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Abstract

The main purpose of this work is to study the limits of the Calogero-Sutherland system in
the scalar and spin cases when the number of particles N tends to infinity. In each case we
study the bosonic and fermionic limit corresponding to the symmetric and antisymmetric
wave functions of the system.

For the fermionic limit of the scalar system, we derive a limit expression for the
Dunkl operator via free fermionic fields, see Theorem 2.1, which allows us to present
the construction of commuting Hamiltonians in the Fock space, see Proposition 2.4. In
the case of the value of the coupling constant β = 0, we get an explicit formula for the
generating function of Hamiltonians that differs from the previously known ones. The first
one is given as a bosonic normal ordered answer, see Proposition 3.1. The second formula
is given in terms of simple integral operator, but is not normal ordered, see Proposition
3.2.

The spin CS system has the Yangian symmetries. In fact the action of Yangian
generators as well as Hamiltonians in scalar case do not form a projective system. So
we study the projective properties of the Yangian action and formulate the results in
Proposition 4.1 and Proposition 4.2.

For spin system we realize the bosonic and fermionic limit in a multicomponent Fock
space. We introduce the maps to finite system and construct the pullback of finite Dunkl
operators in terms of vertex operators in bosonic case and in terms of free fermion fields in
fermionic case, see Proposition 5.1 and Proposition 6.1. The limit of Dunkl operator allows
to construct the corresponding Yangian representation in the Fock space, see Theorem 5.1
and Theorem 6.1. In the bosonic case we investigate the classical limit, see Propositions
5.3 and 5.4.

Historical review

The system of one-dimensional particles with inverse-square pairwise interactions has
played a great role in mathematical and theoretical physics for the past 40 years. This
model arises and has different applications in various fields of physics, such as condensed
matter physics, spin chains, gauge theory, and string theory and constitutes the main
example of integrable and solvable many-body system. In the literature, it is labeled by
the names of F. Calogero, B. Sutherland and Y. Moser. The system of identical particles
scattering on the line with inverse-square potential was as first introduced by F. Calogero
in 1971 [7]. Its Hamiltonian is

H =
N∑
i=1

p2
i

2
+
∑
i<j

g

(qi − qj)2
.

where we use the standard notations of momentums and coordinates. Here the particle
masses are scaled to unity , g is the coupling constant. We consider a periodic version
of the system (for example, with the period 2π), assuming that infinitely many images of
particles interact, then the two-body potential becomes

V (x) =
∞∑

n=−∞

g

(x+ 2πn)2
=

g

2 sin x
2

.
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This was introduced by B. Sutherland in 1971 [44]. It is convenient to use the following
parametrization of the coupling constant:

g = β(β − 1).

We consider a system of N identical particles on a circle of length L, which we will call
the quantum Calogero-Sutherland system, with the following Hamiltonian

H = −
N∑
i=1

(
∂

∂qi

)2

+ 2
(π
L

)2
N∑
i<j

β(β − 1)

sin2
(
π
L

(qi − qj)
) , (1)

which is the main point of our research. It is natural to consider periodic wave functions
of the system

φ(q1, . . . , qi + L, . . . , qN) = φ(q1, . . . , qi, . . . , qN).

The function
φ0(q) = φ0(q1, . . . , . . . , qN) =

∏
i<j

|sin(
π

L
(qi − qj))|β

represents the vacuum state with eigenenergy [18]

E0 = (πβ/L)2N(N2 − 1)/3.

Applying the transformation φ0(q)−1HCSΦ0(q) and passing to the collective variables

xi = e
2πiqi
L , we arrive to the effective Hamiltonian

H =
N∑
i=1

(
xi

∂

∂xi

)2

+ β
∑
i<j

xi + xj
xi − xj

(
xi

∂

∂xi
− xj

∂

∂xj

)
. (2)

The Hamiltonian (2) is a differential-difference operator. It turns out that there is a
family of commuting differential-difference operators that includes (2). This family can
be constructed using the Heckman-Dunkl operators [11, 12]. We give the expressions of
them in the form suggested in [37]:

D
(N)
i = xi

∂

∂xi
+ β

∑
j 6=i

xi
xi − xj

(1−Kij) , (3)

where Kij is a permutation operator. Symmetric polynomials in D
(N)
i commute [12].

Denote by

H
(N)
k = Res+

(∑
i

(
D

(N)
i

)k)
, (4)

where Res+ means a restriction on the space of symmetric polynomials. The operators

H
(N)
k can be chosen as the higher Hamiltonians of the Calogero-Sutherland model. In

particular, H = H
(N)
2 .

The eigenfunctions of commuting operators H
(N)
k are symmetric polynomials in N

variables with the parameter α = 1
β
, which are called Jack polynomials [16]. They are

parametrized by the partitions and constitute a generalization of Schur polynomials and
a special case of symmetric Macdonald polynomials with two parameters q, t [24, 25].
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Putting q, t → 1 and assuming that q = tα, we obtain Jack polynomials. It is known a
family of difference operators for which Macdonald polynomials are eigenfunctions [24]. In
the case of Jack polynomials these operators were introduced by J. Sekiguchi [42] and A.
Debiard [9]. The Sekiguchi-Debiard operators are degeneration of Macdonald operators.
In fact, they do not coincide with the operators given in (4), but can be expressed as a
polynomial in (4).

