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Topic of the thesis

This work employs the formalism of Bayesian statistics for refinement of
existing deep learning models in various ways. Based on the doubly stochastic
variational inference [1], this work proposes two probabilistic models for deep
discriminative networks. The first model allows for structured sparsification
of convolutional neural networks (CNNs) and, hence, their acceleration. The
second allows for better uncertainty estimation in conventional CNN architec-
tures. Further, we focus on deep generative models. Treating the problem of
sampling from the MCMC perspective, current work proposes an algorithm
that improves the performance of generative adversarial networks (GANs) [2].
Providing an asymptotic analysis of the proposed scheme, we introduce the
implicit Metropolis-Hastings algorithm. It can be seen as an adaptation of the
conventionalMetropolis-Hastings algorithm [3] to the case of implicit proposal
model and empirical target distribution.

Actuality of the work.
Machine learning is the scientific approach that allows for building mod-

els (algorithms) from data. Machine learning algorithms find their practical
success in tasks where a solution cannot be rigorously formalized or explicitly
programmed. Ones of the main areas of application are computer vision, lan-
guage modeling, speech recognition. Here we provide informal description of
the machine learning concept. For rigorous formulation, as well as, instances
of algorithms and applications, we refer the reader to [4; 5].

The classical dichotomy inmachine learning is between supervised learn-
ing and unsupervised learning. The goal of supervised learning is to build a
function from objects (usually described by real-valued vectors called features)
to labels (also a real-valued vectors in the most general setting). We further re-
fer to this function asmodel. To build such amodel, one usually formulates it in
a parametric way, i.e. defines a function (analytical, as instance) or algorithm
that outputs the prediction of a label given input features and all parameters
values. Further, among all possible values of parameters, we select a configu-
ration that is the most suitable for our task. The process of selection is called
training. In order to perform training, one usually defines a loss function on
the joint space of predictions and labels. The loss function defines a measure
of prediction ”correctness”, as instance, it equals to zero if the prediction is
correct and grows with an amount of its error. Given such function, and the
training empirical data (subset of objects with labels from the general set of
objects), the process of training can be formulated as an optimization problem
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on the space of parameters. That is, we need to find such configuration of pa-
rameters that yields a minimum of the loss function on the training set. Usually
this configuration is obtained by gradient-based optimization methods.

The general goal of the unsupervised learning is to infer an underlying
structure of the given data. Saying differently, for every object (with feature
description) in the data we need to infer a latent variable that somehow de-
scribes this object. However, a precise notion of the structure (space of latent
variables) significantly depends on the nature of the data, and intended use of
the latent variables. To provide the reader with more intuition, we briefly de-
scribe several instances of unsupervised learning tasks. Clustering task is one
of the most common tasks in unsupervised learning, and can be informally de-
scribed as ”inferring labels without labels in the training data”. That is, given a
training set, we need to assign a label to every object, where labels are discrete
variables, and objects with the same label form a cluster. Sometimes we also
need to define the space of labels (its cardinality and interior relations). Another
popular approach in unsupervised learning is auto-encoders. They operate by
encoding an object into a latent space and then decoding the obtained latent
representation back to the original space, trying to exactly restore the original
object. The latent space usually have some desired property. For instance, an
auto-encoder can perform compression, by mapping original objects to a low-
dimensional latent space. In the context of the current work, generative models
are the most important instances of unsupervised learning. In generative mod-
els, we assume that the observed empirical data (training dataset) is the set of
samples from some unknown distribution. Under this assumption, the goal is
to recover this unknown distribution by building a model that can sample from
this distribution. Themost popular approaches of learning suchmodels are con-
trastive divergence [6], variational auto-encoders [7; 8], generative-adversarial
networks [2], normalizing flows [9].

The crucial point in developing machine learning methods and their ap-
plications is the choice of feature representation for objects. Ones of the most
complex objects to represent are images, texts, sounds, due to their high-
dimensionality and complex underlying structure. For this kind of data, before
the watershed paper [10], representations were built using an expert knowledge
of the corresponding area. As instance, in computer vision, SIFT [11] andHOG
[12] features were conventional representations of images. Deep learning [13;
14] have automated the process of constructing feature representations. The
main idea of this approach is to build a model with multiple processing layers
to learn representations of data with multiple levels of abstraction. Deep learn-
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ing models greatly rely on artificial neural networks, which are also known to
be universal approximators. However, the ability to approximate any function
is not sufficient for construction of good model. It also should depicts the na-
ture of the data, for instance, CNNs [15] are shift-invariant, what make them
well-suited for images, and LSTM [16] prevents gradient saturation for long
sequences, what make them well-suited for texts.

