
Probabilistic social choice

Hans Peters

Moscow November 2019

Hans Peters Probabilistic social choice Moscow November 2019 0 / 40



An example

Ann, Bob, and Chris have to decide on the color to paint their joint
apartment. They can choose from five colors: blue, green, red, gray, and
black
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An example

Ann, Bob, and Chris have to decide on the color to paint their joint
apartment. They can choose from five colors: blue, green, red, gray, and
black
Their individual rankings are as follows:

Ann: blue > black > red > gray > green

Bob: black > gray > red > green > blue

Chris: red > green > blue > gray > black

Which color should they use?
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Borda (1781)

Assign scores 4, . . . , 0 to the colors (4 is best), and add up the scores
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Borda (1781)

Assign scores 4, . . . , 0 to the colors (4 is best), and add up the scores

blue green red gray black

Ann 4 0 2 1 3
Bob 0 1 2 3 4
Chris 2 3 4 1 0

Total 6 4 8 5 7
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Borda (1781)

Assign scores 4, . . . , 0 to the colors (4 is best), and add up the scores

blue green red gray black

Ann 4 0 2 1 3
Bob 0 1 2 3 4
Chris 2 3 4 1 0

Total 6 4 8 5 7

Winner: red

Is this a good method?

Depends on perspective: we look at manipulability
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Borda is manipulable (Gibbard, 1973;Satterthwaite, 1975)

blue green red gray black

Ann 4 0 2 1 3
Bob 0 1 2 3 4
Chris 2 3 4 1 0

Total 6 4 8 5 7

Red wins. Now suppose Ann lies about her true ranking:
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Borda is manipulable (Gibbard, 1973;Satterthwaite, 1975)

blue green red gray black

Ann 4 0 2 1 3
Bob 0 1 2 3 4
Chris 2 3 4 1 0

Total 6 4 8 5 7

Red wins. Now suppose Ann lies about her true ranking:

blue green red gray black

Ann 4 2 0 1 3
Bob 0 1 2 3 4
Chris 2 3 4 1 0

Total 6 6 6 5 7
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Borda is manipulable (Gibbard, 1973;Satterthwaite, 1975)

blue green red gray black

Ann 4 0 2 1 3
Bob 0 1 2 3 4
Chris 2 3 4 1 0

Total 6 4 8 5 7

Red wins. Now suppose Ann lies about her true ranking:

blue green red gray black

Ann 4 2 0 1 3
Bob 0 1 2 3 4
Chris 2 3 4 1 0

Total 6 6 6 5 7

Black wins instead of red, which is good for Ann!
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Single-peaked preferences

blue green red gray black

Ann 4 3 2 1 0
Bob 0 1 2 3 4
Chris 2 3 4 1 0

Red is the median of the peaks
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Single-peaked preferences

blue green red gray black

Ann 4 3 2 1 0
Bob 0 1 2 3 4
Chris 2 3 4 1 0

Red is the median of the peaks

Preferences are now single-peaked with respect to the ordering: blue -
green - red - gray - black

The median cannot be manipulated if preferences are single-peaked and
only single-peaked preferences can be reported. (More convincing in case
of room temperature)

Goes back to Black (1948). Later: Moulin (1980) and others.
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Probabilistic Borda
Assign probabilities to the alternatives based on the Borda scores

blue green red gray black

Ann 4 0 2 1 3
Bob 0 1 2 3 4
Chris 2 3 4 1 0

Probabilities 6
30

4
30

8
30

5
30

7
30

No one can unilaterally increase the probability on his/her best, two best,
three best, or four best alternatives! The sincere lottery stochastically
dominates any lottery achievable by manipulation

Price paid: every one prefers red above green but still green gets positive
probability

Gibbard (1977): only random dictatorship possible, e.g., 1
3 probability on

blue, red, and black
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Probabilistic Borda and single-peaked preferences

(Lack of) Pareto optimality is still a problem!
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Probabilistic Borda and single-peaked preferences

(Lack of) Pareto optimality is still a problem!

blue green red gray black

Ann 3 4 2 1 0
Bob 0 1 2 3 4
Chris 2 3 4 1 0

Total 5
30

8
30

8
30

5
30

4
30

Blue is Pareto dominated by green...but still gets positive probability
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Probabilistic Borda and single-peaked preferences

(Lack of) Pareto optimality is still a problem!

