  

33 

A_3*B 

  

22 

  

22 

Notes: Specification 1 is a model with one categorical predictor, 

Specification 2 is a model with one categorical and one continuous predictors, 

Specification 3 is a model with one categorical predictor, one continuous predictor, 
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Parameter 
Complete Case Analysis Missing-Indicator Method 

1 2 3 1 2 3 

and their interactions. 

Besides the proposed hypotheses, some additional important results were gained. We found 

out that in spite of similar good performance of CCA and MIM regarding regression coefficients, 

both methods seem to give worse results within one specific combination of conditions: MNAR and 

50% of missingness. In Appendix 2, Δ-metrics within this combination are three-four times bigger 

than within other combinations. Originally, it happens because the estimated confidence intervals of 

the regression coefficients within this combination are two times longer than the true interval and 

the intervals within other combinations. However, the true interval is nested in all the estimated 

intervals, which means that the estimates of regression coefficients here are not biased, but 

imprecise. Perhaps, we may consider this proportion as a threshold when a researcher should refuse 

to handle data missing not at random: if data are missing not at random and comprise half of the 

sample or more, then using both CCA and MIM lead to the quite imprecise estimates of regression 

coefficients highly likely. These findings to some extent replicate the results of the similar study 

devoted to use of the missing indicator method in decision trees [Zhuchkova and Rotmistrov 2018]. 

For the situations of MCAR and MAR, the threshold shoulb be smaller but our research does not 

allow to identify it.  

Other surprising results were gained in regard to regression coefficients’ standard errors and 

additional statistics: R
2
, adjusted R

2
, and F-statistic. We found out that here CCA and MIM perform 

rather poorly, and MIM performs even worse than CCA. Considering Tables 4-6, it is well seen that 

they contain values of Δ-metric several times bigger than the respective values in Tables 1-3; almost 

all of them exceed 100, which in this case means that confidence intervals for estimated parameters 

do not overlap confidence intervals for respective true parameters at all. 

Tab. 4. Regression coefficients’ standard errors and R
2
 in context of the different mechanisms 

of missingness: a degree of deviation (Δ) of the confidence intervals 

Parameter 
Complete Case Analysis Missing-Indicator Method 

MCAR MAR MNAR MCAR MAR MNAR 

Intercept (st. error) 442 453 824 1175 1180 2275 

A_2 (st. error) 559 567 1050 1509 1510 2911 

A_3 (st. error) 503 507 496 1369 1370 1902 

B (st. error) 446 446 533 853 848 1459 

A_2*B (st. error) 394 404 897 1492 1486 2786 

A_3*B (st. error) 392 401 503 1481 1483 2071 

R
2
 22 23 257 994 985 1473 

Adjusted R
2
 22 23 258 996 987 1476 

F-statistic 289 287 399 671 669 759 

 



13 

Tab. 5. Regression coefficients’ standard errors and R
2
 in context of the of different 

proportions of missing data: a degree of deviation (Δ) of the confidence intervals 

Parameter 
Complete Case Analysis Missing-Indicator Method 

10% 25% 50% 10% 25% 50% 

Intercept (st. error) 132 390 1197 418 1131 3082 

A_2 (st. error) 166 491 1519 532 1445 3954 

A_3 (st. error) 115 343 1048 443 1174 3024 

B (st. error) 118 341 966 334 848 1979 

A_2*B (st. error) 125 373 1197 544 1440 3780 

A_3*B (st. error) 95 288 912 513 1307 3216 

R
2
 17 56 228 402 1015 2035 

Adjusted R
2
 17 57 229 403 1017 2038 

F-statistic 113 285 577 513 705 880 

 

Tab. 6. Regression coefficients’ standard errors and R
2
 in context of model specifications: a 

degree of deviation (Δ) of the confidence intervals 

Parameter 
Complete Case Analysis Missing-Indicator Method 

1 2 3 1 2 3 

Intercept (st. error) 629 581 510 1508 1379 1743 

A_2 (st. error) 750 770 656 1799 1888 2244 

A_3 (st. error) 518 500 488 1376 1358 1906 

B (st. error) 528 422 

 

675 1432 

A_2*B (st. error) 

 

565 

  

1921 

A_3*B (st. error) 

 

432 

  

1678 

R
2
 82 74 145 845 852 1756 

Adjusted R
2
 83 75 146 846 853 1759 

F-statistic 311 309 356 668 629 802 

Notes: Specification 1 is a model with one categorical predictor, 

Specification 2 is a model with one categorical and one continuous predictors, 

Specification 3 is a model with one categorical predictor, one continuous predictor, 

and their interactions. 