The construction of Macdonald polynomials and corresponding commuting difference
operators is also known for an arbitrary root system [8, 26, 27]. A generalization of Jack
polynomials for arbitrary root systems was introduced by G. Heckman and E. Opdam
and is called Jacobi polynomials associated with the root system [13, 14, 15, 35]. Jack
polynomials is associated with the root system An. We consider only this case. We remark
that the Calogero- Sutherland system is an integrable system corresponding to the root
system AN−1, following M. Olshanetsky and A. Perelomov [34].

Naturally, there is a question about the description of the model where the number
of particles N tends to infinity. In papers [2, 4, 5, 17, 37] from the 80’s to early 90’s
there were presented the explicit answers for the limit of the second Hamiltonian (2)
in the bosonic Fock space. About 20 years later, the general construction of commuting
Hamiltonians in the bosonic Fock space was presented by M. Nazarov and E. Sklyanin [32]
and independently by A. Veselov and A. Sergeev [43]. Developing Macdonald’s ideas, M.
Nazarov and E. Sklyanin in [32] found the expressions for Sekiguchi-Debyard operators in
the limit where N tends to infinity. The main tool was the theory of symmetric functions.
Symmetric functions can be considered as symmetric polynomials in infinite number of
variables. The zero sector of the bosonic Fock space can be identified with the ring of
symmetric functions, which is formally defined as the projective limit of rings of symmetric
polynomials. Thus there was constructed a family of operators whose eigenfunctions are
Jack symmetric functions.

In [31],[43] another construction of the limit for Calogero-Sutherland model in the
bosonic Fock space was presented. The main idea was to use the family of Dunkl operators
(3) as a quantum L-operator of the system. For Calogero systems the L-operator was
already known [30] and was similar to the action of the family of Dunkl operators, written
in matrix form in a suitable basis. Thus a precise construction of higher Hamiltonians in
the bosonic Fock space was suggested and this allowed to show that the limiting system
is integrable. The resulting system can be considered as a quantum analogue of the
integrable hierarchy of the Benjamin-Ono equation [1, 38].

For special value of the coupling constant the symmetric Jack functions become
Schur functions , and the Benjamin-Ono equation respectively degenerates into the dis-
persionless KdV equation (or the so-called Burger’s equation). The exact construction of
commuting Hamiltonians of the quantum dispersionless KdV equation can be obtained
directly from the boson-fermion correspondence and was presented by A. Pogrebkov in
[36]. Hamiltonians can be obtained recurrently [36] or in terms of the generating function
[33, 41].

We consider the spin Calogero-Sutherland systems which are generalizations of these
models, where extra degrees of freedom are involved, which are usually interpreted as
spin variables. Integrability of the Calogero system has been studied in numerous papers,
see for example [23]. The Calogero-Sutherland spin system is superintegrable due to
N. Reshetikhin [39, 40]. In this paper, we will use a special case of the spin model
corresponding to the root system AN and the representation of the higher weight of slN .

4



In this case, the numerator of the potential of Hamiltonian (1) will be β(β −Kij), where
Kij is the coordinate exchange operator of i-th and j-th particles, and the dependence on
spin is implicit.

The spin CS system has the Yangian symmetry, in other words the Hamiltonians
of the Calogero-Sutherland system commute with the Yangian action, moreover they are
expressed through the central elements of the Yangian elements. The presence of Yangian
symmetry is directly related to the Dunkl operators. They satisfy the relations of the
degenerate affine Hecke algebra, which in turn allows us to construct the representation
of the Yangian Y(gls) according to the general construction [3, 10]. Thus, the higher
Hamiltonians of the system can be chosen as the center of the Yangian, namely, as the
coefficients of the quantum determinant.

In the symmetric case the limit expression N for the second Hamiltonian in collective
variables was obtained in [5]. The antisymmetric limit of the spin system was studied by
D. Uglov in [45, 47]. D. Uglov studied the projective properties of the Yangian action for
a finite system, namely, he presented a formula of renornalization of the transfer matrix
of the Yangian in order form a projective system and the action was stabilized. Also D.
Uglov decomposed the corresponding Fock space into irreducible components with respect
to the Yangian action and found the spectrum of Hamiltonians.

1 Bosonic limit of Calogero-Sutherland system

In the first section we review recent results [31, 43] concerning the bosonic limit of
Calogero-Sutherland system and rewrite them in a language of vertex operators. We use
the notations differing from [31, 43] but more convinient for our purpose and clearifying
the further exposition.

We begin with the description of the finite CS system restricted on the ring of sym-
metric polynomials in N variables. The main idea is to regard the equivariant Heckman-
Dunkl operators as a quantum L-operator acting on the space of polynomial functions
of one variable with coefficients being symmetric polynomials of the remaining N − 1
variables. Clearly, the Dunkl operator D

(N)
i itself preserves the symmetry involving all

variables other than xi and therefore it acts on the space ΛN,i
+ of functions symmetric in

all variables except xi.
The action of the higher Hamiltonian (4) can be obtained by the following procedure:

we start with a symmetric polynomial f(x1, . . . , xN) ∈ ΛN
+ and construct a vector of its

N copies. The action the k-th power of Dunkl operator (D̃
(N)
i )k provides a family of N

equivariant functions: fi(x1, . . . ;xi; . . . xN) = (D̃
(N)
i )kf(x1, . . . , xN) ∈ ΛN,i

+ such that

• fi(x1, . . . ;xi; . . . xN) is a polynomial symmetric in all variables except xi

•
Kijfi = fj. (5)

For g(x1, . . . ;xi; . . . xN) ∈ ΛN,i
+ we introduce an operator of its symmetrization

EN g =
N∑
j=1

Kijg.