blue green red gray black

Ann 3 4 2 1 0
Bob 0 1 2 3 4
Chris 2 3 4 1 0

Total 5
30

8
30

8
30

5
30

4
30

Blue is Pareto dominated by green...but still gets positive probability

The central question of this presentation will be: suppose preferences are
single-peaked, then which probabilistic rules are non-manipulable (or
strategy-proof) and unanimous?
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Color choice revisited

We assume anonymity and unanimity
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Color choice revisited

We assume anonymity and unanimity

3 agents 0 agents
1 0 0 0 0
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Color choice revisited

We assume anonymity and unanimity

3 agents 0 agents
1 0 0 0 0

2 agents 1 agent

1/2 0 1/3 0 1/6
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Color choice revisited

We assume anonymity and unanimity

3 agents 0 agents
1 0 0 0 0

2 agents 1 agent

1/2 0 1/3 0 1/6

1 agent 2 agents

1/6 0 1/6 1/6 1/2
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Color choice revisited

We assume anonymity and unanimity

3 agents 0 agents
1 0 0 0 0

2 agents 1 agent

1/2 0 1/3 0 1/6

1 agent 2 agents

1/6 0 1/6 1/6 1/2

0 agents 3 agents
0 0 0 0 1
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Color choice revisited

We assume anonymity and unanimity

3 agents 0 agents
1 0 0 0 0

2 agents 1 agent

1/2 0 1/3 0 1/6

1 agent 2 agents

1/6 0 1/6 1/6 1/2

0 agents 3 agents
0 0 0 0 1

These probability distributions completely determine a probabilistic rule
that is unanimous and non-manipulable (and anonymous)
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A C B
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A C B

Probability at blue? Shift all agents at the left of blue to the left end point
and all others to the right end point. Results in distribution (0,3)

0 agents 3 agents
0 0 0 0 1

Assign to blue the probability assigned to blue by this distribution. Hence
blue gets 0
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A C B
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A C B

Probability at green?
Shift all agents at the left of green or on green to the left end point and all
others to the right end point. Results in distribution (1,2)
Shift all agents at the left of green to the left end point and all others to
the right end point. Results in distribution (0,3)

1 agent 2 agents

1/6 0 1/6 1/6 1/2

0 agents 3 agents
0 0 0 0 1

Now green gets 1/6 + 0 (namely blue and green at distribution (1,2))
minus 0 (namely blue at distribution (0,3)), hence 1/6
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A C B
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A C B

Probability at red?
Shift all agents at the left of red or on red to the left end point and all
others to the right end point. Results in distribution (2,1)
Shift all agents at the left of red to the left end point and all others to the
right end point. Results in distribution (1,2)

2 agents 1 agent

1/2 0 1/3 0 1/6

1 agent 2 agents

1/6 0 1/6 1/6 1/2

Now red gets 1/2 + 0 + 1/3 (namely blue, green and red at distribution
(2,1)) minus 1/6 + 0 (namely blue and green at distribution (1,2)), hence
2/3

Hans Peters Probabilistic social choice Moscow November 2019 10 / 40



A C B
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A C B

Probability at gray?
There is not peak at gray, so (similar to the case of blue) we take the
probability assigned by the (2,1) distribution to gray

2 agents 1 agent

1/2 0 1/3 0 1/6

Hence gray gets 0
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A C B
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A C B

Probability at black?
Shift all agents at the left of black or on black to the left end point and all
others to the right end point. Results in distribution (3,0)
Shift all agents at the left of black to the left end point and all others to
the right end point. Results in distribution (2,1)

3 agents 0 agents
1 0 0 0 0

2 agents 1 agent

1/2 0 1/3 0 1/6

Now black gets 1 (from distribution (3,0)) minus 1/2 + 1/3 (assigned by
distribution (2,1) to all points left from black), hence 1/6
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The last example was based on Ehlers, Peters, Storcken (2002)
We will extend this to more general domains of preferences, where
single-peakedness can be defined with respect to a connected graph
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The last example was based on Ehlers, Peters, Storcken (2002)
We will extend this to more general domains of preferences, where
single-peakedness can be defined with respect to a connected graph

Outline of the rest of the talk

1. Introduction: general model

2. Probabilistic rules

3. Domain restrictions: single-peaked preferences

4. Probabilistic rules and single-peakedness

5. Probabilistic rules for single-peakedness preferences on graphs

6. Trees

7. Leafless graphs

8. General connected graphs

9. Concluding remarks
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1.Introduction: general model

Starting point is the classical social choice model:

