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1 Introduction

Designing a manufacturing layout is one of the most important stages in the process
of building a new manufacturing system or adjusting an existing system to changing
environment (new resources allocation, changes in volumes or products etc.). To design
a manufacturing layout means to locate manufacturing facilities in order to get different
kind of advantages. These advantages include simplifying scheduling, reducing costs
of material movement, machines utilization and many others.

Depending on the environment problems static or dynamic manufacturing layout is
considered [28]. One of the most popular static layouts is the so-called cellular layout.
Cellular manufacturing is a part of Group Technology (GT) concept which was intro-
duced by Russian industrial engineering scientist Sergey Mitrofanov [47, 48] and John
Burbidge in the west [10, 11, 12, 13]. GT is a strategy which helps to optimize produc-
tion process in terms of materials handling and management of a batch-manufacturing
system. The key idea of GT is that parts which are similar in terms of manufacturing
characteristics should be processed within one unit called manufacturing cell. This idea
leads to dividing the manufacturing system into subsystems by determining pars fami-
lies and machine groups. Each manufacturing cell is associated with a certain physical
location, machines set up and responsible for handling particular group of parts. The
problem of obtaining such kind of grouping is called the manufacturing Cell Formation
Problem (CFP). The goal of designing this cellular layout is to reduce production costs
by maximizing loading of machines within cells and minimizing movement of parts
from one cell to another. Effective partitions provide reduction in setup and transfer
costs and savings in plant space.

In this thesis the CFP with variable number of production cells is considered.In the
most general formulation the cell formation problem can be considered as the so-called
biclustering problem. This kind of problems was first described by Hartigan [34, 35].
The term “biclustering” was introduced by Mirkin [45]. Later Mirkin also defined the
notion of approximate biclusters (together with triclusters and p-clusters) and suggested
two biclustering algorithms on binary data [46]. [18] considers the most widely used
biclustering techniques and applications . [49] and [19] suggested models and methods
for solving feature selection problem using consistent biclustering.

To the best of our knowledge there are no papers providing the proof of complexity
(NP status) of the CFP problem. There are many publications, which mention that the
problem NP-hard [44, 32, 20]. Some of them [57, 29] refer to the paper of Dimopoulos
& Zalzala [27], but this paper does not include the proof of np-hardness.

Many papers including James et al. [36]; Chung et al. [25]; Paydar & Saidi-
Mehrabad [52]; Solimanpur et al. [55]; Utkina et al. [58] refer to Ballakur & Steudel
[4] when discussing the NP-hardness of the CFP. However Ballakur & Steudel [4]
present a heuristic for the CFP with different objective functions and do not state
anything about the NP status of these CFP formulations. Moreover, the most important
objective function for the CFP, the grouping efficacy, was introduced later by Kumar
& Chandrasekharan [42]. At the same time the grouping efficacy is currently widely
accepted and considered as the best function successfully joining the both objectives of
inter-cell part movement minimization and intra-cell machine loading maximization.

In the current research we provide rigorous proofs of NP-completeness for different



formulations of the CFP with the fractional grouping efficacy objective as well as the
linear objective minimizing the total number of exceptions and voids.

Object of Research is the CFP in its formulation with given machines number, parts
number and binary matrix describing production process. The number of production
cells is not initially defined and can vary with respect to the objective function used.

Ph.D. Thesis Goal is the development of methods for solving the CFP effectively
comparing to the existing state-of-art approaches and finding rigorous proofs of NP-
completeness for different formulations of the CFP.

Novelties of Ph.D thesis are as follows:

e the proof of NP-completeness for the decision version of the CFP with the
fractional grouping efficacy objective and linear E+V objective

e two original exact approaches for solving the CFP with fractional objective
function

* an effective variable neighborhood search heuristic

The suggested algorithms have a wide range of practical applications. The first is
designing effective cellular manufacturing layout which allows to improve productivity
of batch-production systems. In addition, the formulation considered in this thesis can
be also used for solving different biclustering problems (e.g. gene expression problems
in biology) as well as clustering problems on bigraphs (e.g. bicluster graph editing
problem).

Author’s contribution includes the development and implementation of models
and algorithms, proofs of theorems and propositions, algorithms testing, performing
computational experiments and preparing research papers.

The author has the certificate of official registration of computer program with id
No2014610434 - "Heuristic algorithm for solving the Cell Formation Problem".

Papers. Results of this work are published in 5 scientific papers in international
peer-reviewed journals and conference proceedings.

First-tier publications:

1. Bychkov, 1., Batsyn, M. (2018) An efficient exact model for the cell formation
problem with a variable number of production cells. Computers & Operations
Research, 91, 112-120, Q1 (Ilya Bychkov suggested and developed the exact
approach, implemented it, performed computational experiments and prepared
the article)

2. Bychkov, L., Batsyn, M., Pardalos, P. M. (2014). Exact model for the cell forma-
tion problem. Optimization Letters, 8(8), 2203-2210, Q2 (Ilya Bychkov devel-
oped the exact approach, implemented it, performed computational experiments,
proved the propositions and prepared the article)

3. Batsyn, M., Batsyna E., Bychkov I. (2019) NP-completeness of cell formation
problem with grouping efficacy objective, International Journal of Production
Research (Q1), Published online: 26 Sep 2019,
https://doi.org/10.1080/00207543.2019.1668072 (Ilya Bychkov participated in
discussing and proving of all theorems and propositions)

4. Bychkov, 1., Batsyn, M., Sukhov, P., Pardalos, PM (2013) Heuristic Algorithm
for the Cell Formation Problem. In: Goldengorin et al (eds) Models, Algorithms,



and Technologies for Network Analysis. Springer Proceedings in Mathematics
& Statistics 59, 43-69. (Ilya Bychkov suggested and developed the heuristic
algorithm, implemented it, performed computational experiments and prepared
the article)

Second-tier publications:

5. Bychkov I, Batsyn M., Pardalos P.M. (2017) Heuristic for Maximizing Grouping
Efficiency in the Cell Formation Problem. In: Kalyagin et al (eds) Models,
Algorithms, and Technologies for Network Analysis. Springer Proceedings in
Mathematics & Statistics 197, 11-26. (Ilya Bychkov suggested and developed
the heuristic algorithm, implemented it, performed computational experiments
and prepared the article)

6. Batsyn, M., Bychkov 1., Goldengorin B., Pardalos P., Sukhov P. (2013) Pattern-
based heuristic for the cell formation problem in Group Technology. In: Gold-
engorin et al (eds) Models, algorithms, and technologies for network analysis.
Springer Proceedings in Mathematics & Statistics 32, 11-50 (Ilya Bychkov par-
ticipated in discussion and implementation of the algorithm, performed compu-
tational experiments and prepared the article)

Reports at conferences and seminars:

¢ The 8th International Conference on Network Analysis (NET 2018), May 18-19,
Yandex, Moscow, Russia. From Cell Formation Problem to Biclustering and Graph
Editing.

e Research Seminar of the Graduate School of Computer Science, CS HSE,
September 29, 2017, Computer Science Faculty, Higher School of Economics, Moscow,
Russia. An effective exact model for solving the cell formation problem.

e LATNA research seminar, 2016, Nizhny Novgorod, Russia. On solving manu-
facturing cell formation via bicluster editing.

e The 20th Conference of the International Federation of Operational Research
Societies IFORS-2014, July 13-18, 2014, Barcelona, Spain. Multi-start local search
heuristic for the cell formation problem.

e Third International Conference on Network Analysis, 2013, Nizhny Novgorod,
Russia. An exact model for the cell formation problem.