5



Then we apply EN to a function fi from an equivariant family (5):

EN fi =
N∑
j=1

fj

This procedure can be illustrated by the following matrix formula:

H̃k =
(
1, 1, . . .

)

x1

∂
∂x1

+ β
N∑
i=2

x1

x1 − xi
−β x1

x1−x2 . . .

−β x2
x2−x1 x2

∂
∂x2

+ β
∑
i 6=2

x2

x2 − xi
...

... . . .
. . .



k

f

f
...
f


,

which resembles the Lax matrix (see [30]) for CS system.

We reformulate the procedure in terms of the Newton polynomials p
(N)
k = xk1+· · ·+xkN

and express the Heckman-Dunkl operators via finite analogous V+(z), V ′+(z) of the vertex
operators Φ(z), Φ−1(z) and the negative part of derivative of the bosonic field ϕ−(z),
given by the formulas:

Φ(z) = exp

(∑
n>0

zn
∂

∂pn

)
, ϕ−(z) =

(∑
n≥0

pn
zn

)
.

To do that we present a symmetric polynomial in the following form

f(p
(N)
1 , p

(N)
2 , p

(N)
3 , . . . )

The operator V+(xi) changes each occurrence of a Newton sum p
(N)
k by p

(N−1)
k + xki , so

V+(xi)f ∈ ΛN,i
+ is a Taylor decomposition of polynomial f by variable xi.

To symmetrize the function F (xi, {p(N−1)
n }) ∈ ΛN,i

+ we use the the formal intagral

EN F ({pn}) =

∮
dξ

ξ
ϕ−(ξ)

(
V ′+(ξ)F

)
(ξ; {pn}).

which counts the residue at infinity. The operator V ′+(ξ) changes each occurrence of a

Newton sum p
(N−1)
k by p

(N)
k − ξk. Then the integral

∮
dξ
ξ
ϕ−(ξ) changes each item ξk by

p
(N)
k .

Further we realize the bosonic limit in the extended ring of symmetric functions Λ̂.
Let Λ̂ = Λ[p0] be a ring symmetric functions [24] extended by a free variable p0.The space
Λ̂ is an irreducible representation of the Heisenberg algebra H, generated by the elements

pn and
∂

∂pn
and can be regarded as a polynomial version of the Fock space. It contains

the vacuum vector |0〉+, such that

∂

∂pn
|0〉+ = 0, n = 0, 1, . . . .

The dual vacuum vector +〈0| satisfies the condition

+〈0|pn = 0, n = 0, 1, . . . .
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We define a projection π̃N : Λ̂ → ΛN
+ for an element |v〉+ ∈ Λ̂ as the following matrix

element:

π̃N |v〉+ = +〈0|Φ(xN) . . .Φ(x2)Φ(x1)|v〉+.

This projection maps pk to the corresponding Newton polynomial in N variables:

π̃N : pk → p
(N)
k =

N∑
i=1

xki , p0 → N.

We define a linear map S : Λ̂⊗ C[z]→ Λ̂ as

SF ({pn}) =

∮
dξ

ξ
ϕ−(ξ)Φ−1(ξ)F (ξ, {pn}).

and prove that the map S is the pullback of the finite symmetrization EN under the map
π̃N :

EN π̃N−1F (z, {pn}) = π̃NS(F (z, {pn}).

We present the main result of this section:

Theorem 1.1 The operator D̃ : Λ̂⊗ C[z]→ Λ̂⊗ C[z] given by

D̃(F (z, {pn})) = z
∂

∂z
F (z, {pn}) + βz

∮
dξ

ξ2

1

1− z
ξ

Φ∗(ξ)Φ(z)F (ξ, {pn}).

is a limit of Dunkl operators D̃
(N)
i .

In other words, the operator D̃ is a pullback of D̃
(N)
i under the map π̃N . This result

was formulated before in [31, 43] in other terms, here we present the formula in the lan-
guage of vertex operators. This theorem implies the following

Proposition 1.2 The operators H̃k = SD̃kΦ(z) : Λ̂→ Λ̂,

H̃k : Λ̂
Φ(z)−−→ Λ̂⊗ C[z]

Dk−→ Λ̂⊗ C[z]
S−→ Λ̂,

generate a commutative family of Hamiltonians of the limiting system [31, 43].

Also we show that in classical limit this system becomes the Benjamin-Ono hierarchy
following [31].

2 Fermionic limit of CS system

The second section is devoted to the fermionic limit of Calogero-Sutherland model, we
describe the results of paper [19]. In this case the particles are fermions and we deal with
the antisymmetric wave functions.