N = {1, . . . , n} is the set of (at least two) agents

A is the (usually) finite set of (at least two) alternatives

Preferences of agents over alternatives are linear orders

A preference profile is an n-tuple of preferences

A social choice function or rule assigns to each preference profile an
alternative

Examples: (political) elections, decisions within committees, European
songfestival
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1.Introduction: general model

Starting point is the classical social choice model:

N = {1, . . . , n} is the set of (at least two) agents

A is the (usually) finite set of (at least two) alternatives

Preferences of agents over alternatives are linear orders

A preference profile is an n-tuple of preferences

A social choice function or rule assigns to each preference profile an
alternative

Examples: (political) elections, decisions within committees, European
songfestival

Throughout we concentrate on strategy-proofness: each agent reports a
preference and should not be able to benefit from not reporting the true
preference
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Formally:

A rule F is strategy-proof if for each preference profile RN , each agent i ,
and each preference Q i we have:

F (RN)R iF (RN\i ,Q i )

i.e., truth-telling is a ‘weakly dominant strategy’

Hans Peters Probabilistic social choice Moscow November 2019 15 / 40



Formally:

A rule F is strategy-proof if for each preference profile RN , each agent i ,
and each preference Q i we have:

F (RN)R iF (RN\i ,Q i )

i.e., truth-telling is a ‘weakly dominant strategy’

Strategy-proofness is desirable:

Makes voting easy for the agents: only knowledge of your own
preference is needed to vote optimally
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Formally:

A rule F is strategy-proof if for each preference profile RN , each agent i ,
and each preference Q i we have:

F (RN)R iF (RN\i ,Q i )

i.e., truth-telling is a ‘weakly dominant strategy’

Strategy-proofness is desirable:

Makes voting easy for the agents: only knowledge of your own
preference is needed to vote optimally

Preserves (ex post) the (other) desirable properties of a rule

Decisions are made on the basis of the right information

...
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But strategy-proofness is hard to get:

Theorem (Gibbard, 1973; Satterthwaite, 1975)

Let F have range of at least three. Then F is strategy-proof if and only if
it is dictatorial on its range, i.e., there is an agent d such that F (RN) is
the top alternative of d ’s preference Rd in the range of F , for each
preference profile RN
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But strategy-proofness is hard to get:

Theorem (Gibbard, 1973; Satterthwaite, 1975)

Let F have range of at least three. Then F is strategy-proof if and only if
it is dictatorial on its range, i.e., there is an agent d such that F (RN) is
the top alternative of d ’s preference Rd in the range of F , for each
preference profile RN

If the range is two or if |A| = 2, then we can simply use majority
(plurality) voting (May, 1952)
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How to ‘escape’ from Gibbard-Satterthwaite?
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How to ‘escape’ from Gibbard-Satterthwaite?

‘Minimize’ manipulability (Kelly, 1988; Fristrup and Keiding, 1998;
Aleskerov and Kurbanov, 1999; Maus et al, 2007; Arribillaga and
Masso, 2016; etc.)
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How to ‘escape’ from Gibbard-Satterthwaite?

‘Minimize’ manipulability (Kelly, 1988; Fristrup and Keiding, 1998;
Aleskerov and Kurbanov, 1999; Maus et al, 2007; Arribillaga and
Masso, 2016; etc.)

Make manipulability hard to compute (Bartholdi et al, 1989; Friedgut
et al, 2011; etc.)
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How to ‘escape’ from Gibbard-Satterthwaite?

‘Minimize’ manipulability (Kelly, 1988; Fristrup and Keiding, 1998;
Aleskerov and Kurbanov, 1999; Maus et al, 2007; Arribillaga and
Masso, 2016; etc.)

Make manipulability hard to compute (Bartholdi et al, 1989; Friedgut
et al, 2011; etc.)

Make manipulation ‘unsafe’ (e.g., Reijngoud and Endriss, 2012;
Veselova, ongoing work)
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How to ‘escape’ from Gibbard-Satterthwaite?

‘Minimize’ manipulability (Kelly, 1988; Fristrup and Keiding, 1998;
Aleskerov and Kurbanov, 1999; Maus et al, 2007; Arribillaga and
Masso, 2016; etc.)

Make manipulability hard to compute (Bartholdi et al, 1989; Friedgut
et al, 2011; etc.)

