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Introduction
The results included in the thesis are concerned with applications of probabilistic

methods for game theoretical control problems. We examine both the case of finite
player games and the limiting case of infinite player games. Notice that the control
theory arises in various fields of science and technique. Among them are robotics,
economics, finance and even biology. Additionally, the control theory is closely linked
with the theory of partial differential equations due to the dynamical programming
principle.

The thesis researches are simulated by the feedback approach to the control theory
developed by Krasovskii and his followers. This methodology implies wide use of
discontinuous strategies, the multivalued and nonsmooth analysis and the viability
theory.

The summary is organized as follows. First, in Section 1 we give a short introduction
to the control theory and the theories of differential and mean field games. We start
with the classical finite horizon control theory on the finite dimensional state space.
Then, we consider zero- and nonzero-sum differential games. Section 1 is completed
with a very brief introduction to the mean field type control system and mean field
games those are idealized models of differential games with many identical players. In
Section 2 we present the thesis’ results and the list of publications. Finally, Section 3
provides the detailed description of the results of the thesis.

1 Control theory and differential games. A brief sur-
vey

1.1 Finite dimensional control theory

The classic object of the control theory is the study of the dynamic system with
the trajectories give by the ordinary differential equation

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) (1)

on a finite time interval. Here 𝑡 ∈ [0, 𝑇 ] is the time, 𝑥(𝑡) is stands for the instantaneous
state of the system, 𝑢(𝑡) is the instantaneous control parameter. Usually, it is assumed
that 𝑥(𝑡) ∈ R𝑑, whereas the function 𝑢(·) is chosen from some set 𝑈 by some decision
maker acting with some purpose. There are many various problem statements in the
control theory. We restrict our attention to two types:

∙ minimization (maximization) of some criterion;

∙ ensuring of the viability property.
Notice that other statements include minimization (maximization) of some criterion

within various constraints. Additionally, there is a great interest to time optimal
problems those imply that the decision maker tries to steer the system to the target as
soon as possible.

The problem of minimization of some criterion means that the decision maker wishes
to find a control [0, 𝑇 ] ∋ 𝑡 ↦→ 𝑢(𝑡) ∈ 𝑈 minimizing the quantity

𝛾(𝑥(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 (2)
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where 𝑥(·) satisfies (1) and initial condition 𝑥(𝑡0) = 𝑥0. This optimal control problem
is an extension of problems examined by the calculus of variations. The main feature of
the optimal control theory is that it studies strong extremes. The necessary optimality
condition for the optimal control problem is given by the Pontryagin maximum principle
reducing the original (infinite dimensional) control problem to the boundary problem
for the system of ODEs and the additional maximization condition that should be valid
along the optimal trajectory.

The second method used for the computation of optimal control is called the dy-
namic programming principle. It is based on the observation that each part of the
optimal trajectory should be optimal. To introduce it we are to assume that the de-
cision maker can observe the current state of the system. Then, a control policy is a
function of time 𝑡 and state 𝑥(𝑡). In other worlds, now the decision maker uses the
feedback strategies 𝑢(𝑡, 𝑥). (The control policies depending only on time are called
open-loop strategies.) Notice that for the optimal control systems (1), (2) the open-
loop and feedback strategies are equivalent.

If 𝑡0 is an initial time, 𝑥0 is an initial position, then denote

Val(𝑡0, 𝑥0) , sup
{︁
𝛾(𝑥(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 :

(𝑥(·), 𝑢(·)) satisfying (1), 𝑥(𝑡0) = 𝑥0

}︁
.

(3)

The dynamic programming principle implies that the given function 𝜙 is the value
function if and only if it satisfies the following boundary value problem for following
Bellman equation in the generalized (minimax/viscosity) sense [Sub95]:

𝜕𝜙

𝜕𝑡
+𝐻(𝑡, 𝑥,∇𝜙) = 0, 𝜙(𝑇, 𝑥) = 𝛾(𝑥). (4)

Here 𝐻 : [0, 𝑇 ] × R𝑑 × R𝑑 → R is the Hamiltonian given by the rule:

𝐻(𝑡, 𝑥, 𝑝) = min
𝑢∈𝑈

[⟨𝑝, 𝑓(𝑡, 𝑥, 𝑢)⟩ + 𝑔(𝑡, 𝑥, 𝑢)].

Notice that for the considered control problem the Bellman equation is the first-order
Hamilton-Jacobi PDE.

Additionally, if 𝜙 : [0, 𝑇 ]×R𝑑 → R satisfies equation (4), then the optimal feedback
strategy can be computed based on the derivatives of 𝜙. In particular, in the smooth
case we have that the optimal strategy is given by

𝑢*(𝑡, 𝑥) = argmin
𝑢∈𝑈

[⟨∇𝜙(𝑡, 𝑥), 𝑓(𝑡, 𝑥, 𝑢)⟩ + 𝑔(𝑡, 𝑥, 𝑢)].