In this work we greatly rely on the formalism of Bayesian reasoning
[17]. To provide an instance of Bayesian model, let us consider a supervised
learning task. Then, as well as in general formulation, we have a model that
defines a likelihood, e.g. the probability of correct label given features and
parameter values. Besides the model, there is also a prior distribution on the
parameters that depicts our background knowledge about the task. Given the
prior and the likelihood, during the training, we want to find not a single con-
figuration of the parameters, but a distribution in the space of the parameters
(called posterior). This approach provides a range of benefits, and further we
list some of them. First of all, if we can infer the posterior accurately, then we
will have large ensemble of models (weights are proportional to the density
of posterior) that can improve a performance compared to single model. Sec-
ondly, we can incorporate our task-specific knowledge into the model using
the prior distribution. Thirdly, we can perform an incremental learning by
depicting a knowledge about previously seen data in the prior distribution. To
highlight the main aspects of Bayesian inference we provide a relation of it
with the maximum entropy principle [18], which is the most general approach
of inferring a model from data. Such relation is precisely described by Jaynes
[17]:
“Bayesian and maximum entropy methods differ in another respect. Both
procedures yield the optimal inferences from the information that went into
them, but we may choose a model for Bayesian analysis; this amounts to
expressing some prior knowledge — or some working hypothesis — about the
phenomenon being observed. Usually, such hypotheses extend beyond what is
directly observable in the data, and in that sense we might say that Bayesian
methods are — or at least may be — speculative. If the extra hypotheses
are true, then we expect that the Bayesian results will improve on maximum
entropy; if they are false, the Bayesian inferences will likely be worse.”

That is, to develop a powerful algorithm (discriminative or generative)
we need to choose a model that take into account a domain-specific knowl-
edge. In modern machine learning such models usually employ deep learning

5



approach, e.g. CNNs for images and LSTM for sequential data. The usage of
deep learning models in Bayesian reasoning coined the name of the field —
Bayesian deep learning. The central technique in the Bayesian deep learning
is the doubly-stochastic variational inference [1]. A seminal work of this field
is Variational Dropout [19], which consider a CNN as a likelihood model in
Bayesian reasoning and interprets the dropout layer as a variational approxi-
mation. Further, it was demonstrated that the log-uniform prior distribution
induces sparsity in deep neural networks [20]. However, such sparsity cannot
be used for acceleration of deep neural networks since it has no structure. In the
thesis, we propose a model that takes the architecture of a CNN into account
and induces structured sparsity, allowing for acceleration of CNNs. As well
as the dropout layer, another touchpoint between conventional deep learning
algorithms and Bayesian deep learning is the batch normalization layer. Con-
sidering the selection of batch as a noise source, we propose a probabilistic
model for the batch normalization layer. Then, using the proposed model, we
improve the performance of several models in terms of uncertainty estimation.

Bayesian deep learning significantly relies on the fact that modern deep
learning models efficiently exploit a domain-specific knowledge of the task.
Another way to use the deep learning models in Bayesian methods is to im-
prove the approximate inference stage when the exact inference is infeasible
and rich approximating family is needed. One of the way to perform an approx-
imate inference is Markov Chain Monte Carlo approach, which can be used to
describe the posterior distribution by samples. The choice of the MCMC algo-
rithm is essential for such task. In practice, one usually want to obtain an al-
gorithm which converges fast to regions of high probability and mixes rapidly
between different modes. To build such an algorithm, it is reasonable to em-
ploy the rich family of deep learning models for approximation of the target
distribution. One of the first instances of such algorithms are NICE-MC [21]
and L2HMC [22]. In the current work, we propose an alternative approach to
learning a sampler, by deriving the objective for the independent proposal in
the Metropolis-Hastings algorithm. Further, we step beyond the conventional
formulation of the problem and derive GANs framework using the MCMC
perspective. This fact leads us to the adaptation of the Metropolis-Hastings
algorithm to the case of implicit proposal and empirical target distributions.
We call this adaptation the Implicit Metropolis-Hastings algorithm and provide
both empirical and theoretical studies of it.
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The goal of this work is improvement of modern deep learning models
using the Bayesian approach. The considered improvements are performance
gain and new properties of models such as sparsity and uncertainty estimation.

Key results and conclusions

The novelty of this work is that for the first time the following points are
shown.

1. Bayesian probabilistic models can induce the structured sparsity in
deep convolutional neural networks.

2. Batch normalization layer can be formulated as a probabilistic model
that is consistent during both train and test stages.

3. Optimization of the symmetric KL-divergence leads to a better pro-
posal distributions for the independent Metropolis-Hastings algo-
rithm.

4. It is possible to alleviate the gap between the output distribution of an
implicit generative model and target empirical distribution using an
approximation of the Metropolis-Hastings acceptance test.

Theoretical and practical significance. The obtained results widen the
scope of applicability of CNNs by compressing and accelerating conventional
architectures. For analytical target distributions (given as unnormalized den-
sity), the work proposes a method of building the computationally efficient
sampler. For the implicit generative models, such as GANs and VAEs, the
work proposes the filtering procedure that demonstrates consistent empirical
gains in practice. Besides that, we derive a bound on the distance between the
output distribution of an implicit generative model and target empirical distri-
bution.