As well as in bosonic case we begin with the description of the CS system restricted
to the space of antisymmetric polynomials ΛN

− in terms of Heckman–Dunkl operators. We
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then express Heckman–Dunkl operators via finite analogs V−(z)V+(z) and V ′−(z)V ′+(z) of
vertex operators Ψ(z) and Ψ∗(z), where

Ψ(z) = zp0 exp

(
−
∑
n>0

pn
nzn

)
exp

(∑
n≥0

zn
∂

∂pn

)

Ψ∗(z) = z−p0 exp

(∑
n>0

pn
nzn

)
exp

(
−
∑
n≥0

zn
∂

∂pn

)
.

To do this we present any antisymmetric polynomial in N variables as∏
i>j

(xi − xj)f(p
(N)
1 , p

(N)
2 , p

(N)
3 , . . . )

where p
(N)
k = xk1 + . . . + xkN . The operator V+(x1) changes each occurrence of p

(N)
k by

p
(N−1)
k + xk1, while the operator

V−(x1) = xN1 exp

(
−
∑
n>0

p
(N−1)
n

nxn1

)

is the multiplication by
∏N

i=2(x1 − xi), so that the application of V−(x1)V+(x1) to an
antisymmetric polynomial g(x1, ..., xN) is just its Taylor decomposition with respect to
x1. On the other hand, the operators V ′−(z)V ′+(z) are used for the total antisymmetrization
of the functions, antisymmetric with respect to all variables except one.

Then we realize a limit in the polynomial Fock space Λ̂. To each vector |v〉 of Λ̂
we attach a family {π̄N(v)} of antisymmentric functions of N variables, given by matrix
elements

π̄N(v) = 〈0|Ψ(xN) · · ·Ψ(x1)|v〉. (6)

The goal is to construct operators in the space Λ̂ which are compatible with finite CS
Hamiltonians with respect to evaluation maps (6). This is done following E.Sklyanin
ideology [31, 21]: we introduce an auxillary space U ⊂ C[z, z−1]]⊗ Λ̂ and its evaluations
to the spaces of polynomials antisymmetric with respect to all variables except one. We
present operators, acting in U which are compatible with the above evaluation maps.

The key point of the construction is an operator of integral average A : C[z, z−1]]⊗
Λ̂ → Λ̂, which is the limiting analogue of finite antisymmetrization. Let F (z) ∈
C[z, z−1]]⊗ Λ̂, then we define AF ∈ Λ̂ by the following formula:

AF =
1

(2πi)2

∫
z	0

dz

∫
u	z

du
Ψ∗(u)F (z)

u− z
.

In Lemma 2.3 we show that A : U → Λ̂ is a pullback of finite antisymmetrization.
Further we define an operator D : C[z, z−1]] ⊗ Λ̂ → C[z, z−1]] ⊗ Λ̂ by the following

formula

DF (z) = z
∂

∂z
F (z) + β

1

(2πi)2

∫
w	0

dw

∫
u	w

du

(u− w)

Ψ∗(u)(
1− w

z

) (Ψ(w)F (z)−Ψ(z)F (w)) .
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and prove

Theorem 2.1 The operator D acting on the auxillary space U is a pullback of Heckman–
Dunkl operators D

(N)
i under the map π̄N .

The Hamiltonians of finite system with N particles in antisymmetric case can be
expressed by meas of Dunkl operators analogously (4):

H̄
(N)
k = Res−

(∑
i

(
D

(N)
i

)k)
,

where Res− means the restriction on the space of antysymmetric polynomials ΛN
− . We

construct the limiting Hamiltonians Hk which are the pullbacks of finite Hamiltonians
H̄

(N)
k :

H̄
(N)
k π̄ = π̄Hk.

We define the operators
Hk = ADkΨ(z) : Λ̂→ Λ̂ (7)

and formulate

Proposition 2.4 The operators Hk generate a commutative family of operators in the
space Λ̂.

The constructed Hamiltonians form a commutative family of operators in the space
Λ̂. Moreover, they commute inside the Heisenberg algebra and thus can be used as well
in its other representations, for instance, in the bosonic Fock space. We can define the
projection πN : F → ΛN

− similar to (6)

πN(v) = 〈0|Ψ(xN) · · ·Ψ(x1)|v〉.

In fact it is nonzero only on the N -th sector FN of the Fock space. Now the constructed
Hamiltonians Hk are compatible with respect to the maps πN , the commutativity πNHk =
H̄

(N)
k πN is nontrivial on the N -th sector FN . We reformulate the same construction in the

fermionic Fock space represented as space of semi-infinite wedges, we define the projection
analogous to πN which acts as a “cutting” of the wedge.

3 Generating functions of commuting Hamiltonians

for some special values of coupling constant

In this section we consider the special case β = 0 of antisymmetric limit. (we use the
notations for Hamiltonians as in previous section, where we assume β = 0). In this case
the Hamiltonians (7) can be simply expressed as operators on the fermionic Fock space

Hn =
∑
k

...knψ∗kψk
....

The boson-fermion correspondence allows to express Hn in the bosonic Fock space, it was
done by A. Pogrebkov [36] for the additive version and later by P. Rossi [41] on the circle.
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Here we derive the two formulas for the densities for Hn that was not known before,
we present the results given in [28]. In case β = 0 the Dunkl operator is simply the
differential operator

(
z ∂
∂z

)
and the Hamiltonians (7) are expressed from the densities

Hk = 1
2πi

∫
z	0

dz
z
Wk(z) which is given by

Wk(z) =
1

2πi

∫
u	z

du
Ψ∗(u)

u− z

(
z
∂

∂z

)k
Ψ(z).