The second problem is the viability problem. It is described as follows [Aub09],
[CLSW98]. The set 𝐾 ⊂ R𝑑 is called viable with respect to system (1) if, for every
time 𝑡0 and every initial position 𝑥0 ∈ 𝐾, there exists a control 𝑢(·) such that the
corresponding trajectory starting at (𝑡0, 𝑥0) lies at 𝐾. The sufficient and necessary
conditions of the viability are given using the tangent and normal cones to the set
[Aub09], [CLSW98]. Additionally, the optimal control problem can be reformulated as
a viability problem. Indeed the value function satisfies the following conditions:

∙ its hypograph is viable with respect to the extended dynamical system with the
dynamics:

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)),

𝑑

𝑑𝑡
𝑧(𝑡) = −𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡));
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∙ its epigraph is viable with respect to the dynamical systems:

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢),

𝑑

𝑑𝑡
𝑧(𝑡) = −𝑔(𝑡, 𝑥(𝑡), 𝑢)

for any constant control 𝑢.

Above we consider only deterministic control problems. The stochastic control
problem is its natural extension. The most general approach to the stochastic con-
trol theory assumes that the dynamics of the system is given by the generator of
the Lévy–Khintchine type. Let 𝒟 be a subspace of 𝐶(R𝑑) containing 𝐶2

𝑐 (R𝑑) and let
𝐿𝑡[𝑢] : 𝒟 → 𝐶(R𝑑) be given by

𝐿𝑡[𝑢]𝜑 , ⟨𝑓(𝑡, 𝑥, 𝑢),∇⟩𝜑(𝑥) +
1

2
⟨𝐺(𝑡, 𝑥, 𝑢)∇,∇⟩𝜑(𝑥)

+

∫︁
R𝑑

[𝜑(𝑥+ 𝑦) − 𝜑(𝑥) − ⟨𝑦,∇𝜑(𝑥)⟩1𝐵1(𝑦)]𝜈(𝑡, 𝑥, 𝑢, 𝑑𝑦)

where 𝐺 is a symmetric nonnegative matrix, 𝐵𝑎 denotes the ball of radius 𝑎 > 0
centered at the origin, 𝜈 is a Lévy measure be a generator of the Lévy–Khintchine
type. Now it is assumed that payoff functional is

E
[︂
𝛾(𝑥(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡

]︂
. (5)

Definition 1.1. We say (following [FS06]) that the 6-tuple (Ω,ℱ , {ℱ𝑡}𝑡∈[𝑠,𝑇 ], 𝑃, 𝑢,𝑋)
is a control process on [𝑠, 𝑇 ] admissible for the generator 𝐿, if

∙ (Ω,ℱ , {ℱ𝑡}𝑡∈[𝑠,𝑇 ], 𝑃 ) is a filtered probability space;

∙ 𝑢 is a {ℱ𝑡}𝑡∈[𝑠,𝑇 ]-progressively measurable process with values in 𝑈 ; 𝑋 is a
{ℱ𝑡}𝑡∈[𝑠,𝑇 ]-adapted càdlàg process with values in R𝑑;

∙ for any 𝜑 ∈ 𝒟, the process

𝜑(𝑋(𝑡)) −
∫︁ 𝑡

𝑠

𝐿𝑛
𝜏 [𝑢(𝜏)]𝜑(𝑋(𝜏))𝑑𝜏

is a {ℱ𝑡}𝑡∈[𝑠,𝑇 ]-martingale.

The Bellman equation for this type of dynamics takes the form

𝜕𝜙

𝜕𝑡
+ max

𝑢∈𝑈

[︁
(𝐿𝑡[𝑢]𝜙)(𝑥) + 𝑔(𝑡, 𝑥, 𝑢)

]︁
= 0, 𝜙(𝑇, 𝑥) = 𝛾(𝑥). (6)

Notice that this general approach is not well-studied. To the best of my knowledge,
the dynamic programming principle is developed only under assumption that Bellman
equation (6) has a smooth solution [FS06].

The exhaustive results are obtained in the less general cases, namely, in the stochas-
tic control theory [YZ99] and Markov decision theory [GHL03]. Recall that the stochas-
tic control theory examines systems with dynamics given by the stochastic differential
equation

𝑑𝑋 = 𝑓(𝑡,𝑋(𝑡), 𝑢(𝑡))𝑑𝑡+ 𝜎(𝑡,𝑋(𝑡), 𝑢(𝑡))𝑑𝑊𝑡.
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This corresponds to the generator of the Lévy–Khintchine type