Methodology and research methods. This work uses the methodology
of deep learning; the toolkit of probabilistic modeling; Python; NumPy, Py-
Torch, Theano, Lasagne frameworks.

Reliability of the obtained results is ensured by a detailed description
of the methods and algorithms, proofs of theorems, as well as description of
experiments and release of the source code which facilitates reproducibility.

Main provisions for the defense:
1. The algorithm for structured sparsity of convolutional neural net-

works.
2. Probabilistic formulation of the batch normalization layer, and the al-

gorithm for uncertainty estimation.
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3. The adaptation of the conventional Metropolis-Hastings algorithm to
the case of implicit proposal and empirical target distributions.

Personal contribution into the main provisions for the defense. In
main two papers (first-tier publications) results are obtained by the author,
i.e. author proposed the key scientific ideas, implemented and performed the
experiments, wrote the papers. The contribution of other coauthors is review
of the code of the experiments, technical help with setup of experiments,
discussion of the obtained results, editing of the text of the papers, problem
formulation and general supervision of research.

Publications and probation of the work

The aspirant is the main author in the two main papers on the topic of the
thesis.

First-tier publications.
1. Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, Dmitry Vetrov

Structured Bayesian Pruning via Log-Normal Multiplicative Noise //
Advances in Neural Information Processing Systems 30. 2017. P.
6775–6784. Rank A* conference, indexed by SCOPUS.

2. Kirill Neklyudov, Evgenii Egorov, Dmitry Vetrov The Implicit
Metropolis-Hastings Algorithm // Advances in Neural Information
Processing Systems 32. 2019. Rank A* conference, indexed by
SCOPUS.

Other publications.
1. Andrei Atanov, Arsenii Ashukha, Dmitry Molchanov, Kirill Neklyu-

dov, Dmitry Vetrov Uncertainty Estimation via Stochastic Batch Nor-
malization // In International Symposium on Neural Networks, pp.
261-269. Springer, Cham, 2019.

Reports at conferences and seminars.
1. Seminar of Bayesian methods research group, Moscow, 20May 2017.

Topic: ”Group sparsity in convolutional neural networks”.
2. “Conference on Neural Information Processing Systems 2017”, main

section, Los Angeles, USA, 9 December 2016. Topic: ”Structured
Bayesian Pruning via Log-Normal Multiplicative Noise”.

3. Seminar of Bayesian methods research group, Moscow, 05 October
2018. Topic: ”Metropolis-Hastings View onVariational Inference and
Adversarial Training”.
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4. Machine Learning Seminar at Lebedev Physical Institute, 19 February
2019. Topic: ”How Neural Networks Help MCMC and How MCMC
Helps Neural Networks”.

5. “International Symposium on Neural Networks”, oral presentation,
Moscow, 10 July 2019. Topic: “Uncertainty Estimation via Stochastic
Batch Normalization”.

6. “Conference on Neural Information Processing Systems 2019”, main
section, Vancouver, Canada, 11 December 2019. Topic: ”The Implicit
Metropolis-Hastings Algorithm’.

Volume and structure of the work. The thesis contains an introduction,
contents of publications and a conclusion. The full volume of the thesis is 64
pages.

1 Content of the work

1.1 Structured Bayesian Pruning via Log-Normal Multiplicative Noise

The first chapter describes Structured Bayesian Pruning model, which
is able to induce an arbitrary pattern of structured sparsity on neural network
parameters or intermediate data tensors. It uses stochastic variational inference
to tune its parameters in a Bayesian way. Moreover, the chapter describes a
proper analog of sparsity-inducing log-uniform prior distribution [20; 23] that
allows us to formulate a correct probabilistic model and avoid the problems that
come from using an improper prior. This way we can obtain a novel Bayesian
method of regularization of neural networks that results in structured sparsity.
Additionally, the proposed model can be represented as a separate dropout-
like layer that allows for a simple and flexible implementation with almost no
computational overhead, and can be incorporated into existing neural networks.

Given a probabilistic model p(y |x,θ) we want to tune parameters θ of
the model using training datasetD = {(xi,yi)}Ni=1. The prior knowledge about
parameters θ is defined by prior distribution p(θ). Using the Bayes rule we ob-
tain the posterior distribution p(θ | D) = p(D | θ)p(θ)/p(D). However, com-
puting posterior distribution using the Bayes rule usually involves computation
of intractable integrals, so we need to use approximation techniques. One of
the most widely used approximation techniques is the variational inference.
Under this approach the unknown distribution p(θ | D) is approximated by a
parametric distribution qϕ(θ) by minimization of the Kullback-Leibler diver-
gence KL(qϕ(θ) ∥ p(θ | D)). Minimization of the KL divergence is equivalent
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to maximization of the variational lower bound L(ϕ).