These Hamiltonians are the pullbacks of simple differential operators H̄
(N)
k =

∑N
i=1

(
xi

∂
∂xi

)k
.

We derive first formula by calculating the integral in variable u in Wk(z) using the bosonic
calculus. This gives the following answer

Proposition 3.1 The exponential generating function W (z, x) for densities Wk(z) is given
by the formula

W (z, x) =
∞∑
k=0

xk

k!
Wk(z) =

: exp
(
x
(
z ∂
∂z

+ ϕ(z)
))

: −1

ex − 1

and satisfies the differential equation

∂W (x, z)

∂x
=: ϕ(z)W (z, x) : +z

∂W (x, z)

∂z
− exW (z, x)− ϕ(z)

ex − 1
.

Here the exponent of operator means the formal series acting on the identity:

exp

(
x

(
z
∂

∂z
+ ϕ(z)

))
= 1 + xϕ(z) +

x

2!

(
ϕ2(z) + z

∂

∂z
ϕ(z)

)
+ . . .

The second formula can be obtained by fermionic calculus and expressed in terms of
integral operator. We introduce an integral operator K : F⊗C[[z, z−1]]→ F⊗C[[z, z−1]],
given by the formula

K [f(z)] =
1

2πi

∫
w	z

dw

w − z
ϕ(w)f(z),

here f(z) ∈ F ⊗ C[[z, z−1]]. Then we present the explicit formulas for the Hamiltonians
by the following

Proposition 3.2 The exponential generating function for the Hamiltonians is given by

H (x) =
1

2πi(ex − 1)

∫
z	0

dz
exK − 1

K

[
ϕ(z)

z

]
.

The Hamiltonians can be expressed by the formula:

Hn =
1

2πi

∫
z	0

dz

(
1

n+ 1

n∑
l=0

(
n+ 1

l + 1

)
Bn−lK

l

[
ϕ(z)

z

])
. (8)
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Here Bn mean the Bernoulli numbers and the operator exK−1
K

means a formal power series
in K:

exK − 1

K
= x+

x2

2
K +

x3

6
K2 +

x4

24
K3 + . . . .

We note that the answer for the Hamiltonians given in Proposition 3.2 is not normal
ordered.

The Hamiltonians Hn commute, thus we can derive an hierarchy of time evolutions
defined by these commutative flows as

ϕtn(z) = [Hn, ϕ(z)].

We derive the explicit formulas and formulate the result by the following

Lemma 3.5 The hierarchy of time evolutions defined by commutative family (8) is given
by

ϕtk(z) =
1

2
B(x) :

∫
x	0

dx
k!

xk+1
sinh

(
xz

∂

∂z

)
exS(xz ∂

∂z
)ϕ(z) : .

The classical limit of this hierarchy is the dispersionless KdV hierarchy on the circle [36].

4 Dunkl operators and representation of the Yangian

Y(gls)

The phase space of the quantum spin Calogero-Sutherland (CS) system consists of func-
tions with values in vector space (Cs)⊗N while the dependence on spin in the Hamiltonian

HCS = −
N∑
i=1

(
∂

∂qi

)2

+
N∑

i,j=1

β(β −Kij)

sin2(qi − qj)
,

is implicit [18]. Here Kij is the coordinate exchange operator of particles i and j. After
conjugating by the function

∏
i<j|sin(qi− qj)|β which represents the degenerated vacuum

state, and passing to the exponential variables xi = e2πiqi and the parameter α = β−1

more common in mathematical literature, we arrive after simple rescaling to the effective
Hamiltonian

H = α
N∑
i=1

(
xi

∂

∂xi

)2

+
∑
i<j

xi + xj
xi − xj

(
xi

∂

∂xi
− xj

∂

∂xj

)
− 2

∑
i<j

xixj

(xi − xj)2 (1−Kij) ,

which we restrict to the spaces Λs,N
± of total invariants or respectively skewinvariants of

the symmetric group SN in the space V ⊗N ,

Λs,N
± =

(
V ⊗N

)(±)
.

Here V = C[z]⊗ Cs. The (skew)invariants are taken with respect to the diagonal action
of the symmetric groups, σij 7→ KijPij, where Kij is as above and Pij is the permutation
of i-th and j-th tensor copy of the vector space Cs.
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Further we use the Heckman–Dunkl operators D(N)
i : V ⊗ Λs,N−1

± → V ⊗ Λs,N−1
± in

the form suggested by Polychronakos [37]:

D(N)
i = αxi

∂

∂xi
+
∑
j 6=i

xi
xi − xj

(1−Kij) .