Make manipulation ‘unsafe’ (e.g., Reijngoud and Endriss, 2012;
Veselova, ongoing work)

But we are going to concentrate on:

Restrict the set of preference profiles (Black, 1948; Moulin, 1980;
etc.)
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How to ‘escape’ from Gibbard-Satterthwaite?

‘Minimize’ manipulability (Kelly, 1988; Fristrup and Keiding, 1998;
Aleskerov and Kurbanov, 1999; Maus et al, 2007; Arribillaga and
Masso, 2016; etc.)

Make manipulability hard to compute (Bartholdi et al, 1989; Friedgut
et al, 2011; etc.)

Make manipulation ‘unsafe’ (e.g., Reijngoud and Endriss, 2012;
Veselova, ongoing work)

But we are going to concentrate on:

Restrict the set of preference profiles (Black, 1948; Moulin, 1980;
etc.)

Probabilistic rules (Gibbard, 1977, 1978; Barberà, 1979; Dutta et al,
2002; Ehlers et al, 2002; Chatterji et al, 2014; ....etc.)
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2. Probabilistic rules

A probabilistic rule F assigns to every preference profile RN a probability
distribution F (RN) over A
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2. Probabilistic rules

A probabilistic rule F assigns to every preference profile RN a probability
distribution F (RN) over A

A probabilistic rule is strategy-proof if for every preference profile RN ,
every agent i and every preference Q i , the distribution F (RN)
stochastically dominates the distribution F (RN\{i},Q i ) according to R i ,
that is,
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2. Probabilistic rules

A probabilistic rule F assigns to every preference profile RN a probability
distribution F (RN) over A

A probabilistic rule is strategy-proof if for every preference profile RN ,
every agent i and every preference Q i , the distribution F (RN)
stochastically dominates the distribution F (RN\{i},Q i ) according to R i ,
that is,

for every alternative x , the probability assigned to the set
{y ∈ A | yR ix} by F (RN) is at least as large as the probability
assigned by F (RN\{i},Q i)
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2. Probabilistic rules

A probabilistic rule F assigns to every preference profile RN a probability
distribution F (RN) over A

A probabilistic rule is strategy-proof if for every preference profile RN ,
every agent i and every preference Q i , the distribution F (RN)
stochastically dominates the distribution F (RN\{i},Q i ) according to R i ,
that is,

for every alternative x , the probability assigned to the set
{y ∈ A | yR ix} by F (RN) is at least as large as the probability
assigned by F (RN\{i},Q i)

or equivalently,

EF (RN )(u
i ) ≥ EF (RN\{i},Q i )(u

i ) for every ui representing R i
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2. Probabilistic rules

A probabilistic rule F assigns to every preference profile RN a probability
distribution F (RN) over A

A probabilistic rule is strategy-proof if for every preference profile RN ,
every agent i and every preference Q i , the distribution F (RN)
stochastically dominates the distribution F (RN\{i},Q i ) according to R i ,
that is,

for every alternative x , the probability assigned to the set
{y ∈ A | yR ix} by F (RN) is at least as large as the probability
assigned by F (RN\{i},Q i)

or equivalently,

EF (RN )(u
i ) ≥ EF (RN\{i},Q i )(u

i ) for every ui representing R i

Observe: this is a strong condition as it implies comparability of these two
distributions (stochastic dominance is not a complete relation)
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A probabilistic rule is a random dictatorship if it picks the top alternative
of each agent i with a fixed probability αi

Hans Peters Probabilistic social choice Moscow November 2019 19 / 40



A probabilistic rule is a random dictatorship if it picks the top alternative
of each agent i with a fixed probability αi

A probabilistic rule is unanimous if it assigns probability 1 to an alternative
x if every agent has x at top
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A probabilistic rule is a random dictatorship if it picks the top alternative
of each agent i with a fixed probability αi

A probabilistic rule is unanimous if it assigns probability 1 to an alternative
x if every agent has x at top

Theorem (Gibbard 1977)

Let F be a strategy-proof and unanimous probabilistic rule (defined on all
possible preference profiles), and let there be at least three alternatives.
Then F is a random dictatorship
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A probabilistic rule is a random dictatorship if it picks the top alternative
of each agent i with a fixed probability αi

A probabilistic rule is unanimous if it assigns probability 1 to an alternative
x if every agent has x at top

Theorem (Gibbard 1977)

Let F be a strategy-proof and unanimous probabilistic rule (defined on all
possible preference profiles), and let there be at least three alternatives.
Then F is a random dictatorship

Is this an ‘escape’ from the Gibbard-Satterthwaite Theorem?