Regarding standard errors, it means that respective coefficients’ significance is estimated 

poorly. Appendices 1 and 2 show that the standard errors are estimated much higher than their true 

values. Consequently, p-values of respective regression coefficients are overestimated as well, 

which means that the regression coefficients are estimated less significant than they are in truth. It 

happens both for CCA and MIM, but the latter performs remarkably worse. 

The difference in the methods’ performance regarding R
2
 and adjusted R

2
 is quite bigger 

since Δ-metrics within the combination of CCA and MCAR or MAR (Table 4) and within the 

combination of CCA and 10% or 25% of missingness (Table 5) are acceptably small meanwhile the 

respective combinations with MIM exceed the threshold of 100 almost ten times. 

Why are the standard errors, R
2
, and adjusted R

2
 estimated poorly and why does MIM 

perform dramatically worse than CCA? In case of the latter, increase of standard errors is explained 
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by reduction of the available sample: the lower a sample is, the higher standard errors are. For 

example, from Appendix 2, Δ-metric for Intercept’s standard error in Specification 1 under 

conditions of CCA, MCAR, and 10% of missingness is 130. If missingness’ proportion grows up to 

25%, Δ-metrics grows up to 373. And if missingness’ proportion grows up to 50%, Δ-metrics grows 

up to 1008. 

In contrast, in case of MIM, increase of standard errors is not related to sample size because 

it remains the same. It is rather explained by increase of residual sum of squares (RSS). RSS rises 

due to a contribution of a missing-indicator variable, which, according to MIM, should be added to 

a set of original variables to indicate presence or absence of missing data. While coefficients of 

other variables appear to be unbiased, their performance is deteriorated by the missing-indicator 

variable’s coefficient. Thus, residuals rise, and a model’s overall prediction worsens. 

To illustrate this idea, look at Appendix 2. Δ-metrics for R
2
 in Specification 1 under 

conditions of CCA, MCAR, and 10% of missingness is 4. If missingness’ proportion grows up to 

25%, Δ-metrics grows up to 14. And if missingness’ proportion grows up to 50%, Δ-metrics grows 

up to 47. Thus, the bias of R
2
 estimates grows but not crucially. Indeed, in Appendix 1, the true R

2
 

and the estimated ones when using CCA equal 0,62 irrespective the missingness’ proportion. 

In contrast, in Appendix 2, Δ-metrics for R
2
 in Specification 1 under conditions of MIM, 

MCAR, and 10% of missingness is 254. If missingness’ proportion grows up to 25%, Δ-metrics 

grows up to 633. And if missingness’ proportion grows up to 50%, Δ-metrics grows up to 1278. 

I.e., the bias of R
2
 estimates and its grows are crucial. Indeed, in Appendix 1, the estimated ones 

when using MIM equal 0,56, 0,46 and 0,31, respectively while the true R
2
 still equals 0,62. 

To sum up, in case of CCA, the estimates of R
2
 and adjusted R

2
 are unbiased but imprecise, 

and in case of MIM, ones are significantly lower than the respective true values. Considering that 

all the regression coefficients are identical among the two methods, we conclude that the bias 

appears because of the missing-indicator variable’s coefficient; besides, in our experiment, the 

missing-indicator variable was always significant. 

The last rows in Tables 4-6 contain F-statistic. Judging by its Δ-metrics, CCA and MIM 

perform poorly, and, anew, the latter performs worse than the former. The explanation relies on F-

statistic’s formula, which includes respective R
2
 and available sample size in its numerator. In case 

of CCA, the mentioned reduction of the available sample leads to smooth reduction of estimated F-

statistic comparing to its true value. In case of MIM, the also mentioned reduction of R
2
 leads to 

steep reduction of estimated F-statistic comparing to its true value. 