* Second International Conference on Network Analysis, 2012, Nizhny Novgorod,
Russia. “Patterns” for solving the Cell Formation Problem.

2 Problem statement

2.1 General problem statement

In classical formulation the CFP is defined by a binary matrix A with m rows representing
machines and p columns representing parts. In this machine-part matrix a;; = 1 if part
Jj is processed on machine i. The objective is to form production cells, which consist of
machines and parts together, optimizing some production metrics such as the ones we
mention above.



As an example of input data, we present the instance of Waghodekar & Sahu [60]
shown in Table 1. This instance consists of 5 machines and 7 parts. The ones in a
machine-part matrix are called operations. In Table 2 a solution with 2 manufacturing
cells is presented. The first manufacturing cell contains machines m;, ms with parts
p1, p7 and the second manufacturing cell contains machines my, m3, ms with parts p,,
P3, P4, Ps, Ps. Some parts have to be moved from one cell to another for processing
(e.g. part pg needs to be processed on machine m;, so it should be transported from
its cell 2 to cell 1). The operations lying outside cells are called exceptional elements
or exceptions. There can be also non-operation elements inside cells where a;; = 0.
These elements reduce machine load and are called voids. The goal is to minimize the
number of exceptions and the number of voids at the same time.

PL P2 p3s ps Pps Ps D7
m [ 1 0 0 0 1 1 1
my | 0 1 1 1 1 0 0
my| 0 0 1 1 1 1 0
my | 1 1 1 1 0 0 0
ms | 0 1 0 1 1 1 0

Table 1: Machine-part 5 X 7 matrix from Waghodekar & Sahu [60]

p1 D1 P2 P33 P4 Ps Pe
ny 1 1 0 0 0 1 1
my 0 1 1 1 1 0 0
my 0 0 1 1 1 1 0
m3 0 0 0 1 1 1 1
ms 0 0 1 0 1 1 1

Table 2: Solution with 2 production cells

2.2 Objective functions

There are a few different objective functions proposed to measure the quality of a
machine-part clustering. Chandrasekharan & Rajagopalan [24] suggested one of the first
quantitative measures for comparing cell formation problem solutions. This measure is
called grouping efficiency measure. It is the weighted sum of two values 1; and 7,:

n=qm+{-qm

ny— ng* n’i"
nm=——-_- = —,
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Here n; — the number of ones in the machine-part matrix, ni" — the number of
elements inside the cells, n°*’ — the number of elements outside the cells, n‘i" —the
number of ones inside the cells, n‘l’”’ — the number of ones outside the cells, nf)" — the
number of zeros inside the cells, n3*’ — the number of zeros outside the cells. r7; defines

intracell utility of machines, 7, d(zzﬁnes inter-cell movements of parts (the number of
zeros out of cells to the total number of elements out of cells), ¢ — a coefficient (0 <
g < 1) which is a borderline between importance of machines utility and the inter-cell
movement in the objective function. It is usually taken equal to 0.5, so it is equally
important to maximize the machine loading and minimize the intercell movement.

The grouping efficiency objective function has several drawbacks [54]. It is not
always correct in differentiating good and bad quality solutions. This measure gives
values 0.75 to 1 in the majority of cases depending on coefficient q [42]. As a result,
some bad solutions can have a high value of objective function. Also, with increasing
matrix size the influence of exceptional elements (ones out of clusters) becomes smaller.
Another bottleneck of the grouping efficiency is the necessity of choosing parameter gq.

Kumar & Chandrasekharan [42] suggested another quality measure for the CFP —
grouping efficacy. It is defined as:

T= e —

mn

n1+n0

Grouping efficacy overcomes limitations of the grouping efficiency measure and
is the most popular among researchers in this field. Finally, some papers consider so
called exceptions + voids measure:

E+V = n‘l””+ nf)"

Krushinsky & Goldengorin [39] solved to optimality some moderate instances of
the manufacturing cell formation problem for exceptions + voids objective function.

2.3 Mathematical model

In this research the manufacturing cell formation problem formulation with grouping
efficacy objective function is considered. There are several variants related to cell size
in the literature:

» allowing any cells residual cells (cells containing only machines or parts)

» prohibiting residual cells (cells containing only machines or parts)

» prohibiting residual and singleton cells (cells with one machine and one or more
parts or vice versa)

The most popular option is prohibiting only residual cells. For the classical formula-
tion we assume that singletons can appear in solutions and residual cells are prohibited.
In my new model and in computational experiments we consider the first two options.

A straightforward integer fractional programming (IFP) model for the cell formation
problem with the grouping efficacy objective function allowing singletons and prohibit-
ing residual cells is given below. Here the following notation is used: m is the number
of machines, p is the number of parts, a;; equals to 1 if machine i processes part j and



c is the maximal possible number of production cells. Since each production cell has
to contain at least one machine and at least one part ¢ = min(m; p).
(IFP model):

{1, if machine i belongs to cell &,
Xik =

0, otherwise

_J1, if part j belongs to cell &,
Vi = 0, otherwise

i 2oy Tiem i KikVjk
max ———p — (H
ity 2oy @i+ Xily Xy Dy (1 = aij)xinyji

Subject to:
inkzl, i=1,..,m 2)
k=1
c
Dovik=1 j=l..p 3)
k=1
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Objective function (1) is the grouping efficacy measure where the numerator is the
number of ones inside cells (n’i") and two sums in the denominator are the total number
of ones (n1) and the number of zeros inside cells (nz)") respectively. Constraints (2) and
(3) require that each machine and each part is assigned to exactly one production cell.
The following two inequalities (4) and (5) prohibit residual cells (without machines or
parts). The left part of (4) is the total number of machines assigned to the particular cell
(this sum is not greater than m) and the right part is the total number of parts assigned
to that cell (multiplied by m). It means that if we have at least one machine assigned to
some cell there should be at least one part assigned to this cell. This model allows us to
have any number of cells in the optimal solution. For example if optimal solution has

only two cells then variables x;; and y;x will be zero for all k except only two values of
k.



3 Existing approaches and models

Many different approaches have been proposed for solving the cell formation problem.
Most of them provide heuristic solutions and only a few exact methods have been
suggested.

King and Nakornchai [38] and Chandrasekaran & Rajagopalan [22] proposed MOD-
ROC and ROC2 - two improved versions of the so-called rank order clustering algorithm
[37] and applied it to machine-part clustering. Chandrasekaran & Rajagopalan [21] pre-
sented ideal-seed clustering algorithm with an upper bound on the number of clusters,
which was obtained using graph representation of the problem. Also Chandrasekaran
& Rajagopalan [21] introduced a quantitative measure for the CFP called grouping
efficiency. Later Chandrasekharan & Rajagopalan [23] presented ZODIAC approach
where rows and columns were first clustered separately and then - using ideal seeds.
Srinivasan & Narendran [56] introduced GRAFICS - another nonhierarchical cluster-
ing approach for the cell formation, which initially groups machines by solving the
assignment problem.