These operators satisfy the relations

KijD(N)
i = D(N)

j Kij,

[D(N)
i ,D(N)

j ] = (D(N)
j −D(N)

i )Kij,

which coincide with the relations of the degenerate affine Hecke algebra HN . By Drin-
feld duality [10], this representation of degenerate affine Hecke algebra transforms to the
representation of the Yangian Y(gls) in Λs,N

± , see [3, 22]

tab(u) = δab +
∑
i

Eab,i

u±D(N)
i

. (9)

Here Eab,i describes the action of gls on i-th tensor component,

Eab,i

(
. . .⊗ (ec ⊗ xk)︸ ︷︷ ︸

i

⊗ . . .
)

= δbc

(
. . .⊗ (ea ⊗ xk)︸ ︷︷ ︸

i

⊗ . . .
)
.

and tab(u), a, b = 1, . . . s,

tab(u) = δab +
∞∑
i=0

tab,iu
−i−1

are generating functions of the generators tab,i of the Yangian Y(gls). The defining rela-
tions of Y(gls) are [29]

[tab(u), tcd(v)] =
tcb(u)tad(v)− tcb(v)tad(u)

u− v
.

Then the higher Hamiltonians of spin CS system can be chosen as coefficients of the
quantum determinant

q det t(u) =
∑
σ∈Sm

(−1)sgn(σ)tσ(1),1(u)tσ(2),2(u− 1)...tσ(m),m(u−m+ 1).

which generate the center of the Y(gls) [6, 29].
Our main goal is to construct the limit of the above Yangian action when N tends to

infinity. In particular, we get the limits of the above commuting family of Hamiltonians.
To construct the limit we need investigate the projective properties of the Yangian actions
in phase spaces Λs,N

± of CS model. Such an analysis was done by D.Uglov in [46], but our
description differs from that of [46].

The rings ΛN
+ of scalar symmetric functions form the projective system with respect

to the maps

ω+
N : ΛN

+ → ΛN−1
+ , ω+

Nf(x1, . . . , xN) = f(x1, . . . , xN−1, 0).
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Analogously, the spaces ΛN
− of scalar skewsymmetric functions form the projective system

with respect to the maps

ω−N : ΛN
− → ΛN−1

− , ω−Nf(x1, . . . , xN) = (x1 . . . xN−1)−1f(x1, . . . , xN−1, 0).

Contrary to the ring of symmetric functions, the space Λ̂ is not the projective limit
of the spaces of (skew)symmetric functions due to the presence of zero mode p0. On the
other hand, CS Hamiltonians Hk themselves in both symmetric and skewsymmetric cases
do not form a projective family since they do not respect natural projections

ω+
NH

(N+1)
k 6= H

(N)
k ω+

N .

Let

T (u) =
s∑

a,b=1

Eab ⊗ tab(u) ∈ End(Cs)⊗ Y(gls)[u
−1]

be the generating matrix of Yangian generators. Denote by TN(u) the transfer matrix
corresponding to the representation (9) , here index N denotes the number of particles.
In scalar case (s = 1) the transfer matrix TN(u) is the generating function of the Hamil-
tonians

TN(u) = 1 +
1

u
H

(N)
0 +

1

u2
H

(N)
1 +

1

u3
H

(N)
2 + . . .

We formulate the projective property of TN(u) in scalar symmetric and skewsymmetric
case

Proposition 4.1 (i) In scalar symmetric case we have the following identity of operators
from Λ̃N

+ [u−1]→ Λ̃N−1
+ [u−1] :

ω+
NTN(u) =

u+ 1

u
TN−1(u+ 1)ω+

N ;

(ii) In scalar skewsymmetric case the following identity of operators from Λ̃N
− [u−1] →

Λ̃N−1
− [u−1] holds:

ω−NTN(u) =
u+ 1

u
TN−1(u− α− 1)ω−N .

Iterating the relations from Proposition 4.1 we see, that the renormalized transfer matrices
T̃N(u) and T̄N(u) in symmetric and skewsymmetric case

T̃N(u) =
u−N
u

TN(u−N) T̄N(u) = TN(u+ γN)
N∏
k=1

u+ kγ

u+ kγ + 1
,

are compatible with projection maps ω+
N and ω−N , respectively

ω+
N T̃N(u) = T̃N−1(u)ω+

N ω−N T̄N(u) = T̄N−1(u)ω−N

Here γ = α + 1. The coefficients of renormalized transfer matrices can be chosen as a
projective system of Hamiltonians of CS system.
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The statement of Proposition 4.1 can be generalized to skewsymmetric spin case.
Regard an element f of Λs,N

− as (Cs)⊗N valued function f = f(x1, x2, . . . , xN). We define

a linear map ωN : Λs,N
− → Λs,N−s

− by the formula

ω−N(f) = (x1 · · ·xN−s)−1
(
1⊗(N−s) ⊗ e⊥1 ⊗ e⊥2 · · · ⊗ e⊥s

)
f(x1, . . . , xN−s, 0, . . . 0)

and formulate the following

Proposition 4.2 The following identities of operators from Cs ⊗ Λ̃s,Ns
− [u−1] → Cs ⊗

Λ̃
s,(N−1)s
− [u−1] holds:

ω−NsTNs(u) =
u+ 1

u
T(N−1)s(u− α− s)ω−Ns.

Set γ = α + s and

T̄Ns(u) = TNs(u+ γN)
N∏
k=1

u+ kγ

u+ kγ + 1
,

treated as asymptotical series in u−1. Then T̄Ns(u) satisfy compatibility conditions

ω−NsT̄Ns(u) = T̄(N−1)sω
−
Ns

and form a projective system of transfer matrices.