Conclusion 

Our research aims to provide a complex analysis of the missing-indicator method 

performance in case of a categorical variable in comparison with the complete case analysis. While 



15 

the latter seems to be the most popular way to handle missing data in real research, the former 

appears to be a simple and effective alternative that allows making a full sample available for 

analysis. By means of the statistical experiment and simulated data, we examined how these 

methods perform in conditions that differ in the mechanism of missingness, a proportion of missing 

data, and a model specification. 

Although the results might seem ambiguous in the presented aggregated form, we clearly 

identified one common pattern among all possible combinations of the criteria, which we have tried 

to describe above. Regression coefficients themselves may be unbiased for both complete case 

analysis and missing-indicator method, while standard errors of these coefficients may at the same 

time be completely incorrect. This fact makes it difficult to estimate coefficients significance 

accurately. Besides, for the missing-indicator method, an additional variable of the new category for 

missing data increases residuals of the model and thus worsens the prediction, which manifests 

itself in crucially underestimated values of R
2
. It brings us to the main conclusion of the conducted 

research. In social science, where the key objective of analysis is often to detect and estimate a 

relationship between some variables, both methods are appropriate tools for handling missing data 

since the estimates are unbiased in most cases. But when it comes to forecasting, missing-indicator 

method should not be used. Regardless all the factors, the missing-indicator variable always turns 

out to be significant, and its coefficient, which is far away from zero, greatly deteriorates a model’s 

predictive quality and does not allow to adequately understand real predictive power of the chosen 

variables. Surprisingly, this conclusion completely contradicts the results of the similar study, 

where instead of regression, authors examined decision trees [Zhuchkova and Rotmistrov 2018]. 

In our research, we have tried to overcome some limitations of the previous studies by using 

simulated data and providing an extended set of criteria. However, it has own limitations as well. 

Firstly, we only inserted missing data in one variable. In real research, it is more probable that 

several variables have missing values. But such an approach would only complicate design of our 

experiment and would not allow us to control the rest factors. Secondly, when simulating 

missingness at random (MAR), we used a variable that was not included in our regression model. 

Probably, if we used one that was included in the model (variable ‘B’) to simulate missingness at 

random, the results would be different, and regression coefficients would be more biased. However, 

we address this issue to further studies. 
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Appendix 1. Point estimates for linear regression in terms of all the possible combinations 

 True 

Value 

Complete Case Analysis Missing Indicator Method Complete Case Analysis Missing Indicator 

Method 

Complete Case Analysis Missing Indicator 

Method 

 10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50% 

 MCAR MAR MNAR 

Specification 1 

Intercept 248,7 248,7 248,8 248,9 248,7 248,8 248,9 248,3 247,6 246,1 248,3 247,6 246,1 248,5 248,6 248,6 248,5 248,6 248,6 

A_2 -428,6 -428,7 -428,9 -429,0 -428,7 -428,9 -429,0 -428,1 -427,2 -425,0 -428,1 -427,2 -425,0 -428,6 -428,8 -428,5 -428,6 -428,8 -428,5 

A_3 -211,4 -211,4 -211,5 -211,5 -211,4 -211,5 -211,5 -211,2 -210,9 -210,8 -211,2 -210,9 -210,8 -211,3 -211,4 -211,3 -211,3 -211,4 -211,3 

Intercept (st. 

error) 

5,3 5,6 6,2 7,6 6,1 7,3 10,2 5,6 6,2 7,6 6,1 7,3 10,2 5,7 6,5 9,5 6,5 8,5 15,7 

A_2 (st. error) 7,6 8,0 8,7 10,7 8,6 10,3 14,4 8,0 8,7 10,7 8,6 10,4 14,4 8,1 9,2 13,5 9,1 12,1 22,3 

A_3 (st. error) 7,6 8,0 8,8 10,7 8,6 10,4 14,4 8,0 8,8 10,8 8,6 10,4 14,5 7,8 8,4 10,7 8,8 10,9 17,7 