Not always convincing, e.g. suppose there are 10 agents, each αi = 0.1,
11 alternatives and profile:

1 2 · · · 9 10

x1 x2 · · · x9 x10
x11 x11 · · · x11 x11
...

...
...

...
...
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A probabilistic rule is a random dictatorship if it picks the top alternative
of each agent i with a fixed probability αi

A probabilistic rule is unanimous if it assigns probability 1 to an alternative
x if every agent has x at top

Theorem (Gibbard 1977)

Let F be a strategy-proof and unanimous probabilistic rule (defined on all
possible preference profiles), and let there be at least three alternatives.
Then F is a random dictatorship

Is this an ‘escape’ from the Gibbard-Satterthwaite Theorem?

Not always convincing, e.g. suppose there are 10 agents, each αi = 0.1,
11 alternatives and profile:

1 2 · · · 9 10

x1 x2 · · · x9 x10
x11 x11 · · · x11 x11
...

...
...

...
...

Result still holds under cardinal utilities: Hylland (1980), Dutta et al
(2007)
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3. Domain restrictions: single-peaked preferences

One of the most studied domain restrictions: single-peaked preferences
(Black, 1948)
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3. Domain restrictions: single-peaked preferences

One of the most studied domain restrictions: single-peaked preferences
(Black, 1948)

Theorem (deterministic case, Moulin 1980)

Let A = R and let S be the set of single-peaked preferences on A. Then
F : SN → A is strategy-proof, anonymous, and Pareto optimal iff there are
a1 ≤ . . . ≤ an−1 ∈ R ∪ {−∞,∞} such that

F (RN) = median{a1, . . . , an−1, t(R
1), . . . , t(Rn)}

where t(R i) is the top alternative (peak) of R i , for every RN ∈ SN
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3. Domain restrictions: single-peaked preferences

One of the most studied domain restrictions: single-peaked preferences
(Black, 1948)

Theorem (deterministic case, Moulin 1980)

Let A = R and let S be the set of single-peaked preferences on A. Then
F : SN → A is strategy-proof, anonymous, and Pareto optimal iff there are
a1 ≤ . . . ≤ an−1 ∈ R ∪ {−∞,∞} such that

F (RN) = median{a1, . . . , an−1, t(R
1), . . . , t(Rn)}

where t(R i) is the top alternative (peak) of R i , for every RN ∈ SN

−∞
s

+∞
n − s

F (RN) = as
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4. Probabilistic rules and single-peakedness

Assume A ⊆ R is finite, A = {x1, . . . , xm} with x1 < . . . < xm. Let S be
the set of single-peaked preferences on A

Let the probabilistic rule F on SN be strategy-proof, anonymous, and
unanimous
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4. Probabilistic rules and single-peakedness

Assume A ⊆ R is finite, A = {x1, . . . , xm} with x1 < . . . < xm. Let S be
the set of single-peaked preferences on A

Let the probabilistic rule F on SN be strategy-proof, anonymous, and
unanimous

Any coalition S with s voters determines a probability distribution on A,
namely F (RN) with S having peaks on x1 and N \ S having peaks on xm

x1 x2 xm

s n− s

Generates probability distribution Ds . If s decreases then probability shifts
to the right
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How, in turn, is the rule determined by these distributions Ds ,
1 ≤ s ≤ n− 1 ?
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How, in turn, is the rule determined by these distributions Ds ,
1 ≤ s ≤ n− 1 ?
Assume p1 ≤ . . . ≤ pn are the reported peaks
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How, in turn, is the rule determined by these distributions Ds ,
1 ≤ s ≤ n− 1 ?
Assume p1 ≤ . . . ≤ pn are the reported peaks

x1 xmpℓ−1 pℓ

Dℓ−1[x1, xj ]− Dℓ−1[x1, xj ) = Dℓ−1(xj)
↑
xj

↑

Dℓ[x1, p
ℓ]− Dℓ−1[x1, p

ℓ)
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How, in turn, is the rule determined by these distributions Ds ,
1 ≤ s ≤ n− 1 ?
Assume p1 ≤ . . . ≤ pn are the reported peaks

x1 xmpℓ−1 pℓ

Dℓ−1[x1, xj ]− Dℓ−1[x1, xj ) = Dℓ−1(xj)
↑
xj

↑

Dℓ[x1, p
ℓ]− Dℓ−1[x1, p

ℓ)