Several authors used graph theory to solve the cell formation problem. Kumar et
al. [40] formulated it as k-decomposition of the graph where machines and parts are
vertices and edges are the interconnections for fixed number k of production cells.
Vannelli & Kumar [59] and Kumar & Vannelli [41] used graph models to determine
machines and parts needed to obtain a perfect block diagonal structure. Askin et al.
[2] formed a graph structure using similarity coefficients between machines/parts and
then formulated machine-part clustering as a problem of finding Hamiltonian path. Ng
[50] and Ng [51] used spanning trees to solve the problem. Kusiak [43], Wang & Roze
[61] and Won [62] proposed various mathematical programming models based on the
p-median problem.

3.1 State-of-art heuristic algorithms

Today many state-of-art results for hard optimization problems are obtained by different
metaheuristic or hybrid metaheuristic algorithms and the cell formation problem is not
an exception. One of the well-known papers belongs to Gongalves and Resende [32]. In
this research a new effective genetic algorithm for machines clustering and a local search
algorithm for the following parts assignment have been developed. These authors have
collected and provided the 35 GT problems dataset which has started a race between
heuristics in this area.

James et al. [36] provided a genetic algorithm where a chromosome encodes both
machine and part clustering at the same time. They used local search by Gongalves and
Resende [32] and achieved impressive results for grouping efficacy objective.

Paydar & Saidi-Mehrabad [52] have provided a linear fractional programming
model and hybrid variable neighborhood search algorithm [33] for real-sized CFP with
exceptions plus voids objective.

Brusco [8] suggested a simple competitive iterated local search heuristic with ma-
chines/parts relocation as a local search routine and several sequential random reloca-
tions of machines and parts as a perturbation stage.



Goldengorin et al. [30] and Goldengorin et al. [31] have obtained good results for
large size cell formation instances with grouping efficiency objective using p-median
approach.

3.2 State-of-art exact models and approaches

Krushinsky & Goldengorin [39] and Goldengorin et al. [31] provided two MINpCUT
exact models based on the well-known minimum multicut graph partition problem.
The objective function considered in this research is minimization of the exceptional
elements number for a fixed number of cells.

Elbenani & Ferland [29] presented a mixed-integer linear programming model
which maximizes the most popular objective for the cell formation problem - the group-
ing efficacy, introduced by Kumar & Chandrasekharan [42]. These authors suggested
to apply Dinkelbach algorithm since the grouping efficacy is a fractional objective
function. Their model allows solving the cell formation problem only if the number of
production cells is predefined. Thus, the suggested approach cannot guarantee global
optimality of the obtained solutions with respect to a variable number of production
cells. In many cases the computational times for this model are quite long or memory
limitations are exceeded and the optimal solutions cannot be found.

Brusco [9] introduced two exact approaches for solving the cell formation problem
with the grouping efficacy objective. The first is a mixed-integer linear programming
model which is based on a general two-mode clustering formulation with some simpli-
fying assumptions (e.g. the numbers of clusters by rows and columns are equal). This
model looks interesting, but requires too much time to be solved for many even medium-
sized instances. The second approach is a branch-and-bound algorithm combined with
a relocation heuristic to obtain an initial solution. The branch and bound approach is
able to solve about two times more problem instances and the computational times are
greatly improved as well. It runs fine on well-structured (with grouping efficacy value
> 0.65 - 0.7) medium-sized problems. Two major assumptions are made for both of
these approaches. Singletons are permitted (manufacturing cells containing only one
machine or one part) that is quite a common practice. Residual cells are permitted
(cells containing only machines without parts, or only parts without machines). Also,
the number of production cells is predefined for the both approaches, but for some
test instances several values for the number of cells are considered in computational
experiments. Some authors used biclustering approaches to solve the cell formation
problem.

Boutsinas [7] applied simultaneous clustering for both dimensions (machines and
parts) and minimized the number of voids plus the number of exceptional elements.

[63] presented an exact approach which finds Pareto frontier and solves a bi-objective
optimization problem which can be formulated as the CFP.

Pinheiro et al. [53] reduced the cell formation problem to another biclustering
problem - bicluster graph editing problem and suggested an exact method and a lin-
ear programming model which provides good computational results for the grouping
efficacy objective.



4 Contents

The contributions of this research are:

e an exact approach for solving the CFP based on fixing the grouping efficacy
denominator and three-index integer linear programming model

* an exact approach based on the novel two-index integer linear programing model
and Dinkelbach algorithm

e multi-start variable neighborhood search heuristic algorithm for grouping effi-
ciency and grouping efficacy objectives

We would like to highlight that many researchers in the field use the 35 GT instances
dataset provided by Gongalves and Resende [32]. These instances are taken from
different cell formation research papers (references to the original sources are shown in
4). Some problem instances in this 35 GT dataset have errors and differ from the ones
presented in the original papers. Many researchers including Elbenani & Ferland [29]
and Pinheiro et al. [53] have performed their computational experiments using these
data from Gongalves and Resende [32]. We have reviewed all the original sources,
comparing and forming the corrected version of this popular dataset. We have also
collected many other problem instances less popular and formed a new dataset. All
data can be downloaded from website opt-hub.com or researchgate.net (full urls can be
found in references).

4.1 Problem complexity

Although most papers in last decades consider the CFP in its biclustering formulation,
there are no papers providing the proof of its NP status to the best of our knowledge. It
this section the proof of NP-completeness is provided for the CFP with the fractional
grouping efficacy objective. Hereafter we consider the decision versions of problems.
All the results related to the complexity of the CFP are presented in Batsyn et al. [5].

First we consider the so-called Bicluster Graph Editing Problem (BGEP). The
BGEP consists in determining the minimum number of edges which should be added
to/removed from the given bipartite graph so that it transforms to a set of isolated
bicliques. NP-completeness of BGEP has been proved in Amit [1] .

Theorem 1. [1] The BGEP problem is NP-complete because the NP-complete 3-exact
3-cover problem can be polynomially reduced to BGEP.

Using this result we prove that CFP with exceptions + voids objective is also NP-
complete.

Theorem 2. The CFP with linear objective e+v is NP-complete since it is equivalent
to the BGEP problem.

There is a one-to-one correspondence between these two problems. Every machine
in the CFP corresponds to a vertex in one part of the bipartite graph in the BGEP,
and every part in the CFP corresponds to a vertex in another part of this graph. The
machine-part matrix in the CFP coincides with the bipartite graph biadjacency matrix
in the BGEP. Every exception in a solution of the CFP corresponds to an edge which
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Figure 1: Initial matrix A is extended by adding a big block of ones

should be removed from the bipartite graph in the BGEP in order to transform it to a set
of isolated bicliques. And every void in a CFP solution corresponds to an edge which
should be added to the bipartite graph in the BGEP. Exceptions + voids objective (e +v)
is equivalent to the BGEP objective of minimizing the number of added / removed
edges needed to transform the input bipartite graph to a set of isolated bicliques. Every
biclique corresponds to a rectangular cell in the CFP.

To prove the NP-completeness of the CFP with grouping efficacy objective we
suggest the reduction of the e + v version to it. The grouping efficacy function can be
rewritten as:

nlln e+v e+v
=1- — max

n+ nf)" n+v n+ v

— min

This expression is almost equivalent to the linear e + v objective, except the value
of v in the denominator. Our idea is to nullify the influence of this value by significant
increasing of the number of ones in the matrix n;. We reduce the CFP with e + v to
CFP with grouping efficacy by extending the original machine-part matrix A with a big
block of ones as it is shown in Figure 1.