𝐿𝑡[𝑢]𝜑 , ⟨𝑓(𝑡, 𝑥, 𝑢),∇⟩𝜑(𝑥) +
1

2
⟨𝐺(𝑡, 𝑥, 𝑢)∇,∇⟩𝜑(𝑥)

with 𝐺(𝑡, 𝑥, 𝑢) = 𝜎(𝑡, 𝑥, 𝑢)𝜎𝑇 (𝑡, 𝑥, 𝑢).
The Markov decision theory assumes that the dynamics of the system is given by a

controlled Markov chain with Kolmogorov matrix equal to (𝑄𝑥,𝑦(𝑡, 𝑢))𝑥,𝑦∈𝒮 , where 𝒮 is
a finite state space. As above, the decision maker tries to maximize the outcome given
by (5). The Markov decision problem can be reduced to the control problem for the
system determined by Lévy-Khintchine type generator by letting

𝐿𝑡[𝑢]𝜑(𝑥) ,
∑︁

𝑦∈𝒮,𝑦 ̸=𝑥

[𝜑(𝑦) − 𝜑(𝑥)]𝑄𝑥,𝑦(𝑡, 𝑢).

Notice that for the stochastic control problem the Bellman equation is the second order
PDE, whereas for the Markov decision problem the Bellman equation is the system of
ODEs. Thus, the stochastic case is easier to examine from the viewpoint of dynamic
programming principle.

1.2 Zero-sum differential games in the finite dimensional phase
space

In this section we consider the zero-sum differential games. This problem can be
regarded as the extension of control theory to the case when there are two decision
makers (called players) with the opposite interests. We consider only finite-horizon
differential games with the players’ aims given by the payoff function1. This mean that
the dynamics of the system is given by

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡)), 𝑡 ∈ [0, 𝑇 ], 𝑥(𝑡) ∈ R𝑑, 𝑢(𝑡) ∈ 𝑈, 𝑣(𝑡) ∈ 𝑉. (7)

We assume that the first player tries to minimize

𝛾(𝑥(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡))𝑑𝑡

whereas the other (second) player prevents him/her.
The crucial point in the differential game theory is the choice of the class of strate-

gies.
First, one can assume that the players’ strategies depend only on time. Such strate-

gies are called open-loop. This approach implies that the players are blind and do not
use the information about current position. Admitting sighted players we arrive to the
concept of feedback strategies 𝑢(𝑡, 𝑥) and 𝑣(𝑡, 𝑥).

Given a feedback strategy 𝑢(𝑡, 𝑥) we have two approaches to construction of a
control. First, one can plug directly 𝑢(𝑡, 𝑥) into dynamics (7). Second, one can use a
stepwise scheme involving a finite partition ∆ = {𝑡𝑖} and use the control 𝑢(𝑡𝑖, 𝑥(𝑡𝑖)) on
the time interval [𝑡𝑖, 𝑡𝑖+1).

To realize the first approach we are either to assume continuity of 𝑢 w.r.t. to 𝑥 or
to use differential inclusions. However, Barabanova (Subbotina) and Subbotin showed

1For other statements see [KS88].
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that in the general case this approach does not provide optimal strategies comparing
with the stepwise schemes [BS71].

The mathematical form of stepwise schemes was first proposed by Krasovskii and
Subbotin [KS70] (see also [KS88]). Noticed that in fact this scheme holds on a short
memory.

The first player’s outcome at the initial position (𝑡0, 𝑥0) is estimated as follows. For
a feedback strategy 𝑢, a partition of [𝑡0, 𝑇 ] ∆ = {𝑡𝑖}𝑛𝑖=0, and some realization of the
second player’s control 𝑣(·), compute that quantity

𝐽(𝑡0, 𝑥0, 𝑢,∆, 𝑣) = 𝛾(𝑥(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡))𝑑𝑡,

where 𝑢(𝑡) is a realization of the feedback strategy 𝑢(𝑡, 𝑥),

𝑢(𝑡) = 𝑢(𝑡𝑖, 𝑥(𝑡𝑖)), when 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1),

𝑥(·) denotes the corresponding trajectory. Recall that the first player wishes to correct
his/her correct as frequent as possible and minimize 𝐽 subject to any action of the
second player. Thus he/she can expect the following outcome

Val+(𝑡0, 𝑥0) = inf
𝑢

lim sup
𝛿↓0

sup{𝐽(𝑡0, 𝑥0, 𝑢,∆, 𝑣) : 𝑑(∆) ≤ 𝛿}.

Here the supremum is taken over any realizations of the second player’s control 𝑣.
Interchanging the players we can evaluate the expected outcomes of the second

player by the function Val−(𝑡0, 𝑥0).
Obviously,

Val+(𝑡0, 𝑥0) ≥ Val−(𝑡0, 𝑥0).