L(ϕ) = LD(ϕ)− KL(qϕ(θ) ∥ p(θ)), (1)

where LD(ϕ) =

N∑
i=1

Eqϕ(θ) log p(yi |xi,θ) (2)

The proposed model can be formulated as a single dropout-like layer with
an input vector x ∈ RI that represents one object with I features, and an output
vector y ∈ RI of the same size. The input vector x is usually supposed to
come from the activations of the preceding layer. The output vector y would
then serve as an input vector for the following layer. We follow the general
way to build dropout-like layers (3). Each input feature xi is multiplied by a
noise variable θi that comes from some distribution pnoise(θ). For example,
for Binary Dropout pnoise(θ)would be a fully factorized Bernoulli distribution
with pnoise(θi) = Bernoulli(p), and for Gaussian dropout it would be a fully-
factorized Gaussian distribution with pnoise(θi) = N (1, α).

yi = xi · θi θ ∼ pnoise(θ) (3)

Further, we follow a Bayesian treatment of the variable θ. To obtain
a sparse solution, one can choose the prior distribution p(θ) to be a fully-
factorized truncated log-uniform distribution. For the approximation family,
we can choose the truncated log-normal distribution. Then the final model of
the layer can be formulated as follows.

yi = xi · θi p(θi) = LogU[a,b](θi) q(θi |µi, σi) = LogN[a,b](θi |µi, σ
2
i ) (4)

The experiments show that the proposed model leads to high group spar-
sity level and significant acceleration of convolutional neural networks with
negligible accuracy drop. We demonstrate the performance of our method on
LeNet and VGG-like architectures using MNIST and CIFAR-10 datasets. Re-
sults for VGG-like architectures on CIFAR-10 dataset are presented in Table 1.
For each architecture, we report the number of retained neurons and filters, and
obtained acceleration. We also demonstrate that optimization w.r.t. the full set
of variational parameters (µ, σ) leads to improvingmodel quality and allows us
to perform sparsification in a more efficient way, as compared to tuning of only
one free parameter that corresponds to the noise variance. As a nice bonus, we
show that Structured Bayesian Pruning network does not overfit on randomly
labeled data, that is a common weakness of non-bayesian dropout networks.
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Table 1: Comparison of different structured sparsity inducing techniques (Spar-
seVD [20]) on VGG-like architectures on CIFAR-10 dataset. StructuredBP stands for
the original SBP model, and StructuredBPa stands for the SBP model with KL scaling.
k is a width scale factor that determines the number of neurons or filters on each layer
of the network (width(k) = k × original width)

k Method Error % Units per Layer CPU GPU FLOPs
1.0 Original 7.2 64− 64− 128− 128− 256− 256− 256− 512− 512− 512− 512− 512− 512− 512 1.00× 1.00× 1.00×

SparseVD 7.2 64− 62− 128− 126− 234− 155− 31− 81− 76− 9− 138− 101− 413− 373 2.50× 1.69× 2.27×
(ours) StructuredBP 7.5 64− 62− 128− 126− 234− 155− 31− 79− 73− 9− 59− 73− 56− 27 2.71× 1.74× 2.30×
(ours) StructuredBPa 9.0 44− 54− 92− 115− 234− 155− 31− 76− 55− 9− 34− 35− 21− 280 3.68× 2.06× 3.16×
1.5 Original 6.8 96− 96− 192− 192− 384− 384− 384− 768− 768− 768− 768− 768− 768− 768 1.00× 1.00× 1.00×

SparseVD 7.0 96− 78− 191− 146− 254− 126− 27− 79− 74− 9− 137− 100− 416− 479 3.35× 2.16× 3.27×
(ours) StructuredBP 7.2 96− 77− 190− 146− 254− 126− 26− 79− 70− 9− 71− 82− 79− 49 3.63× 2.17× 3.32×
(ours) StructuredBPa 7.8 77− 74− 161− 146− 254− 125− 26− 78− 66− 9− 47− 55− 54− 237 4.47× 2.47× 3.93×

1.2 Uncertainty Estimation via Stochastic Batch Normalization

In the second chapter, we investigate Batch Normalization technique and
propose its probabilistic interpretation. Batch Normalization layer is an es-
sential part of every deep convolutional architectures. In our work, we treat
BatchNormalization as a stochastic layer and propose away to ensemble batch-
normalized networks. The straightforward technique, however, ends up with
high memory and computational cost. We, therefore, propose Stochastic Batch
Normalization (SBN) — an efficient and scalable approximation technique.

We consider a supervised learning problem, with a dataset D =
{(xi, yi)}Ni=1. The goal is to train the parameters θ of the predictive likeli-
hood pθ(y |x), modelled by a neural network. To solve this problem stochastic
optimization methods with a mini-batch gradient estimator usually are used
[24].