R 0,62 0,62 0,62 0,62 0,56 0,46 0,31 0,62 0,62 0,61 0,56 0,46 0,30 0,61 0,59 0,50 0,53 0,39 0,16 

Adjusted R 0,62 0,62 0,62 0,62 0,56 0,46 0,31 0,62 0,62 0,61 0,55 0,46 0,30 0,61 0,59 0,50 0,53 0,39 0,16 

F-statistic 1611,1 1451,4 1211,6 808,7 834,3 576,6 298,9 1448,4 1201,2 793,1 831,2 569,6 291,8 1402,2 1083,5 509,4 739,1 422,9 125,0 

A_4     -213,4 -213,9 -214,1    -211,7 -210,4 -209,0    -213,8 -214,6 -214,7 

A_4 (st. error)    12,2 10,3 11,7    12,2 10,4 11,8    12,7 11,6 17,0 

Specification 2 

Intercept 232,3 232,3 232,4 232,4 232,0 231,6 230,8 232,1 231,7 230,9 231,5 230,3 228,2 231,9 231,3 229,0 231,7 231,0 229,7 

A_2 -426,8 -426,9 -427,1 -427,2 -426,8 -427,0 -427,0 -426,4 -425,7 -424,1 -426,4 -425,5 -423,9 -426,7 -426,8 -426,2 -426,7 -426,8 -426,3 

A_3 -211,5 -211,5 -211,6 -211,6 -211,5 -211,6 -211,6 -211,3 -211,2 -211,4 -211,3 -211,3 -211,5 -211,4 -211,5 -211,4 -211,4 -211,5 -211,4 

B 2,3 2,3 2,3 2,3 2,3 2,4 2,5 2,3 2,2 2,2 2,3 2,4 2,6 2,3 2,4 2,7 2,3 2,4 2,6 

Intercept (st. 

error) 

5,6 5,9 6,5 7,9 6,4 7,6 10,4 5,9 6,5 7,9 6,4 7,6 10,4 6,0 6,8 9,6 6,7 8,8 15,9 

A_2 (st. error) 7,4 7,8 8,6 10,5 8,5 10,2 14,2 7,8 8,6 10,5 8,5 10,2 14,2 8,0 9,0 13,1 9,0 11,9 22,0 

A_3 (st. error) 7,5 7,9 8,6 10,6 8,5 10,3 14,3 7,9 8,6 10,6 8,5 10,3 14,3 7,7 8,2 10,4 8,7 10,8 17,5 

B (st. error) 0,3 0,3 0,3 0,4 0,3 0,3 0,4 0,3 0,3 0,4 0,3 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,4 

R 0,63 0,63 0,63 0,63 0,57 0,48 0,33 0,63 0,63 0,63 0,57 0,48 0,32 0,62 0,61 0,53 0,54 0,40 0,18 

Adjusted R 0,63 0,63 0,63 0,63 0,57 0,48 0,32 0,63 0,63 0,63 0,57 0,47 0,32 0,62 0,61 0,53 0,54 0,40 0,17 

F-statistic 1134,8 1022,4 853,7 570,6 660,9 458,0 241,2 1019,9 845,6 558,1 659,1 453,7 237,1 991,3 773,5 381,4 585,6 337,6 106,1 
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 True 

Value 

Complete Case Analysis Missing Indicator Method Complete Case Analysis Missing Indicator 

Method 

Complete Case Analysis Missing Indicator 

Method 

 10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50% 

 MCAR MAR MNAR 

A_4     -212,8 -213,3 -213,4    -211,7 -210,6 -209,9    -212,8 -213,5 -213,7 

A_4 (st. error)    12,0 10,2 11,6    12,0 10,2 11,7    12,5 11,4 16,9 

Specification 3 

Intercept 163,0 163,0 163,0 163,0 163,0 163,0 163,0 163,0 163,2 164,2 163,0 163,2 164,2 162,8 162,9 162,8 162,8 162,9 162,8 

A_2 -288,9 -289,0 -289,0 -289,0 -289,0 -289,0 -289,0 -288,7 -288,3 -288,0 -288,7 -288,3 -288,0 -288,8 -289,0 -288,9 -288,8 -289,0 -288,9 