Theorem (EPS 2002)

All strategy-proof, anonymous, and unanimous probabilistic rules are
determined by such fixed distributions (on R or a subset of R)
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How, in turn, is the rule determined by these distributions Ds ,
1 ≤ s ≤ n− 1 ?
Assume p1 ≤ . . . ≤ pn are the reported peaks

x1 xmpℓ−1 pℓ

Dℓ−1[x1, xj ]− Dℓ−1[x1, xj ) = Dℓ−1(xj)
↑
xj

↑

Dℓ[x1, p
ℓ]− Dℓ−1[x1, p

ℓ)

Theorem (EPS 2002)

All strategy-proof, anonymous, and unanimous probabilistic rules are
determined by such fixed distributions (on R or a subset of R)

Further results

For A finite, every such rule is a convex combination of deterministic
rules with the same properties (PRSS 2014)

Under the analogous conditions, for A ⊆ R
n with n > 1 we have

random dictatorship (DPS 2002)
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5. Probabilistic rules for single-peaked preferences on

graphs

(Joint work with Souvik Roy and Soumyarup Sadhukhan, 2019)
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5. Probabilistic rules for single-peaked preferences on

graphs

(Joint work with Souvik Roy and Soumyarup Sadhukhan, 2019)

We now assume that the alternatives are the nodes in a graph, and that
(single-peaked) preferences are related to this graph
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5. Probabilistic rules for single-peaked preferences on

graphs

(Joint work with Souvik Roy and Soumyarup Sadhukhan, 2019)

We now assume that the alternatives are the nodes in a graph, and that
(single-peaked) preferences are related to this graph
There are several possible interpretations

Literal interpretation: the graph is a network of roads or railway
tracks, and a public facility is to be located at some node in this
network (special case: line graph, as considered before)
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5. Probabilistic rules for single-peaked preferences on

graphs

(Joint work with Souvik Roy and Soumyarup Sadhukhan, 2019)

We now assume that the alternatives are the nodes in a graph, and that
(single-peaked) preferences are related to this graph
There are several possible interpretations

Literal interpretation: the graph is a network of roads or railway
tracks, and a public facility is to be located at some node in this
network (special case: line graph, as considered before)

A graph as a general means to express preferences. Think of some of
the nodes representing meals of different spiciness, and others
representing the amounts of meat. Preferences can be single-peaked
with respect to each category separately, but not between categories
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An example

t t

t

t

a b

c

d

N = {1, 2, 3}
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An example

t t

t

t

a b

c

d

N = {1, 2, 3}

Each preference is single-peaked with respect to some spanning tree.
E.g. if the peak is at b and edge {b, d} is left out, then b is preferred
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a b

c

d

N = {1, 2, 3}

Each preference is single-peaked with respect to some spanning tree.
E.g. if the peak is at b and edge {b, d} is left out, then b is preferred
to a, b is preferred to c and c to d

Each agent has weight 1
3 . If all agents have peaks in {b, c , d} then

random dictatorship

If there are one or two agents on a their weight is split evenly between
a and b

For instance, if 1 is at a, 2 at b, and 3 at d , then a gets probability
1
2 ·

1
3 = 1

6 , b gets probability (12 · 1
3) +

1
3 = 1

2 and d gets probability 1
3 .
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N = {1, . . . , n} is the set of agents

G = (A,E ) is a connected graph, where A is the finite set of
alternatives (nodes) and E ⊆ {{x , y} : x , y ∈ A} is the set of edges

A path in G between x , y ∈ A is a sequence x = x1, . . . , xk = y of
distinct alternatives such that {x j , x j+1} ∈ E for every
j = 1, . . . , k − 1

A spanning tree T = (A,ET ), where ET ⊆ E , is a graph such that
between every pair of alternatives x , y ∈ A there is a unique path,
denoted [x , y ]
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A preference R is a linear ordering on A. Its top alternative is denoted
by t(R)
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A preference R is a linear ordering on A. Its top alternative is denoted
by t(R)