Furthermore, the value functions satisfies the Bellman equations

𝜕𝜙

𝜕𝑡
+𝐻(𝑡, 𝑥,∇𝜙) = 0, 𝜙(𝑇, 𝑥) = 𝛾(𝑥)

with the Hamiltonian equal to

𝐻+(𝑡, 𝑥, 𝑝) , min
𝑢∈𝑈

max
𝑣∈𝑉

[⟨𝑝, 𝑓(𝑡, 𝑥, 𝑢, 𝑣)⟩ + 𝑔(𝑡, 𝑥, 𝑢, 𝑣)]

for the case of upper value function and equal to

𝐻−(𝑡, 𝑥, 𝑝) , max
𝑣∈𝑉

min
𝑢∈𝑈

[⟨𝑝, 𝑓(𝑡, 𝑥, 𝑢, 𝑣)⟩ + 𝑔(𝑡, 𝑥, 𝑢, 𝑣)]

for the case of lower value function.
When 𝐻+(𝑡, 𝑥, 𝑝) = 𝐻−(𝑡, 𝑥, 𝑝) (this equality is called the Isaacs’ condition), we

have that (see [BD96], [KS88], [Sub95]) that the game has a value denoted below by
Val and

Val+ = Val− = Val.

Notice that the upper and lower value functions are characterized using the viability
approach [KS88], [Sub95].

A function 𝜙 : [0, 𝑇 ] × R𝑑 → R is called 𝑢-stable if, for any 𝑠, 𝑟 ∈ [0, 𝑇 ], 𝑠 < 𝑟,
𝑦 ∈ R𝑑 and constant control of the second player 𝑣 ∈ 𝑉 , one can find a pair of functions
(𝑥(·), 𝑧(·)) satisfying

(�̇�(𝑡), �̇�(𝑡)) ∈ co{(𝑓(𝑡, 𝑥, 𝑢, 𝑣), 𝑔(𝑡, 𝑥, 𝑢, 𝑣)) : 𝑢 ∈ 𝑈}, 𝑥(𝑠) = 𝑦, 𝑧(𝑠) = 0
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and
𝜙(𝑠, 𝑦) ≥ 𝜙(𝑟, 𝑥(𝑟)) + 𝑧(𝑟).

Any 𝑢-stable function is an upper estimate of the upper value function. Moreover, the
upper value function is itself 𝑢-stable.

The 𝑣-stability condition is introduced in the same way. A function 𝜙 : [0, 𝑇 ]×R𝑑 →
R is called 𝑣-stable if, for any 𝑠, 𝑟 ∈ [0, 𝑇 ], 𝑠 < 𝑟, 𝑦 ∈ R𝑑 and constant control of the
first player 𝑢 ∈ 𝑈 , one can find a solution of the initial value problem for the differential
inclusion

(�̇�(𝑡), �̇�(𝑡)) ∈ co{(𝑓(𝑡, 𝑥, 𝑢, 𝑣), 𝑔(𝑡, 𝑥, 𝑢, 𝑣)) : 𝑣 ∈ 𝑉 }, 𝑥(𝑠) = 𝑦, 𝑧(𝑠) = 0

such that
𝜙(𝑠, 𝑦) ≤ 𝜙(𝑟, 𝑥(𝑟)) + 𝑧(𝑟).

As above, 𝑣-stable function provide lower estimates of the lower value function which
in turn is 𝑣-stable.

Furthermore, given a 𝑢-stable function 𝜙, a compact of initial positions 𝐾 ⊂ R𝑑

and a positive number 𝜀 one can construct the strategy of the first player 𝑢𝜀𝜙,𝐾(𝑡, 𝑥)
providing the outcome not greater than 𝜙(𝑠, 𝑦)+𝜀 at any initial position (𝑠, 𝑦) from the
set 𝐾. If we choose 𝜙 to be equal to the value function, we obtain 𝜀-optimal strategy
at any positions of 𝐾. The same can be performed for the second player using 𝑣-stable
functions.

There several other ways to formalize the notion of differential game. Let us mention
only nonanticipative strategies and control with guide strategies.

A nonanticipative strategy of the first players is a mapping 𝛼 assigning to each
masurable control of the second player a measurable control of the first player such
that the equality 𝑣1(𝑡) = 𝑣2(𝑡) on [0, 𝜏 ], implies that 𝛼[𝑣1](𝑡) = 𝛼[𝑣2](𝑡) 𝑡 ∈ [0, 𝜏 ].
Nonanticpative strategies for the second player are introduced in the same way. No-
tice that feedback approach and formalization based on nonanticipative strategies are
equivalent [SC81].

The control with guide strategies were introduced by Krasovski and Subbotion to
provide stability with respect to informational disturbances. The control with guide
strategies are the special case of full-memory strategies. The main idea of control
with guide strategies is to form the control stepwise using on each step the addi-
tional information about the state of the auxiliary control system (guide). Notice
that the value functions in the classes of feedback and control with guide strategies
coincide [KS88], [SC81].