Batch Normalization attempts to preserve activations of all layers with
zero mean and unit variance. In order to do that it uses the mean µ(B) and
variance σ2(B) over the mini-batch B during training and accumulated statis-
tics on the inference phase:

BNtrain
γ,β (xi) =

xi − µ(B)√
σ2(B) + ϵ

·γ+β BNtest
γ,β(xi) =

xi − µ̂√
σ̂2 + ϵ

·γ+β (5)

where γ, β are the trainable Batch Normalization parameters (scale and
shift) and ϵ is a small constant, needed for numerical stability. Note that
during training mean and variance are computed over a randomly picked
batch (µ(B), σ(B)), while during testing the exponentially smoothed statis-
tics (µ̂, σ̂2) are used. We further address this inconsistency by the proposed
probabilistic model.

Note from (5) that forward pass through the batch-normalized network
depends not only on xi but on the entire batch B as well. This dependency can
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be reinterpreted in terms of mini-batch statistics µ(B), σ(B):

pθ(yi |xi,B\i) = pθ(yi|xi, µ(B), σ(B)), (6)

where B\i is a batch without xi. Due to the stochastic choice of mini-
batches during training, for a fixed xi B\i is a random variable, so mini-batch
statistics can be treated as a random variables. The conditional distribution
pθ(µ, σ |xi,B\i) is the product of two Dirac delta functions, centered at µ(B)
and σ(B), since statistics are deterministic functions of the mini-batch, and the
distribution of mean and variance given xi is an expectation over mini-batch
distribution. During inference we average the distribution pθ(y|x, µ, σ2) over
the normalization statistics:

pθ(µ, σ|xi) = E
B\i

δµ(B)(µ)δσ(B)(σ) pθ(y|x) = E
pθ(µ,σ|x)

p(y|x, µ, σ) (7)

In the work we show that during training, Batch Normalization (5) per-
forms the unbiased one-sample MC estimation of a gradient of a lower bound
to the marginal likelihood (7). Thus, such probabilistic model corresponds to
Batch Normalization during training. However, on test phase Batch Normal-
ization uses exponentially smoothed statistics Eµ ≈ µ̂,Eσ ≈ σ̂, which can be
seen as a biased approximation of (7):

E
pθ(µ,σ|xi)

p(yi|xi, µ, σ) ≈ pθ(y|x,Eµ,Eσ)

Straightforward MC averaging can be used for better unbiased estima-
tion of (7), however, it is inefficient in practiсe. Indeed, to draw one sample
from the distribution over statistics (7) we need to pass an entire mini-batch
through the network. So, to make MC averaging for single test object, we need
to perform several forward passes with different mini-batches sampled from
the training data. To address this drawback we propose Stochastic Batch Nor-
malization.

To reduct memory and computational cost of straightforward MC es-
timation, we propose to approximate the distribution of Batch Normaliza-
tion statistics pθ(µ, σ |xi) with a fully-factorized parametric approximation
pθ(µ, σ |xi) ≈ r(µ)r(σ). We parameterize r(µ) and r(σ) in the following
way:

r(µ) = N (µ|mµ, s2µ) r(σ) = LogN (σ|mσ, s2σ) (8)

Such approximation works well in practice. In the chapter we show that
it accurately fits the real marginals. Since approximation no longer depends on
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the training data, samples for each layer can be computed without passing the
entire batch through the network and it is possible to make prediction in an effi-
cient way. Practically, to make prediction for one test object you can duplicate
object K times and pass entire batch through the network only once, sampling
independent statistics for each copy and average the results for such “virtual
batch”. This procedure is K times faster in comparison to the straightforward
Monte Carlo estimation.

To adjust parameters {mµ, sµ,mσ, sσ} we minimize the KL-divergence
between distribution induced by Batch Normalization (7) and our approxima-
tion r(µ)r(σ) for each object:

DKL

(
1/N

∑N
i=1pθ(µ, σ |xi)

∣∣∣∣ r(µ)r(σ)) −→ min
mµ,sµ,mσ ,sσ

Since r belongs to the exponential family, this minimization problem is
equal to moment matching and does not require gradients computation. In our
implementation we simply use exponential smoothing to approximate the suf-
ficient statistics of mean and variance distributions. It can be done for any
pre-trained batch-normalized network.

(a) Results for VGG-11 (b) Results for ResNet-18

Figure 1: Empirical CDF of entropy for out-of-domain data. VGG-11 and ResNet-18
on five classes of CIFAR10, hidden during training. SBN corresponds to model with
all Batch Normalization layers replaced by Stochastic Batch Normalization. The more
to the right and the lower, the better.

To show that our method scales to deep convolutional architectures well,
we perform experiments on VGG-like and ResNet architectures. We split CI-
FAR10 dataset into two datasets (CIFAR5), and plot the empirical CDF in
Fig. 1. We trained networks on randomly chosen 5 classes and evaluated pre-
dictive uncertainty on the remaining.
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1.3 Metropolis-Hastings View on Variational Inference and Adversarial
Training

A significant part of MCMC methods can be considered as the
Metropolis-Hastings (MH) algorithm with different proposal distributions.
From this point of view, the problem of constructing a sampler can be reduced
to the question — how to choose a proposal for the MH algorithm? To address
this question, we propose to learn an independent sampler that maximizes the
acceptance rate of the MH algorithm, which, as we demonstrate, is highly
related to the conventional variational inference. For Bayesian inference, the
proposed method compares favorably against alternatives to sample from the
posterior distribution. Under the same approach, we step beyond the scope of
classical MCMC methods and deduce the Generative Adversarial Networks
(GANs) framework from scratch, treating the generator as the proposal and
the discriminator as the acceptance test.