Proposition 1. [f the machine-part matrix for the CFP with grouping efficacy has
identical rows then there will be optimal solutions in which these rows belong to the
same cell.

Proposition 2. Ifthe number of added ones in the extended matrix is equal to (mp)* then
the maximum of grouping efficacy on this matrix is obtained at the same solution
(extended with the cell of added ones) at which function e+v has its minimum on matrix
A.

These propositions are used in the proof of the following theorem:

Theorem 3. The CFP with grouping efficacy objective is NP-complete because the
CFP with e+v objective can be polynomially reduced to it.

Since the decision version of the CFP with grouping efficacy is NP-complete, then
its optimization version is NP-hard.
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4.2 Anexact approach based on fixing the value of grouping efficacy
denominator

Since the grouping efficacy is a fractional objective function, we look over all the
possible values of the denominator (specifically nf)" , because n; is a constant). The
CFP is then solved separately for every value of ng’ adding a constraint requiring the
number of zeros inside cells to be equal to the chosen constant né”. This way the original
objective function transforms into maximization of n’i" and we have to solve several
subproblems, one for every fixed value ng" . Then the optimal solution for the CFP is
the optimal solution of the problem which has the greatest grouping efficacy among all
others. To limit the maximum possible number of zeros inside cells a heuristic solution
can be used. Proposition 3 provides an upper bound on the number of zeros inside cells.

Proposition 4 provides a lower bound on the number of ones inside cells.

Proposition 3. Let T be the grouping efficacy value for some feasible CFP solution.
Then nyy" in the optimal solution is not greater than [I;—T . n1J.

Proposition 3 is used to limit the possible number of zeros inside the cells (in the
optimal solution) and as a result the number of subproblems we have to consider to
solve a CFP instance.

Proposition 4. Let T be the grouping efficacy value for some feasible CFP solution.
Then n’i" in the optimal solution is not less than [t - (n] + n(i)")'|.

Using Proposition 4, the following inequalities can be added to three-index model:

C

[T(n +n{")] < i i Z a;jZijk < Ny (6)

i=1 j=1 k=1
Three-index ILP model is as follows:

1, if machine i belongs to cell &,
Xik = .
0, otherwise

_J1, if part j belongs to cell &,
ik = 0, otherwise

1, if both machine i and part j belongs to cell k,
Zijk = .
0, otherwise

C

max Z z”: aijZijk (7

i=1 j=1 k=1

i=

subject to

Zijk < Xik, Vi=1,..m, Vji=1,..,p, Vk=1,...c (8)



Zijk £ Yjik, Yi=1,..m, Vj=1,.,p, Vk=1,.,c )

Zjk = Xk +yie—1, Vi=1l..,m, Vj=1..p, Vk=1,..c (10)

C
ink =1, Vi=1,...m (11)
k=1
C
D=1 Vi=1l..p (12)
k=1
m 14 m
D a2 Y i Vk=1,.c (13)
i=1 j= i=1
m p p
D w2 Y e Vk=1,..c (14)

m p
Z Z (1= aij)ziji = n' (15)
[T(m +no < zm:zplzauzuk <m (16)

i=1 j=1 k=1

Xik, YiksZijk € {0,1} Vi=1,...m, Vj=1,.,p, Vk=1..c (17)

This model of the cell formation problem can be described using binary variables
Xk and y;r. Machines index i takes values from 1 to m and parts index j - from 1 to p.
Cells index k takes values from 1 to ¢ = min(m, p) because every cell should contain
at least one machine and one part and so the number of cells cannot be greater than m
and p. The number of ones inside cells is equal to X Ximy 25:1 aijXikyjk, and the
number of zeros inside cells is equal to }; _, Z, (I = a;j)xikyjk. We linearize
the product x;xyjx in a standard way 1ntr0ducmg new boolean variables z;;x = Xk Yk
and additional linear constraints (8), (9), (10).

Constraints (11), (12) require that every machine and every part is assigned to
exactly one cell. Constraints (13), (14) require that there are no cells which have only
machines without parts or only parts without machines. Constraint (15) fixes the total
number of zeroes inside cells to be equal to the chosen constant nf)". Model (7) - (17)
is solved for all possible values of nf)" using CPLEX solver.

For the computational experiments, we use the set of the most popular 35 CFP
instances from the literature. The results are summarized in Table 3. The first 13
problems and the 22nd problem could be solved exactly in quite a little computational
time. For all these instances, the solutions found by our approach are equal to the
best-known solutions. Thus, for the 14 instances, the global optimality of the best-
known solutions is proved (grouping efficacy values for these instances are in bold).
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Solving the remaining instances requires too much memory and computational time
(these instances are marked with a star in time column). So, for these instances we run
CPLEX with 300s time limit for every subproblem and report the best value of grouping
efficacy found. All the computations are performed on Intel Core i7 processor running
at 2.2 GHz with 8§ GB RAM.

# Source Size Efficacy Time, sec Zeros in
1 King and Nakornchai (1982) - Figure la 5x7 0.8235 0.63 3
2 Waghodekar and Sahu (1984) - Problem 2 5x7 0.6957 2.29 3
3 Seifoddini (1989b) 5x18 0.7959 5.69 3
4 Kusiak and Cho (1992) 6x8 0.7692 1.86 4
5 Kusiak and Chow (1987) 7x11 0.6087 9.14 0
6 Boctor (1991) - Example 1 7x11 0.7083 5.15 3
7 Seifoddini and Wolfe (1986) 8x12 0.6944 13.37 1
8 Chandrasekaran and Rajagopalan (1986a) 8x20 0.8525 18.33 0
9 Chandrasekaran and Rajagopalan (1986b) 8x20 0.5872 208.36 18
10 Mosier and Taube (1985a) 10x10 0.75 6.25 4
11 Chan and Milner (1982) 10x15 0.92 2.93 4
12 Askin and Subramanian (1987) 14x23 0.7206 259.19 10
13 Stanfel (1985) 14x24 0.7183 179.21 10
14 McCormick et al. (1972) 16x24 0.5161*  20829.38 * 8
15 Srinivasan et al. (1990) 16x30 0.6900*  13719.99 * 13
16 King (1980) 16x43 0.5753*  24930.93 * 20
17 Carrie (1973) 18x24 0.5773*  13250.01 * 8
18 Mosier and Taube (1985b) 20x20 0.3871*  43531.77* 44
19 Kumar et al. (1986) 20x23 0.4672*  33020.13 * 9
20 Carrie (1973) 20x35 0.7785*  11626.98 * 22
21 Boe and Cheng (1991) 20x35 0.4675*  33322.08 * 1
22 Chandrasekharan and Rajagopalan (1989) - Dataset 1 24x40 1 1.64 0
23 Chandrasekharan and Rajagopalan (1989) - Dataset 2~ 24x40 0.8511* 6916.24 * 11
24 Chandrasekharan and Rajagopalan (1989) - Dataset 3~ 24x40 0.5649*  14408.88 * 0
25  Chandrasekharan and Rajagopalan (1989) - Dataset 5 24x40 0.4656"  34524.47* 0
26  Chandrasekharan and Rajagopalan (1989) - Dataset 6  24x40 0.4351*  41140.94 * 0
27  Chandrasekharan and Rajagopalan (1989) - Dataset 7 24x40 0.4122*  44126.76 * 0
28 McCormick et al. (1972) 27x27  0.54.02*  22627.28* 31
29 Carrie (1973) 28x46 0.2465*  71671.08 * 4
30 Kumar and Vannelli (1987) 30x41 0.4844* 22594.2 ¢ 0
31 Stanfel (1985) - Figure 5 30x50 0.5065*  31080.82 * 0
32 Stanfel (1985) - Figure 6 30x50 0.3832*  48977.01 * 0
33 King and Nakornchai (1982) 30x90 0.3941*  99435.64 * 29
34 McCormick et al. (1972) 37x53 0.5960*  47744.04 * 17
35 Chandrasekharan and Rajagopalan (1987) 40x100  0.8403*  24167.76 * 37
Table 3: Three-index model based approach results
4.3 An exact approach based on the two-index model and Dinkel-