Above we have mentioned that the dynamic programming for deterministic differ-
ential games leads to viscosity/minimax solutions of first-order PDE those are gen-
erally non-smooth. To construct the approximately optimal feedback strategies one
should use such constructions as quasidifferential or proximal sub- (super-) differen-
tials [Sub95].

The required construction is simplified if we replaced the deterministic dynamics (7)
with either dynamics given by the stochastic differential equation]

𝑑𝑋(𝑡) = 𝑓(𝑡,𝑋(𝑡), 𝑢(𝑡), 𝑣(𝑡))𝑑𝑡+ 𝜎(𝑡,𝑋(𝑡), 𝑢(𝑡), 𝑣(𝑡))𝑑𝑊𝑡

or with the dynamics determined by the continuous-time Markov chain with the Kol-
mogorov matrix

(𝑄𝑥,𝑦(𝑡, 𝑢, 𝑣))𝑥,𝑦∈𝒮 ,
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where 𝒮 is a state space. In the first case, the Bellman equation is the parabolic PDE
and the optimal strategy is determined by the derivatives of its solution [HL95]. In the
second case the Bellman equation is a system of ODEs, whereas the optimal strategy
is given by its solution [Zac64].

Krasovskii and Kotelnikova suggested to use the solutions of the stochastic dif-
ferential game for construction full-memory strategy those are approximately optimal
for the original game [KK10]. This approach can be extended to the general form of
continuous-time stochastic game. The thesis includes the results on construction of the
approximately optimal strategy for the continuous-time stochastic game based on the
solution of the continuous-time stochastic game with various dynamics.

1.3 Nonzero-sum differential games

The general form of the finite-horizon, nonzero-sum differential games in the finite-
dimensional space imply that the dynamics is given by

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑡,𝑥(𝑡), 𝑢1(𝑡), . . . , 𝑢𝑁(𝑡)),

𝑡 ∈ [0, 𝑇 ], 𝑥(𝑡) ∈ R𝑑, 𝑢𝑖(𝑡) ∈ 𝑈𝑖, 𝑖 = 1, . . . , 𝑁,
(8)

where the 𝑖-th player controls the variable 𝑢𝑖(𝑡) and wishes to maximize the outcome
equal to

𝛾𝑖(𝑥(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔𝑖(𝑡, 𝑥(𝑡), 𝑢1(𝑡), . . . , 𝑢𝑁(𝑡))𝑑𝑡.

Notice that the two-player zero-sum differential game arises when we choose 𝑁 = 2,
𝛾1 = −𝛾2, 𝑔1 = −𝑔2.

There several solution concepts for nonzero-sum games. We reduce our attention
only to the Nash equilibrium, which means that the profile of strategies is equilibrium
if any unilateral changing is not profitable.

The first way is to use the dynamic programming and reduce the game-theoretical
problem to the system of Bellman equations. To apply this approach to the nonzero-
sum differential game we are to assume that the following functions are well defined:

𝐻𝑖(𝑡, 𝑥,𝑝1, . . . , 𝑝𝑁) ,

⟨𝑝𝑖,𝑓(𝑡, 𝑥, 𝑢*1(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁), . . . , 𝑢*𝑁(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁))⟩
+ 𝑔𝑖(𝑡, 𝑥, 𝑢

*
1(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁), . . . , 𝑢*𝑁(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁))

(9)

where the profile of strategies (𝑢*1(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁), . . . , 𝑢*𝑁(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁)) satisfy the
property:

⟨𝑝𝑖, 𝑓(𝑡, 𝑥, 𝑢*1(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁), . . . , 𝑢*𝑁(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁))⟩
+𝑔𝑖(𝑡, 𝑥, 𝑢

*
1(𝑡,𝑥, 𝑝1, . . . , 𝑝𝑁), . . . , 𝑢*𝑁(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁)) =

max
𝑢𝑖∈𝑈𝑖

[⟨𝑝𝑖,𝑓(𝑡, 𝑥, 𝑢*1(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁), . . . , 𝑢𝑖, . . . , 𝑢
*
𝑁(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁))⟩

+ 𝑔𝑖(𝑡, 𝑥, 𝑢
*
1(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁), . . . , 𝑢𝑖, . . . , 𝑢

*
𝑁(𝑡, 𝑥, 𝑝1, . . . , 𝑝𝑁))]

(10)
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In this case it is proved [Fri70] that if there exists a smooth solution of the system of
Bellman equations

𝜕𝜙𝑖

𝜕𝑡
+𝐻𝑖(𝑡, 𝑥,∇𝜙1, . . . , 𝜙𝑁) = 0, 𝜙𝑖(𝑇, 𝑥) = 𝛾𝑖(𝑥), (11)

then the profile of strategies (𝑢*𝑖 (𝑡, 𝑥,∇𝜙1(𝑡, 𝑥), . . . ,∇𝜙𝑁(𝑡, 𝑥)))𝑖=1,...,𝑁 provides the
feedback Nash equilibrium at any initial position.