The acceptance rate of the MH algorithm is tightly connected with de-
tailed balance. In the extreme case, when the acceptance rate achieves its max-
imum value, distributions p(x′)q(x |x′) and p(x)q(x′ |x)must coincide (up to
sets of zero measure) in the joint space of the previous point x and the proposed
point x′. For such a case, we can say that the detailed balance condition holds:

p(x′)q(x |x′) = p(x)q(x′ |x) ∀x,x′. (9)

It turns out that the acceptance rate defines how far distributions p(x′)q(x |x′)
and p(x)q(x′ |x) are, or how well the detailed balance condition is satisfied for
a proposal distribution q(· | ·). We formalize this connection by introducing the
following theorem.

Theorem 1. For a random variable ξ = p(x′)q(x |x′)
p(x)q(x′ |x) , x ∼ p(x), x′ ∼ q(x′ |x)

AR = Eξ min{1, ξ} = 1− 1

2
Eξ|ξ − 1| =

= 1− TV
(
p(x′)q(x |x′)

∥∥∥∥p(x)q(x′ |x)), (10)

where TV is the total variation distance.

This reinterpretation in terms of total variation allows us to lower bound
the acceptance rate via Pinsker’s inequality

AR ≥ 1−

√
1

2
· KL

(
p(x′)q(x |x′)

∥∥∥∥p(x)q(x′ |x)). (11)

14



We suggest using the acceptance rate or its lower bound as an objective for
learning a proposal distribution. Note that doing so for a Markov proposal may
result in a trivial solution q(x′ |x) = δ(x′ − x) that yields the maximal accep-
tance rate. That happens, since detailed balance and the acceptance rate does
not take the autocorrelation of proposed samples into account. In this work,
we enforce zero autocorrelation and exclude the trivial solution by considering
independent proposals.

For independent proposals the lower bound from (11) can be rewritten in
terms of symmetric KL-divergence between p(·) and q(·)

AR ≥ 1−

√
1

2

(
KL(q(x)∥p(x)) + KL(p(x)∥q(x))

)
, (12)

which has its global maximum at q(x) = p(x); hence, at maximal acceptance
rate AR = 1. In the work, we demonstrate that the obtained lower bound relates
the proposed approach with the variational inference and GANs. For Bayesian
inference, the obtained lower bound could be preferable to the acceptance rate
since one can estimate it using only minibatches of data.

In this chapter, we propose algorithms for learning parameters ϕ of an
independent proposal distribution qϕ(x). As objectives for optimization, we
use the acceptance rate of the MH algorithm and its lower bound. For conve-
nience, we reformulate these objectives in terms of loss functions as follows.
Maximization of the acceptance rate is equivalent to minimization of the loss:

LAR(ϕ) = −AR = −E x ∼ p(x)
x′ ∼ qϕ(x

′)

min
{
1,

p(x′)qϕ(x)

qϕ(x′)p(x)

}
. (13)

For maximization of the lower bound, the loss function is

LKL(ϕ) = KL(qϕ(x)∥p(x)) + KL(p(x)∥qϕ(x)) = (14)

= −E x ∼ p(x)
x′ ∼ qϕ(x

′)

log
(
p(x′)qϕ(x)

qϕ(x′)p(x)

)
. (15)

To estimate L(ϕ), we need to evaluate the density ratio on samples from
the target x ∼ p(x) and proposal x′ ∼ qϕ(x

′). Depending on the form in which
the target distribution is given, we have different issues during the estimation
of the loss function.

If the target distribution is given as an unnormalized density (we call it
the density-based setting), we suggest using an explicit probabilistic model as
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Table 2: Short discription of two settings for target distribution p(x) and proposal q(x).

Setting Density of target Samples from target Density of proposal Density ratio

Density-based given run independent MH given given

Sample-based not available given not available run adversarial training

a proposal to evaluate the density ratio exactly. To obtain samples from the
target, in this setting we propose to run independent MH with the currently
available proposal.

If the target distribution is given in the empirical form (we call it the
sample-based setting), samples from the target and proposal distributions are
available, but we cannot compute the density ratio, so we propose to approxi-
mate it via the adversarial training.

For a summary of both settings, see Table 2.
We present an empirical evaluation for both density-based and sample-

based settings. In the density-based setting, the proposed algorithm compares
favorably in sampling from the posterior distribution of the Bayesian logistic
regression. In the sample-based setting, we demonstrate empirical gains of
various GANs by sampling via the MH algorithm at the test stage.