bach algorithm

Due to a large number of variables and constraints in three-index model [15] CPLEX
spends too much computational resources solving even small-sized instances (we have
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solved only 14 of 35 problem instances). Also, the number of subproblems required to
be considered can sometimes be large when grouping efficacy is not very high. As a
more powerful approach we introduce a two-index integer linear programming model
combined with the Dinkelbach algorithm for solving the CFP. The key idea of this
model is removing machine-part-cell relation. Instead of mapping elements to cells we
use a simple fact that machines within the same production cell have the same set of
parts assigned to that cell.

Two-index integer linear programming model is a novel model providing optimal
solutions for the cell formation problem with a variable number of manufacturing cells
and the grouping efficacy objective. Unlike the majority of mathematical program-
ming models our model does not contain a direct assignment of machines or parts to
cells. We use machine-machine and part-machine assignments instead of the widely
used machine-part-cell assignment. This leads to a compact and elegant formulation
considering only constraints which ensure a block-diagonal structure of solutions. It
allows us to drastically reduce the number of variables and constraints in the model and
obtain globally optimal solutions even for some large-sized problem instances.

Together with using our new integer linear programming model we use another way
of linearization — Dinkelbach algorithm [26]. The parametric approach introduced by
W.Dinkelbach is one of the popular strategies for fractional programming. It reduces the
solution of a fractional programming problem to the solution of a sequence of simpler
problems. If we consider a fractional programming model with the following objective
function:

0(x) = % (18)

then Dinkelbach procedure is the following:

0 compute A = PG andletk =1

* Step 1 take some feasible solution x DGO

* Step 2 solve the original problem with objective function Q(x) replaced with
F(A) = P(x) — 2 D(x) — max and let x* be the optimal solution

* Step 3 If F(Ax) is equal to O (or less than some predefined tolerance) then stop
the procedure and return x* as the optimal solution.

Else k =k +1,A; = g(&:; and go to step 2.

Elbenani & Ferland [29] have also used Dinkelbach approach for linearization of
grouping efficacy measure. Although, their computational times are quite high, and the
results are given only for the particular number of production cells.

Two-index model:

{1, if machines i and k are in the same cell,
Xik =

0, otherwise

1, if machine i and part j are in the same cell,
Yis 0, otherwise
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p

m m p m p
max Zza[j}’ij—/l'(ZZ(l—aij)y[j+ZZa[j) (19)

i=1 j=1 i=1 j=1 i=1 j=1

Subject to:
2k = Yij—yj = -1 iLk=1....m j=1...,p (20)
Vij—Ykj— Xk =2-1 iLk=1,....m j=1,...,p 1)
Y= Yij—x;=2-1 Lk=1....m j=1,...,p (22)
P
Dzl i=l.m 23)
j=1
Zyijzl j=1..p (24)
i=1

Objective function (19) is the grouping efficacy measure linearized using Dinkel-
bach method. Constraints (20), (21), (22) set relations between machines and parts to
ensure the solution can be transformed into the block-diagonal form (which means its
feasibility). The last two inequalities (23) and (24) are optional and prohibit residual
cells.

We start with setting A equal to the best known efficacy value for the considered cell
formation problem instance. Then we sequentially solve several two-index problems
according to the Dinkelbach algorithm and update A value with the solutions found until
our objective function is above 0. To test our second exact approach, we have used two
datasets, Testset A and Testset B. All the references to problem instances can be found
in Bychkov & Batsyn [17].

Testset A - Classic. The first dataset is a classical 35 GT problem set taken from
Gongalves and Resende [32]. It contains 35 test instances with sizes from 5 X 7 up to
40 x 100 (machines X parts notation). This dataset is very popular and there are lots
of computational results obtained by different methods (heuristics and metaheuristics
generally). As we highlighted before some problem instances in this dataset have
inconsistencies with the original papers they are published in. We have compared these
instances to the original ones and corrected the dataset.

Testset B - Extra. Another dataset named Testset B consists of other instances
taken from different papers. We have looked through many papers on the cell formation
problem and formed this new set. There are 32 test instances with sizes from 6 X 6
to 50 X 150. A couple of instances from this set have been adopted to the classical
formulation of the cell formation problem.
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ID Source m P
Al King and Nakornchai (1982) - Figure la 5 7
A2 Waghodekar and Sahu (1984) - Problem 2 5 7
A3 Seifoddini (1989b) 5 18
A4 Kusiak and Cho (1992) 6 8
A5 Kusiak and Chow (1987) 7 11
A6 Boctor (1991) - Example 1 7 11
A7 Seifoddini and Wolfe (1986) 8 12
A8 Chandrasekaran and Rajagopalan (1986a) 8 20
A9 Chandrasekaran and Rajagopalan (1986b) 8 20
A10 Mosier and Taube (1985a) 10 10
All Chan and Milner (1982) 15 10
Al2 Askin and Subramanian (1987) 14 24
Al13 Stanfel (1985) 14 24
Al4 McCormick et al. (1972) 16 24
Al5 Srinivasan et al. (1990) 16 30
Al6 King (1980) 16 43
Al7 Carrie (1973) 18 24
Al8 Mosier and Taube (1985b) 20 20
A19 Kumar et al. (1986) 23 20
A20 Carrie (1973) 20 35
A21 Boe and Cheng (1991) 20 35
A22  Chandrasekharan and Rajagopalan (1989) - Dataset 1 24 40
A23  Chandrasekharan and Rajagopalan (1989) - Dataset2 24 40
A24  Chandrasekharan and Rajagopalan (1989) - Dataset3 24 40
A25 Chandrasekharan and Rajagopalan (1989) - Dataset5 24 40
A26 Chandrasekharan and Rajagopalan (1989) - Dataset6 24 40
A27  Chandrasekharan and Rajagopalan (1989) - Dataset 7 24 40
A28 McCormick et al. (1972) 27 27
A29 Carrie (1973) 28 46
A30 Kumar and Vannelli (1987) 30 41
A3l Stanfel (1985) - Figure 5 30 50
A32 Stanfel (1985) - Figure 6 30 50
A33 King and Nakornchai (1982) 30 90
A34 McCormick et al. (1972) 37 53
A35 Chandrasekharan and Rajagopalan (1987) 40 100

For the computational experiments we consider two most popular versions of cell
size constraints:

1. Residual cells are prohibited, singletons are allowed (each cell has at least 1
machine and 1 part)

2. Residual cells are allowed (cells with only machines or only parts can appear in
the final solution)

Several state-of-art exact approaches have been chosen for comparisons.
platform for our computations we have used a system with Intel Xeon processor running

Table 4: Testset A - Instances
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at 3.4 GHz with 16GB RAM and CPLEX 12.4.0 installed. Due to high-quality initial
solutions the Dinkelbach algorithm makes only one or, in rare cases, two iterations.