Since for the zero-sum games we have no smooth solutions, we are to develop some
theory dealing with generalized solution of this system. This was realized only for
several particular cases in [BS04a], [BS04b], [CP03].

However, up to now the general existence theorem for system (9), (10) was obtained.
Moreover, there is the example demonstrating that, in the general case, this system
admits only discontinuous solutions [Ave15].

The second approach to the nonzero-sum differential games is to use punishment
strategies. Within this approach it is assumed that the players choose a trajectory that
is feasible according to system (8). Any unilateral deviation from this trajectories are
punished by other players. A trajectory provides a Nash equilibrium if the expected
outcome of each player along it are greater or equal to the value function of the zero-
sum differential game with dynamics given by (8) when this player wishes to maximize
his/her payoff and other players prevent him/her. The punishment approach can be
realized in the class of feedback strategies (in the sense of Krasovskii-Subbotin) for two-
player games [Kle93]. When we consider games with 𝑁 players (𝑁 > 2) the feedback
Nash equilibrium within the punishment approach can be constructed when 𝑖-th player
affects on his/her variable 𝑥𝑖. In the general case we are to assume that there exists
an external center that informs the players about the deviating player [Kle93].

The main disadvantages of the punishment approach are the following.

1. The players are to negotiate about the desired trajectory.

2. There is a multiplicity of equilibria.

3. The construction of Nash equilibrium within the punishment approach relies on
incredible threats.

4. The feedback Nash equilibria within punishment approach are not universal i.e.
one can not construct a profile of feedback strategies providing the Nash equilib-
rium at any initial position.

Notice that when we consider continuous-time game with dynamics given either
by stochastic differential equation or by Markov chain the system of Bellman equa-
tions (11) is replaced with either system of parabolic second-order PDEs for the case of
stochastic differential games [Fri72] or by differential inclusion for the case of Markov
games [Zac64], [Lev13, Theorems 2 and 5]. The existence theorems in these cases can
be proved under rather mild assumptions [Man04], [Man14], [HM19], [Lev13, Theorem
6].

1.4 Controlled mean field dynamics and mean field games

The mean field games (originally proposed by Lasry and Lions [LL06a], [LL06b] and
Caines, Malhamé, Huang [HMC05]) and mean field type control problems [AD01] refers
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to the systems constituted by infinitely many identical particles such that the dynamics
of each particle is determined by his/her state, his/her control and the distribution of
all other particles. This leads to the dynamic systems in the space of probabilities.
Nowadays, it is generally accepted to endow this space with so called Kantorovich
distance. Let us briefly describe this concept.

First, we need some additional notation. We denote the set of all Borel probabilities
on 𝑋 by 𝒫(𝑋). If (Ω′,ℱ ′) and (Ω′′,ℱ ′′) are measurable spaces, 𝑚 is a probability on
ℱ ′, ℎ : Ω′ → Ω′′ is measurable, then ℎ#𝑚 denotes the push-forward measure defined
by the following rule, for Υ ∈ ℱ ′′,

(ℎ#𝑚)(Υ) , 𝑚(ℎ−1(Υ)).

The projection operator plays the crucial role in the definition of the Kantorovich
distance. If 𝑋1, 𝑋2 are sets, then we denote the natural projection of 𝑋1 ×𝑋2 on 𝑋𝑖

by p𝑖.
For 𝑝 ≥ 1, let 𝒫𝑝(𝑋) denote the set of all probabilities 𝑚 on 𝑋 such that, for some

(and, consequently, any) 𝑥0 ∈ 𝑋∫︁
𝑋

𝜌𝑝𝑋(𝑥, 𝑥0)𝑚(𝑑𝑥) <∞.

The 𝑝-th Kantorovich metric2 on 𝒫𝑝(𝑋) is defined by the following rule (see [AGS05],
[BK12]): if 𝑚′,𝑚′′ ∈ 𝒫(𝑋), then

𝑊𝑝(𝑚
′,𝑚′′) ,

[︂
inf

{︂∫︁
𝑋×𝑋

𝜌𝑝𝑋(𝑥′, 𝑥′′)𝜋(𝑑(𝑥′, 𝑥′′)) : 𝜋 ∈ Π(𝑚′,𝑚′′)

}︂]︂1/𝑝
,

where Π(𝑚′,𝑚′′) is the set of plans between 𝑚′ and 𝑚′′ i.e. 𝜋 ∈ Π(𝑚′,𝑚′′) iff 𝜋 ∈ 𝒫(𝑋)
and p1

#𝜋 = 𝑚′, p2
#𝜋 = 𝑚′′.