A preference R is single-peaked if there is a spanning tree such that
for all distinct x , y ∈ A with y 6= t(R),

x ∈ [t(R), y ] =⇒ xRy

A probabilistic rule ϕ assigns to each profile of single-peaked
preferences probability distribution over A
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A probabilistic rule is unanimous it it assigns probability 1 to an alternative
if that alternative is the peak of every agent
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A probabilistic rule is unanimous it it assigns probability 1 to an alternative
if that alternative is the peak of every agent

We will characterize all strategy-proof and unanimous probabilistic rules
for connected graphs G = (A,E )

A leaf of G is an alternative a ∈ A that has degree 1, i.e., there is a unique
b ∈ A with {a, b} ∈ E

We consider to ‘extreme’ subcases namely

G = (A,E ) is a tree

G = (A,E ) has no leafs

The general case will follow from a ‘combination’ of these two cases
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6. Trees

Until further notice G = (A,E ) is a tree
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6. Trees

Until further notice G = (A,E ) is a tree

rb

ra

r r r

r

r c

d3 b

1 a c 2, 4

d 5

An leaf assignment µ assigns every agent to a leaf of the tree, and for
every µ there is a probability distribution βµ over A, such that

If all agents are at the same leaf then this leaf gets probability 1

If an agent moves to a different leaf then probability shifts along the
path from the former to the new leaf; the probabilities off this path
stay the same
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Such a monotonic collection B = (βµ)µ determines a probabilistic rule ϕB

for single-peaked preference profiles over G = (A,E )

Hans Peters Probabilistic social choice Moscow November 2019 29 / 40



Such a monotonic collection B = (βµ)µ determines a probabilistic rule ϕB

for single-peaked preference profiles over G = (A,E )

r

r

a

r
1, 2

r

e

3
r

4, 5

r

r

c

What is ϕB
e (RN)?

Hans Peters Probabilistic social choice Moscow November 2019 29 / 40



Such a monotonic collection B = (βµ)µ determines a probabilistic rule ϕB

for single-peaked preference profiles over G = (A,E )

r

r

a

r
1, 2

r

e

3
r

4, 5

r

r

c

What is ϕB
e (RN)?

r

r
1, 2, 3
a

r r

e
r

r

c
r

4, 5

Hans Peters Probabilistic social choice Moscow November 2019 29 / 40



Such a monotonic collection B = (βµ)µ determines a probabilistic rule ϕB
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Such a monotonic collection B = (βµ)µ determines a probabilistic rule ϕB

for single-peaked preference profiles over G = (A,E )

r

r

a

r
1, 2

r

e

3
r

4, 5

r

r

c

What is ϕB
e (RN)?

r

r
1, 2, 3
a

r r

e
r

r

c
r

4, 5

r

a
r

1, 2

r r

e
r

r

c
r

3, 4, 5

Now ϕB
e (RN) = βµ([e, a]) − βµ̂((e, a])
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Theorem for trees

Let G = (A,E ) be a tree and let ϕ be a probabilistic rule defined for all
single-peaked preference profiles on G . Then ϕ is unanimous and
strategy-proof if and only if there is a monotonic collection B = (βµ)µ
such that ϕ = ϕB
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Theorem for trees

Let G = (A,E ) be a tree and let ϕ be a probabilistic rule defined for all
single-peaked preference profiles on G . Then ϕ is unanimous and
strategy-proof if and only if there is a monotonic collection B = (βµ)µ
such that ϕ = ϕB

[In the proof we show that unanimity and strategy-proofness imply
peaks-onliness: ϕ depends only on the peaks of the preferences. We use a
result of Chatterji and Zeng (2018). In turn, this implies that ϕ is
uncompromising: if an agent shifts its peak to another alternative then all
probabilities off the path between the the old and the new peak stay the
same (Border and Jordan, 1983)]
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7. Leafless graphs

We first consider 2-connected graphs: G is 2-connected if for each pair of
distinct alternatives a and b there is a cycle containing a and b

Clearly, a 2-connected graph is leafless
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Clearly, a 2-connected graph is leafless

A probabilistic rule ϕ is a random dictatorship if there are α1, . . . , αn ≥ 0
with

∑
i∈N αi = 1, such that for every preference profile RN and every

a ∈ A we have:
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7. Leafless graphs

We first consider 2-connected graphs: G is 2-connected if for each pair of
distinct alternatives a and b there is a cycle containing a and b

Clearly, a 2-connected graph is leafless

A probabilistic rule ϕ is a random dictatorship if there are α1, . . . , αn ≥ 0
with