For an illustration, we demonstrate 2d histograms of samples from mix-
ture of six gaussians for different methods (see Fig. 2).

Variational Inference Acceptance Rate Acceptance Rate Lower Bound

0

40

80

120

160

Figure 2: 2d histrograms of 25k samples from theMH algorithmwith different propos-
als. From left to right proposals are learned by the variational inference, the acceptance
rate maximization, the acceptance rate lower bound maximization.

1.4 The Implicit Metropolis-Hastings Algorithm

In the previous chapter we propose using the discriminator of a GAN to
filter out unrealistic samples of the generator. Here, we generalize this idea
by introducing the implicit Metropolis-Hastings algorithm. For any implicit
probabilistic model and a target distribution represented by a set of samples,
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implicit Metropolis-Hastings operates by learning a discriminator to estimate
the density-ratio and then generating a chain of samples. Since the approx-
imation of density ratio introduces an error on every step of the chain, it is
crucial to analyze the stationary distribution of such chain. For that purpose,
we present a theoretical result stating that the discriminator loss upper bounds
the total variation distance between the target distribution and the stationary
distribution.

Algorithm 1 The implicit Metropolis-
Hastings algorithm
input target dataset D
input implicit model q(x | y)
input learned discriminator d(·,·)
y ∼ D initialize from the dataset
for i = 0 . . . n do
sample proposal point x ∼ q(x | y)
P = min{1,d(x,y)d(y,x)}

xi

{
x, with probability P
y, with probability (1− P )

y ← xi

end for
output {x0, . . . , xn}

The Implicit Metropolis-
Hastings algorithm is aimed to sam-
ple from an empirical target distri-
bution p(x), x ∈ RD, while being
able to sample from an implicit pro-
posal distribution q(x | y). Given
a discriminator d(x,y), it generates
a chain of samples as described in
Algorithm 1.

We build our reasoning by first
assuming that the chain is gener-
ated using some discriminator and
then successively introducing condi-
tions on the discriminator and upper
bounding the distance between the
chain and the target. Finally, we come up with an upper bound that can be
minimized w.r.t. parameters of the discriminator. Here we consider the case of
an implicit Markov proposal, but all of the derivations also hold for indepen-
dent proposals.

The transition kernel of the implicit Metropolis-Hastings algorithm is

t(x | y) =q(x | y)min
{
1,

d(x,y)

d(y,x)

}
+ (16)

+ δ(x− y)

∫
dx′q(x′ | y)

(
1−min

{
1,

d(x′,y)

d(y,x′)

})
. (17)

Further, we want the stationary distribution t∞ of our Markov chain to
be as close as possible to the target distribution p. To measure the closeness of
distributions, we consider a standard metric for analysis in MCMC— the total
variation distance

∥t∞ − p∥TV =
1

2

∫
|t∞(x)− p(x)|dx. (18)
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We assume the proposal q(x | y) to be given, but different d(x,y) may lead to
different t∞. That is why we want to derive an upper bound on the distance
∥t∞ − p∥TV and minimize it w.r.t. parameters of the discriminator d(x,y). We
derive this upper bound in three steps.

When a transition kernel satisfies the minorization condition, the Markov
chain converges ”fast” to the stationary distribution. We formalize this state-
ment in the following Proposition.

Proposition 1. Consider a transition kernel t(x | y) that satisfies the minoriza-
tion condition t(x | y) > εν(x) for some ε > 0, and distribution ν. Then the
distance between two consequent steps decreases as:

∥tn+2 − tn+1∥TV ≤ (1− ε) ∥tn+1 − tn∥TV , (19)

where distribution tk+1(x) =
∫
t(x | y)tk(y)dy.

To guarantee minorization condition of our transition kernel t(x | y), we
require the proposal q(x | y) to satisfy minorization condition with some con-
stant ε and distribution ν (note that for an independent proposal, the minoriza-
tion condition holds automatically with ε = 1). Also, we limit the range of the
discriminator as d(x,y) ∈ [b,1] ∀x,y, where b is some positive constant that
can be treated as a hyperparameter of the algorithm. These requirements imply

t(x | y) ≥ bq(x | y) > bεν(x). (20)

Taking the target distribution p(x) as the initial distribution t0(x) of our chain
t(x | y), we reduce the problem of estimation of the distance ∥t∞ − p∥TV to
the problem of estimation of the distance ∥t1 − p∥TV :

∥t∞ − p∥TV ≤
1

bε
∥t1 − p∥TV . (21)

However, straightforward estimation of t1(x) results in a biased estima-
tion of ∥t1 − p∥TV , since the expectation is inside of a nonlinear function. To
overcome this problem, we upper bound this distance in the following propo-
sition.

Proposition 2. For the kernel t(x | y) of the implicit Metropolis-Hastings algo-
rithm, the distance between initial distribution p(x) and the distribution t1(x)
has the following upper bound

∥t1 − p∥TV ≤ 2

∥∥∥∥q(y |x)p(x)− q(x | y)p(y)d(x,y)
d(y,x)

∥∥∥∥
TV

, (22)
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where the TV-distance on the right side is evaluated in the joint space (x,y) ∈
RD × RD.