A_3 -148,8 -148,8 -148,7 -148,8 -148,8 -148,7 -148,8 -148,8 -149,3 -150,8 -148,8 -149,3 -150,8 -148,6 -148,7 -148,6 -148,6 -148,7 -148,6 

B 11,9 11,9 11,9 11,9 11,9 11,9 11,9 11,9 11,9 12,0 11,9 11,9 12,0 11,9 11,8 11,9 11,9 11,8 11,9 

A_2*B -20,3 -20,3 -20,3 -20,3 -20,3 -20,3 -20,3 -20,3 -20,4 -20,6 -20,3 -20,4 -20,6 -20,3 -20,3 -20,3 -20,3 -20,3 -20,3 

A_3*B -8,7 -8,7 -8,7 -8,7 -8,7 -8,7 -8,7 -8,7 -8,8 -8,9 -8,7 -8,8 -8,9 -8,7 -8,7 -8,7 -8,7 -8,7 -8,7 

Intercept (st. 

error) 

4,6 4,8 5,3 6,5 5,7 7,5 11,2 4,8 5,2 6,3 5,7 7,4 11,0 5,0 5,8 9,2 6,2 9,1 18,1 

A_2 (st. error) 6,4 6,7 7,4 9,0 7,9 10,4 15,6 6,7 7,3 8,9 7,9 10,4 15,5 6,9 8,1 12,9 8,7 12,7 25,3 

A_3 (st. error) 6,5 6,9 7,5 9,2 8,1 10,6 16,0 6,9 7,5 9,1 8,1 10,6 15,8 6,8 7,5 10,4 8,6 11,7 20,4 

B (st. error) 0,3 0,4 0,4 0,5 0,4 0,6 0,8 0,4 0,4 0,5 0,4 0,6 0,8 0,4 0,4 0,7 0,5 0,7 1,4 

A_2*B (st. 

error) 

0,5 0,5 0,6 0,7 0,6 0,8 1,2 0,5 0,6 0,7 0,6 0,8 1,2 0,5 0,6 1,0 0,7 1,0 1,9 

A_3*B (st. 

error) 

0,5 0,5 0,6 0,7 0,6 0,8 1,2 0,5 0,6 0,7 0,6 0,8 1,2 0,5 0,6 0,8 0,6 0,9 1,5 

R 0,80 0,80 0,80 0,80 0,73 0,61 0,41 0,80 0,80 0,80 0,73 0,61 0,41 0,79 0,77 0,67 0,69 0,51 0,22 

Adjusted R 0,80 0,80 0,80 0,80 0,72 0,61 0,41 0,80 0,80 0,80 0,72 0,61 0,41 0,79 0,77 0,67 0,69 0,51 0,22 

F-statistic 1624,4 1463,7 1221,0 815,7 753,7 442,8 200,0 1464,3 1223,3 821,8 753,0 441,4 199,1 1379,3 1015,5 414,5 626,7 299,2 80,3 

A_4     -146,7 -147,1 -147,1    -148,1 -147,7 -148,7    -145,6 -146,1 -146,1 

A_4 (st. error)    11,4 10,5 12,9    11,4 10,5 12,8    12,1 12,3 19,6 

A_4*B     -9,1 -9,1 -9,1    -8,9 -8,9 -9,0    -9,3 -9,3 -9,3 

A_4*B (st. error)    0,9 0,8 1,0    0,9 0,8 1,0    0,9 0,9 1,5 
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Appendix 2. -metrics of interval estimates for linear regression in terms of all the possible combinations 

 

Complete Case 

Analysis 

Missing Indicator 

Method 

Complete Case 

Analysis 

Missing Indicator 

Method 

Complete Case 

Analysis 

Missing Indicator 

Method 

 
10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50% 

 
MCAR MAR MNAR 

Specification 1 

Intercept 8 21 49 8 21 49 7 17 54 7 17 54 12 28 108 12 28 108 

A_2 10 22 49 10 22 49 12 23 59 12 23 59 17 33 116 17 33 116 

A_3 4 15 43 4 15 43 5 17 42 5 17 42 6 20 77 6 20 77 

Intercept (st. 