ID Source m P
Bl Adil (1996) 6 6
B2 Parkin and Li (1997) 6 7
B3 Brown and Sumichrast (2001) 6 11
B4 Chan and Milner (1982) 7 5
B5 Kusiak and Chow (1987) 7 8
B6 Zolfaghari and Liang (2002) 7 8
B7 Won and Kim (1997) 7 10
B8 Sarker and Khan (2001) 8 8
B9 Nair (1999) 8 10
B10 Islam and Sarker (2000) 8 10
Bl11 Kumar et al. (1986) 9 15
B12 Ham et al. (1985) 10 8
B13 Viswanathan (1996) 10 12
Bl14 Shargal et al. (1995) 10 38
B15 ‘Won and Kim (1997) 11 10
B16 Seifoddini (1988) 11 22
B17 Moon and Chi (1992) 12 19
B18 Li (2003) 14 14

B19  Chan and Milner (1982) - Fig.3a 15 10
B20  Yang and Yang (2008) - Fig.6b 15 15
B21 Yang and Yang (2008) - Fig.6c 15 15
B22  Yang and Yang (2008) - Fig.ed 15 15

B23 Harhalakis et al. (1994) 17 20
B24  Seifoddini and Djassemi (1991) 18 24
B25 Sandbothe (1998) 20 10
B26 Nagi et al. (1990) 20 51
B27 ‘Won and Kim (1997) 26 28

B28 Yang and Yang (2008) - Fig.7 28 35
B29  Seifoddini and Djassemi (1996) 35 15
B30  Seifoddini and Djassemi (1996) 41 50
B31 Yang and Yang (2008) - Fig.12 46 105
B32 Zolfaghari and Liang (1997) 50 150

Table 5: Testset B - Instances

The instances from Table 4 have been studied widely in the literature. We report
results separately for the formulation where minimal cell size is 1 X 1 (Table 6 and
Figure 2) and the formulation with residual cells allowed (Table 7 and Figure 3). In the
first case we have selected two approaches for the results comparison:

1. The MILP model by by Elbenani & Ferland [29]

2. The ILP model by Bychkov et al. [15]

Elbenani & Ferland [29] considered a simplified formulation of the cell formation
problem solving every problem instance only for one fixed number of production cells.
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These authors have performed computational experiments on an AMD processor 2.2
GHz with 4GB RAM. For Testset A we use the best efficacy results from the literature
as initial values for A parameter.

Time, sec Efficacy
4 Elbenani & | Bychkov Elbenani & Bychkov
Ferland (2012) et al. two-index Ferland (2012) et al. two-index
(2014) model (cells) (2014) model

Al 2.3 0.63 0.00 0.8235(2) 0.8235 0.8235
A2 1.6 2.29 0.00 0.6957(2) 0.6957 0.6957
A3 3.1 5.69 0.00 0.7959(2) 0.7959 0.7959
A4 2.0 1.86 0.09 0.7692(2) 0.7692 0.7692
A5 30.6 9.14 0.17 0.6087(5) 0.6087 0.6087
A6 43 5.15 0.01 0.7083(4) 0.7083 0.7083
A7 9.6 13.37 0.02 0.6944(4) 0.6944 0.6944
A8 3.1 18.33 0.01 0.8525(3) 0.8525 0.8525
A9 35 208.36 0.45 0.5872(2) 0.5872 0.5872
Al0 1.1 6.25 0.00 0.7500(5) 0.7500 0.7500
All 1.6 2.93 0.02 0.9200(3) 0.9200 0.9200
Al2 2188.7 259.19 0.19 0.7206(7) 0.7206 0.7206
Al3 593.2 179.21 0.23 0.7183(7) 0.7183 0.7183
Al4 15130.5 * 4.24 0.5326(8) * 0.5326
AlS 252.5 * 0.25 0.6953(6)F * 0.6899
Al6 183232.5 * 4.80 0.5753(8) * 0.5753
Al7 2345.6 * 3.82 0.5773(9) * 0.5773
Al8 * * 0 32243.10 * * 0.4345
Al9 131357.5 * 245.59 0.5081(7) * 0.5081
A20 31.1 * 0.22 0.7791(5) * 0.7791
A21 14583.6 * 24.34 0.5798(5) * 0.5798
A22 11.3 1.64 0.14 1.0000(7) 1.0000 1.0000
A23 230.7 * 0.12 0.8511(7) * 0.8511
A24 1101.1 * 0.16 0.7351(7) * 0.7351
A25 * * 1026.96 * * 0.5329
A26 N *178182.24 * N 0.4895
A27 * * * * * *
A28 958714.1 * 1964.00 0.5482(5) * 0.5482
A30 378300.0 * 8.72 0.6331(14) * 0.6331
A31 * * 136.00 0.6012(13)E * 0.5977
A33 * * * * * 0.4800
A34 268007.6 *16323.71 0.6064(3) * 0.6064
A35 7365.3 * 1.34 0.8403(10) * 0.8403

Table 6: Testset A - Computational results (residual cells are prohibited, singletons are
allowed)

In case of unrestricted cell sizes (residual cells are allowed) we have compared our
results to the following approaches:

1. The branch-and-bound algorithm by Brusco [9]

2. The ILP model by Pinheiro et al. [53]

3. The iterative exact method by Pinheiro et al. [53]

Brusco [9] considers several values for the number of cells, so we compare our
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computational time with these times summed up for every test instance. As the hardware
platform Brusco [9] reports 3.4 GHz Intel Core i7-2600 with 8GB RAM and Pinheiro
et al. [53] the same 3.4 GHz Intel Core i7-2600 with 32 GB RAM.

Since Elbenani & Ferland [29] and Brusco [9] do not consider all possible numbers
of production cells we show the number of cells in brackets for these approaches.