To upper bound the TV-distance ∥α− β∥TV via KL-divergence
KL(α∥β) one can use well-known Pinsker’s inequality:

2 ∥α− β∥2TV ≤ KL(α∥β). (23)

However, Pinsker’s inequality assumes that both α and β are distributions,
while it is not always true for function q(x | y)p(y)d(x,y)d(y,x) in (22). In the fol-
lowing proposition, we extend Pinsker’s inequality to the case when one of the
functions is not normalized.

Proposition 3. For a distribution α(x) and some positive function f(x) >
0 ∀x the following inequality holds:

∥α− f∥2TV ≤
(
2Cf + 1

6

)
(K̂L(α∥f) + Cf − 1), (24)

where Cf is the normalization constant of function f : Cf =
∫
f(x)dx, and

K̂L(α∥f) is the formal evaluation of the KL divergence

K̂L(α∥f) =
∫

α(x) log
α(x)

f(x)
dx. (25)

Summing up the results, we obtain the final upper bound as follows.

∥t∞ − p∥2TV ≤
1

b2ε2
∥t1 − p∥2TV ≤ (26)

≤ 4

b2ε2

∥∥∥∥q(y |x)p(x)− q(x | y)p(y)d(x,y)
d(y,x)

∥∥∥∥2
TV

≤ (27)

≤
(
4 + 2b

3ε2b3

)(
E x ∼ p(x)

y ∼ q(y |x)

[
log

d(y,x)

d(x,y)
+

d(y,x)

d(x,y)

]
︸ ︷︷ ︸

loss for the discriminator

− (28)

−1 + KL
(
q(y |x)p(x)

∥∥∥∥q(x | y)p(y)))
We present an empirical evaluation of the proposed algorithm and the-

ory for both independent and Markov proposals. In both cases sampling via
the implicit MH algorithm is better than the straightforward sampling from
a generator. For independent proposals, we validate our theoretical result by
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demonstrating monotonous improvements of the sampling procedure through-
out the learning of the discriminator (see Fig. 3). Further, the implicit MH
algorithm with a Markov proposal compares favourably against competitors
with analogues with independent proposals.
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Figure 3: Monotonous improvements in terms of FID and IS for the learning of dis-
criminator by CCE. During iterations, we evaluate metrics 5 times (scatter) and then
average them (solid lines). For a single metric evaluation, we use 10k samples. Higher
values of IS and lower values of FID are better. Performance for the original generator
corresponds to 0th iteration of a discriminator.

Conclusion

The main results of the work can be summarized as follows.
1. The model Structured Bayesian Pruning (SBP) is proposed, for struc-

tured sparsity of convolutional neural networks. It is a dropout-like
layer that induces multiplicative random noise over the output of the
preceding layer. The model has a sparsity-inducing prior over the
noise variables and tunes the noise distribution using stochastic varia-
tional inference. SBP layer can induce an arbitrary structured sparsity
pattern over its input and provides adaptive regularization. We apply
SBP to cut down the number of neurons and filters in convolutional
neural networks and report significant practical acceleration with no
modification of the existing software implementation of these archi-
tectures.

2. The probabilistic formulation of the batch normalization layer, and
the algorithm for uncertainty estimation are proposed. We study a
probabilistic point of view and design a new algorithm that behaves
consistently during training and test stages. We compare the perfor-
mance of the proposed algorithmwith concurrent techniques on image
classification and uncertainty estimation tasks.

3. Approaching the problem of sampling from the Metropolis-Hastings
perspective allows us to obtain efficient solutions for both empirical
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and analytical distributions. Under this approach, we demonstrate that
the natural objective for the optimization of the independent proposal
is symmetric KL divergence. Compared to the variational inference,
this procedure takes the forward KL divergence into account, thus fos-
teringmass-covering. For empirical distributions, e.g., a dataset of im-
ages, optimization of symmetric KL is equivalent to the conventional
GAN training. Nevertheless, our approach allows us to approximate
the MH algorithm and obtain consistent improvements during the test
stage.

4. We propose the implicit Metropolis-Hastings algorithm for sampling
from an empirical target distribution using an implicit probabilistic
model as the proposal. In the theoretical part of the paper, we upper
bound the distance between the target distribution and the stationary
distribution of the chain. The contribution of the derived upper bound
is two-fold. We justify the heuristic algorithm proposed earlier and
derive the loss functions for the case of Markov proposal. Moreover,
the post-processing with the implicit Metropolis-Hastings algorithm
can be seen as a justification or enhancement of any implicit model.
In the experimental part of the paper, we empirically validate the pro-
posed algorithm on the real-world datasets (CIFAR-10 and CelebA).
For both tasks filtering with the proposed algorithm alleviates the gap
between target and proposal distributions.
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