The space 𝒫𝑝(𝑋) endowed with the metric 𝑊𝑝 is a Polish space provided that
𝑋 is itself a Polish space [AGS05]. If 𝑋 is a compact, then 𝒫𝑝(𝑋) is also compact
[AGS05]. However, the 𝜎-compactness property does not follow from the fact that 𝑋
is 𝜎-compact.

The mean field type control processes can be defined using the generators technique.
In this case we assume that the dynamics of each particle is the stochastic process
produced by the generator

𝐿𝑡[𝑚,𝑢]𝜑 , ⟨𝑓(𝑡, 𝑥,𝑚, 𝑢),∇⟩𝜑(𝑥) +
1

2
⟨𝐺(𝑡, 𝑥,𝑚, 𝑢)∇,∇⟩𝜑(𝑥)

+

∫︁
R𝑑

[𝜑(𝑥+ 𝑦) − 𝜑(𝑥) − ⟨𝑦,∇𝜑(𝑥)⟩1𝐵1(𝑦)]𝜈(𝑡, 𝑥,𝑚, 𝑢, 𝑑𝑦).

Here 𝑚 is a probability corresponding to the distribution of particles. The control 𝑢
can be chosen either as a open-loop control i.e. some stochastic process taking values
in 𝑈 or as a feedback control 𝑢(𝑡, 𝑥).

The first assumption leads to the following definition.
2It is also called the Wasserstein distance. The question about proper terminology is explained

in [BK12, §1.1].
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Definition 1.2. We say that a flow of probabilities [𝑠, 𝑇 ] ∋ 𝑡 ↦→ 𝑚(𝑡) ∈ 𝒫(R𝑑) is
generated by the generator 𝐿 if there exists a control process (Ω,ℱ , {ℱ}𝑡∈[𝑠,𝑇 ], 𝑃, 𝑢,𝑋)
admissible for the generator 𝐿𝑡[𝑚(𝑡), 𝑢], where

𝑚(𝑡) = 𝑋(𝑡, ·)#𝑃.

In this case the motion of each particle is determined by the generator 𝐿𝑡[𝑚(𝑡), 𝑢].

Considering the feedback strategies 𝑢(𝑡, 𝑥) or 𝑢(𝑡, 𝑥,𝑚) one can reduce them to the
open-loop strategies letting 𝑢(𝑡, 𝜔) = 𝑢(𝑡,𝑋(𝑡, 𝜔)) or 𝑢(𝑡, 𝜔) = 𝑢(𝑡,𝑋(𝑡, 𝜔),𝑚(𝑡)).

The construction described above comprises the stochastic mean field control sys-
tems (controlled McKean-Vlasov dynamics) when the motion of each particle is given
by

𝑑𝑋(𝑡) = 𝑓(𝑡,𝑋(𝑡),𝑚(𝑡), 𝑢)𝑑𝑡+ 𝜎(𝑡,𝑋(𝑡),𝑚(𝑡), 𝑢)𝑑𝑊𝑡, (12)
where 𝑚(𝑡) is the law of 𝑋(𝑡) and more general class of mean field type controlled
system with jumps and diffusion. In the thesis we are primary concerned with the
deterministic mean field type control systems those are obtained from (12) by letting
𝜎 = 0.

As it was mentioned above, the mean field game theory and mean field type con-
trol theory deal with the controlled dynamical in the space of probability measures
constituted by identical particles. The difference between the mentioned theories is
the solution concepts. The mean field game theory implies that each particle is an
independent player who tries to maximize his/her own utility given by

E
[︂
𝛾(𝑋(𝑇 ),𝑚(𝑇 )) +

∫︁ 𝑇

𝑠

𝑔(𝑡,𝑋(𝑡),𝑚(𝑡), 𝑢(𝑡))𝑑𝑡

]︂
, (13)

whereas within the mean field type control theory it is assumed that the aim of all
particles is to maximize the common utility given by

𝛾′(𝑚(𝑇 )) + E
∫︁ 𝑇

𝑠

𝑔(𝑡,𝑋(𝑡),𝑚(𝑡), 𝑢(𝑡))𝑑𝑡. (14)

The mean field game theory examines symmetric Nash equilibria in infinite player
continuous-time stochastic games with identical players. Thus, we arrive to the follow-
ing formal definition.