Time, sec Efficacy
# Pinheiro et al. | Pinheiro et al. Brusco Pinheiro

Brusco (2016) (2016) two-index (2015) etal. two-index

(2015) ™M ILP (cells) (2016)
Al 0.01 0.16 0.01 0.01 0.8235(2,3,4) 0.7500E 0.8235
A2 0.01 0.07 0.01 0.01 0.6957(2,3,4) 0.6956 0.6957
A3 0.02 0.09 0.03 0.01 0.8085(2,3,4) 0.8085 0.8085
A4 0.01 0.02 0.01 0.01 0.7916(2,3,4) 0.7917 0.7917
A5 0.6 0,29 0.06 0.17 0.6087(2,3,4,5,6) 0.6087 0.6087
A6 0.04 0.14 0.01 0.01 0.7083(2,3,4,5) 0.7083 0.7083
A7 0.08 0.18 0.03 0.01 0.6944(2,3,4,5) 0.6944E 0.6944
A8 0.01 2.06 0.04 0.01 0.8525(2,3,4) 0.8525 0.8525
A9 35.86 81.46 4.94 0.45 0.5872(2,3,4) 0.5872 0.5872
A10 0.06 0.03 0.01 0.01 0.7500(2,3,4,5,6) 0.7500 0.7500
All 0.01 0.01 0.02 0.02 0.9200(2,3,4) 0.9200 0.9200
Al2 63391 0.49 0.09 0.03 0.7424(6,7,8) 0.7424 0.7424
Al3 2631.76 0.49 0.11 0.03 0.7285(6,7,8) 0.7286 0.7286
Al4 24716.34 600.98 14491 4.88 0.5385(8) 0.5333E 0.5385
AlS 1279.93 7.24 0.54 0.16 0.6992(5,6,7) 0.6992E 0.6992
Al6 - 1156.23 125.62 4.24 - 0.5804 0.5804
Al7 20840.55 87.13 42.32 3.84 0.5773(9) 0.5773E 0.5773
Al8 - * * 52810.10 - * 0.4397
A19 | 1375608.66 23928.70 1771.99 249.52 0.5081(7) 0.5081 0.5081
A20 4830.00 1.78 14.55 0.09 0.7888(5,6,7) 0.7938E 0.7888
A21 - 2145.24 305.48 22.60 - 0.5879E 0.5860
A22 0.01 0.02 0.15 0.14 1.0000(7) 1.0000 1.0000
A23 42.29 10.08 0.44 0.14 0.8511(7) 0.8511 0.8511
A24 | 208158.02 17.46 0.78 0.20 0.7351(7) 0.7351 0.7351
A25 - 371233.00 48743.90 759.70 - 0.5329E 0.5329
A26 - * *  134418.65 - * 0.4895
A27 - * * * - * *
A28 - * * 46361.97 - * 0.5482
A29 - * * * - * *
A30 - 183.71 41.53 8.00 - 0.6304E 0.6331
A31 - 13807.50 2622.06 64.82 - 0.5977 0.5977
A32 - * *234055.90 - * 0.5084
A33 - * * * - * 0.4829
A34 - ® * 0 14212.57 - * 0.6131
A35 - 325.53 18.22 1.61 - 0.8403 0.8403

Table 7: Testset A - Computational results (residual cells are allowed)

The results for Testset A are summarized in Table 6 and Table 7. For each algorithm
we report the grouping efficacy value and the running time in seconds. Since our testset
is larger than the one used by Brusco [9] the missing results are marked as ”-”. For some
problems exact solutions have not been obtained because CPLEX runs too long or takes
too much memory. These instances are marked as "*". Table 6 shows the results for the
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case where we prohibit residual cells. Our previous model from Bychkov et al. [15] also
considers a variable number of production cells, but due to its complexity and it is able
to solve only 14 test problems of 35. The model suggested by Elbenani & Ferland [29]
solved 27 problem instances but only for the one fixed number of production cells for
each problem instance. Our new model provides global optimal solutions (with respect
to any possible number of cells) for 31 of 35 problem instances. For problem instance
A33 we have found a new solution with grouping efficacy 0.48 unknown before.

For 17 instances: A14-A21, A23-A26, A28, A30, A31, A34 and A35 we are the
first to prove the global optimality of the best known solutions with respect to a variable
number of production cells.
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Figure 2: Testset A - No residual cells. Running times comparison.

Running times bar charts for Table 6 are presented in Figure 2. Here we have used
logarithmic scale with base 10 for Y axis (running time). Our new model shows really
good performance, it works from 7 to 43383 times faster than the model from Elbenani
& Ferland [29] and from 11 to 1833 times faster than the model from Bychkov et al.
[15]. We must underline that although we use a better hardware platform than Elbenani
& Ferland [29], our problem formulation is more complicated than a formulation with
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a fixed number of cells.

The results for the formulation with no constraints on cell sizes are summarized
in Table 7. The model suggested by Pinheiro et al. [53] solved 27 problem instances
to the global optimum. Our approach has obtained exact solutions for 32 of 35 test
instances. In addition for problem instances A18, A33 and A34 we have found new
solutions unknown before.
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Figure 3: Testset A - Allowed residual cells. Running times comparison.

Since the test instances from Table 5 are less popular in research papers our goal
is just to obtain optimal solutions for this set. We have used our multi-start variable
neighborhood search heuristic [14] to get good solutions which are then passed as
initial values for A parameter (we pick the best solution found by the heuristic within
30 seconds).

The results for Testset B are shown in Table 8. Here we have found optimal solutions
for 31 of 32 test problems. Another result is an excellent performance of our multi-start
variable neighborhood search heuristic algorithm: only one of 32 instances solved by the
heuristic differs from the exact solution (instance B18). Due to the high computational
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Time Efficacy
two-index two-index Heuristic two-index two-index
# (no residual (allow bound (no residual (allow

cells) residual cells) cells) residual cells)
Bl 0.01 0.01 0.8095 0.8095 0.8095
B2 0.01 0.01 0.7222 0.7222 0.7222
B3 0.25 0.03 0.6071 0.6071 0.6071
B4 0.01 0.01 0.8889 0.8889 0.8889
B5 0.01 0.01 0.7500 0.7500 0.7500
B6 0.01 0.01 0.7391 0.7391 0.7391
B7 0.01 0.01 0.8148 0.8148 0.8148
B8 0.01 0.01 0.7222 0.7222 0.7222
B9 0.01 0.01 0.7576 0.7576 0.7576
B10 0.01 0.01 0.9000 0.9000 0.9000
B11 0.01 0.02 0.7273 0.7273 0.7297
BI12 0.01 0.01 0.8276 0.8276 0.8276
B13 0.36 0.80 0.5962 0.5962 0.6042
B14 0.25 0.30 0.6405 0.6405 0.6405
B15 0.01 0.01 0.8333 0.8333 0.8333
B16 0.16 0.06 0.7391 0.7391 0.7444
B17 0.98 0.26 0.6552 0.6552 0.6842
B18 1.82 1.65 0.6027 0.6129 0.6129
B19 0.03 0.06 0.8000 0.8000 0.8113
B20 0.05 0.03 0.8710 0.8710 0.8710
B21 0.03 0.04 0.8333 0.8333 0.8333
B22 0.05 0.01 0.7258 0.7258 0.7258
B23 0.05 0.06 0.8111 0.8111 0.8111
B24 4.79 7.80 0.5673 0.5673 0.5728
B25 0.20 0.10 0.7600 0.7600 0.8000
B26 13.81 25.75 0.6068 0.6068 0.6078
B27 0.25 0.28 0.72438 0.7248 0.7248
B28 0.83 1.04 0.6729 0.6729 0.6729
B29 33.82 51.76 0.5730 0.5730 0.5745
B30 4.76 8.67 0.7308 0.7308 0.7325
B31 19.69 17.50 0.6799 0.6799 0.6799
B32 * * 0.6193 * *

Table 8: Testset B - Computational results

complexity we are unable to solve the largest problem in the set — problem B32 (50 x
150).

4.4 Multi-start variable neighborhood search algorithm

We present a heuristic approach for obtaining high-quality solutions of the CFP. The
suggested heuristic applies an improvement procedure to obtain solutions with high
grouping efficiency. This procedure is repeated many times for randomly generated cell
configurations. Our computational experiments are performed for popular benchmark
instances taken from the literature with sizes from 10 % 20 to 50 x 150. Better solutions
unknown before are found for 23 instances of the 24 considered.

The main function of our heuristic is presented by Algorithm 1.