∑
i∈N αi = 1, such that for every preference profile RN and every

a ∈ A we have:
ϕa(RN) =

∑

i∈N:t(Ri )=a

αi

Theorem for 2-connected graphs

Let G = (A,E ) be a 2-connected graph and let ϕ be a probabilistic rule
defined for all single-peaked preference profiles on G . Then ϕ is
unanimous and strategy-proof if and only if it is a random dictatorship
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Any (hence also a leafless) graph can be decomposed into maximal
2-connected subgraphs, giving rise to a so-called block-tree (Menger, 1927)
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A unanimous and strategy-proof probabilistic rule generates random
dictatorships on these maximal 2-connected subgraphs

We show that these are the same random dictatorships and, moreover,
they spread out over the rest of the graph

Theorem for leafless graphs

Let G = (A,E ) be a leafless graph and let ϕ be a probabilistic rule defined
for all single-peaked preference profiles on G . Then ϕ is unanimous and
strategy-proof if and only if it is a random dictatorship
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A random dictatorship ϕ with weights α1, . . . , αn is a special case of rule
ϕB , for a specific collection B = (βµ)µ, as follows
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coincides with ϕB for this collection B = (βµ)µ
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leaf a let βµ(a) =
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Say N = {1, 2, 3}, (α1, α2, α3) = (16 ,
1
3 ,

1
2 )

r

a

r

r

c

1, 3
r

d

2
r

b

r

r

r r

Hence ϕc(RN) =
1
6 + 1

2 = 2
3 , ϕd (RN) =
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And ϕB
d (PN) = βµ([d , a])− βµ̂((d , a]) = 1− 1

6 −
1
2 = 1

3 = ϕd (PN)
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8. General connected graphs

Finally, G = (A,E ) is an arbitrary connected graph
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r r r
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rr
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r r r

r

The subgraph in the red ellipse is the maximal leafless subgraph

The parts in the blue circles are branches (trees)

Every connected graph can be split up this way

Hans Peters Probabilistic social choice Moscow November 2019 35 / 40



We take an arbitrary spanning tree T of G
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We consider again monotonic collections B = (βµ)µ, plus random
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We consider again monotonic collections B = (βµ)µ, plus random
dictatorship weights α1, . . . , αn, with additional conditions

(a) For any βµ, the sum of the probabilities on a branch equals the sum
of the αi of agents i assigned to leafs of that branch
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We take an arbitrary spanning tree T of G
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We consider again monotonic collections B = (βµ)µ, plus random
dictatorship weights α1, . . . , αn, with additional conditions

(a) For any βµ, the sum of the probabilities on a branch equals the sum
of the αi of agents i assigned to leafs of that branch

(b) Any leaf of T in the leafless red subgraph gets sum of the αi of
agents assigned to that leaf
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Theorem for general connected graphs

Let G = (A,E ) be a connected graph and let ϕ be a probabilistic rule
defined for all single-peaked preference profiles on G . Fix an arbitrary
spanning tree T of G . Then ϕ is unanimous and strategy-proof if and only
if there are weights α1, . . . , αn and a monotonic collection B = (βµ)µ
satisfying (a) and (b) above such that ϕ = ϕB
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An example
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Let N = {1, 2, 3}, α1 = α2 = α3 =
1
3 , and let each βµ assign equal

probabilities to a and b if the number of agents assigned to a is below 3
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An example
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a b

c

d

e

Let N = {1, 2, 3}, α1 = α2 = α3 =
1
3 , and let each βµ assign equal

probabilities to a and b if the number of agents assigned to a is below 3

Then, for instance, if RN is such that t(R1) = a, t(R2) = c , and
t(R3) = d , then ϕ assigns (16 ,

1
6 ,

1
3 ,

1
3 , 0) to (a, b, c , d , e)
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9. Concluding remarks

We have characterized the set of all unanimous and strategy-proof rules
when preferences are single-peaked with respect to a connected arbitrary
graph
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9. Concluding remarks

We have characterized the set of all unanimous and strategy-proof rules
when preferences are single-peaked with respect to a connected arbitrary
graph

About deterministic versus probabilistic rules:

Deterministic rules are a special case of probabilistic rules

Clearly, random dictatorship rules are convex combinations of
deterministic rules

This result extends to probabilistic rules for line graphs (PRSS 2014)

It no longer holds for other trees or for general connected graphs
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The end
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