5 Bosonic limit of spin Calogero-Sutherland system

In this section we observe the results of [21] using slightly different language.
Let Hs be the Heisenberg algebra with generators ac,k, c = 1, . . . , s, k = 0, 1, ... and

(qc)
±1, which satisfy the relations

[ac,k, ad,l] = kδcdδk,−l, qcad,k = (ad,k + δcdδk0)qc.

Let Λ̂(s) be a representation of the Heisenberg algebra Hs with the vacuum vector |0〉+
such that

ac,k|0〉+ = 0, c = 1, ..., s, k > 0, qc|0〉+ = |0〉+, c = 1, ..., s.

Denote by +〈0| the vector of the dual space, which satisfies the relations

+〈0|ac,k = 0, c = 1, ..., s, k ≤ 0.

For any |v〉+ ∈ Λ̂(s) consider the matrix element π̃N(|v〉+) ∈ V ⊗N

π̃N(|v〉+) = +〈0|Φ(zN)Φ(zN−1) · · ·Φ(z1)|v〉+,

where

Φc(z) = exp

(∑
n>0

ac,n
n
zn

)
qc : Λ̂(s) → Λ̂(s) ⊗ C[z], c = 1, ..., s,

Φ(z) =
∑
c

Φc(z)⊗ ec : Λ̂(s) → Λ̂(s) ⊗ V,
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are the vertex operators and by Φ(zk) we shortly denote Φ(zk) ⊗ 1⊗k−1. We show that
π̃N(|v〉+) ∈ Λs,N

+ is symmetric invariant.

Our goal is to pull back the Yangian action (9) in Λs,N
+ through the map π̃N . We use

the similar procedure as in scalar case and decompose the application of each Yangian
generator (9) to a vector |w〉+ ∈ Λs,N

+ into several steps. First we present the symmetric

tensor |w〉+ ∈ Λs,N
+ as an element of (C[xi]⊗ Cs) ⊗ Λs,N−1

+ for each tensor component,
producing an equivariant family of vectors, then we apply the power of Heckman operator
D(N)
i to the i-th vector of this equivariant family and get another equivariant family. The

last step is the symmetrization EN(u) — the sum of all members of the equivariant family:

EN(u) =
N∑
j=1

σ1j(u),

where σij = KijPij is the permutation of i-th and j-th tensor factors.

For each F (z) ∈ Λ̂(s) ⊗ V define the element S(F (z)) ∈ Λ̂(s) as the formal integral

S(F (z)) =
1

2πi

∮
dz

z
Φ∗(z)F (z),

which counts zero term of the Laurent series. Here

Φ∗(z) =
∑
c

ϕ−c (z) · Φ−1
c (z)⊗ e⊥c : Λ̂(s) ⊗ V → Λ̂(s) ⊗ C[z],

the series ϕ−c (z) =
∑

n≤0 ac,nz
n and the operator e⊥c : Cs → C is given by the relation

e⊥c (eb) = δbc. The key point of the construction is the following lemma which establishes
the map S as the pullback of the finite symmetrization:

Lemma 5.2 For each F (z) ∈ Λ̂(s)⊗V and any natural N we have the equality of elements
of Λs,N

+ :
EN(π̃N−1 ⊗ 1)(F (z)) = π̃NS(F (z)).

Let D̃ : Λ̂(s) ⊗ V → Λ̂(s) ⊗ V be the linear map, such that for any F (z) ∈ Λ̂(s) ⊗ V

D̃F (1)(z) = αz
d

dz
F (1)(z) +

z

2πi

∮
dξ

ξ2(1− z
ξ
)
Φ∗(2)(ξ)Φ(2)(z)F (1)(ξ)

Here the upper index (i), i = 1, 2 indicates in which tensor copy of Cs the corresponding
vector lives or an operator acts. We state that the operator D̃ is the pullback of the
equivariant family of Heckman operators D(N)

i .

Proposition 5.1 For any F (z) ∈ Λ̂(s) ⊗ V we have

(π̃N−1 ⊗ 1) D̃(F (x1)) = D(N)
1 (π̃N−1 ⊗ 1)F (x1)

Let Eab ∈ EndCs, be the matrix unit, Eab(ec) = δbcea. Denote by Eab, the operator
1⊗ 1⊗ Eab : Λ̂(s) ⊗ V → Λ̂(s) ⊗ V :

EabF (z) = Fb(z)⊗ ea.
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Summarazing the statements above we get the following result [21]

Theorem 5.1 The operator Tab,n given by

Tab,n =
(−1)n

2πi

∮
dz

z
Φ∗(z)EabD̃nΦ(z)

is the pullback of the Yangian generator tab,n, see (9):

π̃NTab,n = tab,nπ̃N for any N ∈ N.

Using this construction we derive the explicit expressions for the first Hamiltonians of CS
system.

Further we investigate the classical limit of the system. We introduce the operator

H cl which is the classical limit of the second Hamiltonian, the rule between the quantum
commutator and Poisson bracket is β−1[ , ] → { , }. In Proposition 5.3 we present the

equations of motion determined by H cl:

dφa(z)

dt
= {φa(z),H cl}.

Here and further φa(z) and Va(z) are the classical analogues of field ϕa(z) and vertex
operator Φa(z) respectively.