error) 130 373 1008 329 892 2185 128 372 1014 329 900 2211 171 540 1921 501 1456 4768 

A_2 (st. error) 155 451 1205 396 1068 2613 153 449 1208 396 1074 2630 209 640 2284 600 1733 5679 

A_3 (st. error) 138 401 1074 351 954 2344 137 408 1089 352 964 2370 79 260 1074 419 1149 3483 

R 4 14 47 254 633 1278 4 16 45 257 649 1301 30 108 472 376 951 1907 

Adjusted R 4 14 47 255 634 1279 4 16 45 258 650 1302 31 109 474 377 952 1909 

F-statistic 99 245 490 476 633 804 95 248 500 477 638 809 125 321 673 533 728 910 

Specification 2 

Intercept 7 19 48 6 15 39 2 14 42 3 15 37 9 24 84 6 26 88 

A_2 9 19 48 10 20 49 12 19 54 11 19 55 15 32 116 15 31 117 

A_3 5 14 41 5 14 39 5 17 42 5 16 38 5 20 70 5 19 70 

B 10 20 47 7 17 33 4 17 43 6 20 44 8 21 57 9 23 44 

Intercept (st. 

error) 126 365 974 313 828 1999 122 351 963 304 826 2005 161 490 1678 470 1339 4329 

A_2 (st. error) 163 465 1252 416 1122 2747 161 466 1255 413 1127 2758 211 653 2306 633 1824 5955 

A_3 (st. error) 137 392 1045 348 940 2314 137 401 1064 350 950 2334 75 244 1005 416 1136 3435 

B (st. error) 150 436 1191 228 540 1002 155 440 1190 228 545 1016 118 327 747 331 774 1414 

R 7 16 46 255 641 1287 4 14 48 257 651 1306 27 93 412 382 959 1931 

Adjusted R 7 16 47 256 642 1288 4 14 48 258 652 1308 27 94 415 383 960 1933 

F-statistic 96 245 492 414 591 781 98 252 502 415 595 786 123 313 657 480 697 901 

Specification 3 
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Complete Case 

Analysis 

Missing Indicator 

Method 

Complete Case 

Analysis 

Missing Indicator 

Method 

Complete Case 

Analysis 

Missing Indicator 

Method 

 
10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50% 

 
MCAR MAR MNAR 

Intercept 6 16 43 6 16 43 2 12 42 2 12 42 8 26 100 8 26 100 

A_2 7 24 47 7 24 47 5 17 45 5 17 45 15 34 105 15 34 105 

A_3 3 13 42 3 13 42 5 13 36 5 13 36 4 8 57 4 8 57 

B 14 24 48 14 24 48 8 19 43 8 19 43 17 34 109 17 34 109 

A_2*B 9 19 48 9 19 48 8 14 40 8 14 40 13 33 109 13 33 109 

A_3*B 8 15 41 8 15 41 7 12 38 7 12 38 4 14 53 4 14 53 

Intercept (st. 

error) 98 277 728 438 1105 2534 95 260 675 428 1091 2483 159 482 1814 646 1740 5227 

A_2 (st. error) 123 351 941 553 1416 3262 120 334 882 548 1410 3227 196 613 2339 828 2233 6717 

A_3 (st. error) 119 339 915 536 1380 3159 114 324 855 529 1363 3111 98 317 1311 683 1729 4665 

B (st. error) 81 224 597 349 901 2066 80 225 584 351 904 2076 124 396 1488 519 1421 4298 

A_2*B (st. error) 105 300 807 465 1207 2787 102 294 786 468 1213 2794 168 525 1999 699 1901 5758 

A_3*B (st. error) 98 297 808 467 1205 2778 103 295 778 472 1204 2768 84 273 1151 600 1512 4102 

R 7 16 47 526 1331 2661 6 17 44 524 1332 2670 67 213 888 785 1991 3979 

Adjusted R 7 16 48 528 1334 2665 6 17 45 526 1335 2674 67 215 894 787 1995 3984 

F-statistic 108 271 539 580 789 951 106 268 533 580 790 951 164 407 806 665 885 1031 
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