First we call FINDOPTIMALCELLRANGE(MinCells, MaxCells) function that returns
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Algorithm 1 Main function
function SoLvE( )
FINDOPTIMALCELLRANGE(MinCells, MaxCells)
ConfigsNumber = 2000
AllConfigs = GENERATECONFIGS(MinCells,MaxCells,ConfigsNumber)
return CMHEuURIsTIC(AlICon figs)
end function

a potentially optimal range of cells - from MinCells to MaxCells. Then these values
and Con figsNumber (the number of cell configurations to be generated) are passed to
GENERATECONFIGS(MinCells, MaxCells,Con figsNumber) function which generates
random cell configurations. The generated configurations Al/IConfigs are passed to
CMHEturistic(AllCon figs) function which finds a high-quality solution for every cell
configuration and then chooses the solution with the greatest efficiency value.

Algorithm 2 Procedure for finding the optimal cell range
function FINDOPTIMALCELLRANGE( MinCells, MaxCells)
if (m > p) then
minDimension = p
else
minDimension = m
end if
ConfigsNumber = 500
Configs = GENERATECONFIGS(2, minDimension, Con figsNumber)
Solution = CMHEeuRrisTIC(Con figs)
BestCells = GETCELLsNUMBER(Solution)
MinCells = BestCells - [minDimension * 0,1 ] > [ ] - integer part
MaxCells = BestCells + [minDimension * 0,1 ]
end function

In function FINDOPTIMALCELLRANGE( MinCells, MaxCells) (algorithm 2) we
look over all the possible numbers of cells from 2 to maximal possible, which equal
to min(m, p). For every number of cells in this interval we generate a fixed number of
configurations (we use 500 in this paper) calling GENERATECONFIGS(2, minDimension,
ConfigsNumber) and then use our CMHEuURIsTIc(Con figs) to obtain a potentially
optimal number of cells. But we consider not only one number of cells but together
with its 10%-neighborhood [MinCells, MaxCells].

Function GENERATECONFIGS(MinCells, MaxCells,Con figsNumber) (algorithm
3) returns a set of randomly generated cell configurations with a number of cells
ranging from MinCells to MaxCells. We call GENERATECONFIGSUNIFORM(cells,
ConfigsNumber) function which randomly selects with uniform distribution Con figs
Number configurations from all possible cell configurations with the specified number
of cells. Note that mathematically a cell configuration with k cells can be represented
as an integer partition of m and p values into sums of k¥ summands. We form a set of
configurations for every number of cells and then join them.
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Algorithm 3 Configurations generation
function GENERATECONFIGS(MinCells, MaxCells, ConfigsNumber)
Configs =0
for cells = MinCell,MaxCells do
Generated = GENERATECONFIGS(cells, ConfigsNumber)
Configs = Configs U Generated
return Configs
end for
end function

Algorithm 4 CMHeuristic
function CMHEeuristic(Con figs)
Best =0
for all config € Configs do
Solution = ImprOVESOLUTION(con fig)
if Solution > Best then
Best = Solution
end if
end for
return Best
end function

Function CMHEeuristic(Configs) (algorithm 4) gets a set of cell configurations
and for each configuration runs an improvement algorithm to obtain a good solution.
A solution includes a permuted machine-part matrix, a cell configuration, and the
corresponding grouping efficiency value. The function chooses the best solution and
returns it.

Improvement procedure IMPROVESOLUTION(con fig, cyrrent) (algorithm 5) works
as follows. We consider all the machines and the parts in order to know if there is a
machine or a part that we can move to another cell and improve the current efficiency
Neurrent- First we consider moving of every part on all other cells and compute how
the efficiency value changes. Here 7,4, ceur is the efficiency of the current solution
where the part with index part is moved to the cell with index cell. This operation
is performed for all the parts and the part with the maximum increase in efficiency
Aparss is chosen. Then we repeat the same operations for all the machines. Finally,
we compare the best part movement and the best machine movement and choose the
one with the highest efficiency. This procedure is performed until any improvement is
possible and after that we get the final solution.

Testing of the multi-start heuristic algorithm is shown in Table 9. All the references
to problem instances can be found in Bychkov et al. [16]. In all the experiments for
determining a potentially optimal range of cells we use 500 random cell configura-
tions for each cells number and for obtaining the final solution we use 2000 random
configurations.

The heuristic is run on 24 CFP benchmark instances taken from the literature.
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Algorithm 5 Solution improvement procedure

function IMPROVESOLUTION(con fig, Neurrent)
Neurrent = GROUPINGEFFICIENCY(config)

repeat
PartFrom =0
PartTo =0

for part = 1, partsNumber do
for cell = 1, cellsNumber do
if (npart,cell > ncurrent) then
Aparrs = (npart,cell - ncurrent)
PartFrom = GetPartCell(part)
PartTo = cell
end if
end for
end for
MachineFrom =0
MachineTo =0
for machine = 1,machinesNumber do
for cell = 1, cellsNumber do
if (nmuchine,cell > ncurrent) then
Amachines = (nmachine,cell - ncurrenr)
MachineFrom = GETMAcCHINECELL(machine)
MachineTo = cell
end if
end for
end for
if Aparts > Amachines then
MovEePArT(PartFrom, PartT o)
else
MovEMACHINE(M achineFrom, M achineT o)
end if
until A > 0
end function
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The sizes of the considered problems vary from 10x20 to 50x150. For every instance
we make 50 algorithm runs and report minimum, average and maximum value of the
grouping efficiency obtained by the suggested. We compare our results with the best
known values taken from Goldengorin et al. [30] and Bhatnagar & Saddikuti [6]. Better
solutions unknown before have been found for 23 instances of the 24 considered (best
results are in bold). For the CFP instance 6 we have found the same optimal solution
with 100% of grouping efficiency as in Goldengorin et al. [30].

5 Conclusion

The cell formation problem is a well known combinatorial optimization problem. Only a
few authors have suggested exact approaches for the most popular problem formulation
with the grouping efficacy objective function. Most of these works assume that the
number of production cells is predefined. In this research two exact approaches are
suggested for solving the CFP with variable number of production cells. The first
exact approach Bychkov et al. [15] is based on fixing the value of grouping efficacy
denominator. Propositions 3 and 4 allows finding a lower and upper bounds on the
number of zeros inside cells. Then the initial problem is split into subproblems (one
possible number of zeros inside for each) and solved using the three-index integer
linear programming model. This was the first approach int the literature which found
optimal solutions (with respect to every possible number of production cells) for 14 of
35 problems instances in the popular 35 GT dataset.

As a more powerful approach a two-index integer linear programming model is
introduced in combination with the Dinkelbach algorithm [17]. The key idea of this
model is removing machine-part-cell relation. Instead of mapping elements to cells
we use a simple fact that machines within the same production cell have the same set
of parts assigned to that cell. It allows to drastically reduce the number of variables
and constraints in the model and obtain globally optimal solutions even for some large-
sized problem instances. Computational experiments show that the new approach
outperforms the state-of-art exact methods. The 63 of 67 problem instances have been
solved to the global optimum with respect to a variable number of production cells. In
addition, several new solutions unknown before have been found.

A heuristic approach for obtaining high-quality solutions has been developed [16].
The suggested heuristic applies a variable neighborhood search procedure to obtain
solutions with high grouping efficiency. This procedure is repeated many times for
randomly generated cell configurations. The computational experiments are performed
for popular benchmark instances taken from the literature with sizes from 10 x 20 to
50 x 150. Better solutions unknown before have been found for 23 instances of the 24
considered.

Finally, the NP-completeness is proved for the CFP with fractional grouping efficacy
objective [5].
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