The quantum system is integrable: it has an infinite number of integrals of motion
that can be obtained from the q-determinant of the Yangian generator function Tab(u). It
is natural to assume that the classical system is integrable as well. In particular, it should
admit a Lax pair presentation. Consider the operators L and M acting on the analytic
function f(z):

Lf = z
∂

∂z
f(z) +

∑
a

Va(z)
(
φ−a (z)V−1

a (z)f(z)
)+
,

Mf =

(
z
∂

∂z

)2

f(z) + 2
∑
b

(
φ+
b (z)φ−b (z)

)+
f(z) + 2

∑
b

Vb(z)z
∂

∂z

(
φ−b (z)V−1

b (z)f(z)
)+
.

Proposition 5.4 The operators L and M represent a Lax pair of the classical system:

dL

dt
= [M,L].

6 Fermionic limit for spin system

The fermionic limit of spin CS system was studied by D. Uglov. Here we suggest and
develop another approach, which leads to the limiting integrable system closely related
to [46], but realized by free fermionic fields, we mainly follow [20].
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We start from the fermionic Fock space F s, which is the representation of algebra
Hs
− of s free fermion fields. We denote by Ψc(z) and Ψ∗c(z) be the following generating

functions of elements of Hs
−:

Ψc(z) =
∑
n∈Z

ψcnz
n, Ψ∗c(z) =

∑
n∈Z

ψ∗cnz
n−1.

For any |v〉 ∈ F s we define a matrix coefficients by the following formula

πN (|v〉) = 〈0|Ψ(zN)Ψ(z2) · · ·Ψ(z1)|v〉, |v〉 ∈ F s

where Ψ(z) =
∑s

c=1 Ψc(z) ⊗ ec and ec ∈ Cs are again basic vectors of Cs. The matrix

element πN (|v〉) belongs to the space Λs,N
− , which is the phase space of finite spin CS

system. Then we systematically construct the pullback with respect to the maps πN of
all operation required for the construction of the Yangian action on the finite-dimensional
spin CS system.

The crucial point of the construction is the operator which the pullback of total finite
antisymetrization AN : V ⊗ Λs,N−1

− → Λs,N
− , given by

AN(u) = u−
N∑
j=2

σ1j(u).

For each F (z) ∈ Hs
−(z)⊗ Cs define the element A(F (z)) ∈ Hs

− as the integral

A(F (z)) =
1

(2πi)2

∫
z	0

dz

∫
u	z

du
Ψ∗(u)F (z)

u− z
.

As in scalar case we introduce a subspace U ∈ Hs
−(z)⊗ Cs of elements which satisfy the

special conditions, namely, preservation of the polynomial space and homogeneity. These
conditions are preserved by pullbacks of Dunkl operators, which we define further. The
following lemma establishes the map A as the pullback of the finite antisymmetrization:

Lemma 6.2 For each F (z) ∈ U , any |v〉 ∈ F s and any natural N we have the equality
of elements of Λs,N

− :

AN πN−1,1(F (z)⊗ |v〉) = πNA(F (z))|v〉.

Define an operator D : Hs
−(z)⊗ Cs → Hs

−(z)⊗ Cs by the relation

DF (z) = αz
d

dz
F (z)+

z

(2πi)2

∫
w	0
|w|<|z|

dw

∫
u	w

du Ψ∗(2)(u)
Ψ(2)(w)F (1)(z)−Ψ(2)(z)F (1)(w)

(u− w)(z − w)
.

By means of Lemma 6.2 we now can identify the operator D as a pullback of the equiv-
ariant family of Heckman operators D(N)

i acting in the space of partially antisymmetric
tensors
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Proposition 6.1 For any F (z) ∈ U , |v〉 ∈ F s and N ∈ N we have the equality

πN−1,1(DF (x1)⊗ |v〉) = D(N)
1 πN−1,1(F (x1)⊗ |v〉).

As in bosonic spin case we introduce operators :

Tab,n = AEabDnΨ(z) =
1

(2πi)2

∫
z	0

dz

∫
u	z

du
Ψ∗(u)EabDnΨ(z)

u− z
.

Summarizing the statements above we establish the operator Tab,n as the pullback of the

Yangian generator tab,n in Λs,N
− .

Proposition 6.2 For any |v〉 ∈ F s and N ∈ N we have the equality

πN(Tab,n|v〉) = tab,nπN |v〉.

We note the importance of the polynomial property of the total zero mode in the con-
structed Yangian action on the Fock space F s, which we prove by using projective prop-
erties of the Yangian action in the phase spaces of CS models, it allows to formulate the
following

Theorem 6.1 The operators Tab,n satisfy Yangian relations.

In particular, the coefficients of the quantum determinant q det T(u) form a commutative
family which can be regarded as the limits of the higher Hamiltonians of CS system.

Applications of the results

Here we mention some applications of the results concerning the limits of integrable
systems of Calogero-Sutherland type:

• representation theory

• theory of symmetric function

• knot theory, combinatorics of Hurwitz numbers

The main results of the thesis are presented in two papers:

1. Khoroshkin S. M., Matushko M., Sklyanin E., On spin Calogero–Moser system at in-
finity, Journal of Physics A: Mathematical and Theoretical. 2017. Vol. 50. P. 1-26

2. S.M. Khoroshkin, M. G. Matushko, Fermionic limit of the Calogero-Sutherland system,
Journal of Mathematical Physics. 2019. Vol. 60. No. 7. P. 071706-1-071706-22.
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