Definition 1.3. Let 𝑡0 be an initial time, and let 𝑚0 ∈ 𝒫2(R𝑑) be a given initial
distribution of players. We say that a 7-tuple (Ω,ℱ , {ℱ}𝑡∈[𝑡0,𝑇 ], 𝑃, 𝑢,𝑋,𝑚(·)) provides
a solution of the mean field game with the dynamics determined by the generator 𝐿
and payoff of each player determined by (13), if

∙ (Ω,ℱ , {ℱ}𝑡∈[𝑡0,𝑇 ], 𝑃, 𝑢,𝑋) is admissible for the generator 𝐿𝑡[𝑚(𝑡), 𝑢];

∙ 𝑚(𝑡) = 𝑋(𝑡, ·)#𝑃 ;

∙ 𝑚(𝑡0) = 𝑚0;

∙ for any 𝑦 ∈ R𝑑 and any (Ω′,ℱ ′, {ℱ ′}𝑡∈[𝑡0,𝑇 ], 𝑃
′, 𝑢′, 𝑋 ′) admissible for the generator

𝐿𝑡[𝑚(𝑡), 𝑢] such that 𝑋(𝑡0) = 𝑦 𝑃 ′-a.s., we have that

E
[︁
𝛾(𝑋(𝑇 ),𝑚(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔(𝑡,𝑋(𝑡),𝑚(𝑡), 𝑢(𝑡))𝑑𝑡
⃒⃒⃒
𝑋(𝑡0) = 𝑦]

≥ E′
[︁
𝛾(𝑋 ′(𝑇 ),𝑚(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔(𝑡,𝑋 ′(𝑡),𝑚(𝑡), 𝑢′(𝑡))𝑑𝑡
]︁
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Here E (respectively, E′) stands for the expectation with respect to probability
𝑃 (respectively 𝑃 ′.)

Definition 1.3 lies in the field of so called probabilistic approach to the mean field
games [CD18]. A different approach (and more popular) is based on solutions of mean
field game system. To introduce it, let us set, for (Ω,ℱ , {ℱ𝑡}𝑡∈[𝑡0,𝑇 ], 𝑃, 𝑢,𝑋) providing
a solution of mean field games,

𝜙(𝑠, 𝑦) , E
[︁
𝛾(𝑋(𝑇 ),𝑚(𝑇 )) +

∫︁ 𝑇

𝑠

𝑔(𝑡,𝑋(𝑡),𝑚(𝑡), 𝑢(𝑡))𝑑𝑡
⃒⃒⃒
𝑋(𝑠) = 𝑦].

The function 𝜙 is the expected outcome of the representative player who starts at
the time 𝑡 in the state 𝑦. Due to the dynamical programming principle, it satisfies
(probably in a generalized sense) the following equation

𝜕𝜙

𝜕𝑡
+ max

𝑢∈𝑈

(︁
𝐿𝑡[𝑚(𝑡), 𝑢]𝜙(𝑥) + 𝑔(𝑡, 𝑥,𝑚(𝑡), 𝑢)

)︁
= 0, 𝜙(𝑇, 𝑥) = 𝛾(𝑥,𝑚(𝑇 )). (15)

Simultaneously, the dynamics of the flow of probabilities 𝑚(·) is determined by the
equality 𝑚(𝑡) = 𝑋(𝑡, ·)#𝑃 with the stochastic process 𝑋 determined by the optimal
control. If we choose a feedback optimal control 𝑢 satisfying

𝑢*(𝑡, 𝑥) = argmax
𝑢∈𝑈

(︁
𝐿𝑡[𝑚(𝑡), 𝑢]𝜙(𝑥) + 𝑔(𝑡, 𝑥,𝑚(𝑡), 𝑢)

)︁
, (16)

then the flow of probabilities 𝑚(·) obeys the kinetic equation

𝑑

𝑑𝑡
𝑚(𝑡) = 𝐿𝑡[𝑚(𝑡), 𝑢*(𝑡, ·)]𝑚(𝑡), 𝑚(𝑡0) = 𝑚0. (17)

The system of consisting of equation (15), (17) together with condition (16) is called
the mean field game system. Its solution determines the solution of the mean field game
in the sense of Definition 1.3. The existence result for the mean field game system is
proved for the wide range of generators and running costs function 𝑔 [KLY11], [KY13].

The mean field game can be regarded as a limit of the symmetric equilibria in
the finite-player games. This insight becomes a strong statement for several cases in-
cluding open-loop equilibria in stochastic differential games [Fis17], [Lac17]. The limit
behaviour of feedback equilibria is studied with the help of the so called master equa-
tion [CDLL19]. This is a differential equation on the product of the finite dimensional
space and the space of probability measures. The existence and uniqueness theorem
on a given time interval for the master equation is proved only for the case of dynamics
given by stochastic differential equation and the coercitive Hamiltonian [GS15]. Ad-
ditionally, there are several short-time existence results. Approximate Nash equilibria
in the finite player continuous-time games can be also constructed by solutions of the
limiting mean field game [KLY11], [KTY14].

2 Results and publications
The thesis is concerned with the probabilistic methods for the differential games.

First, we studied the two-person differential games (both zero-sum and nonzero-sum).
The main object in this part of research is the construction of approximate solutions
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and estimates of the value function based on solutions of model games. To this end
we consider a pair of continuous-time stochastic games. The first game is under our
interest; the second one is model game and we are informed about its solution. We
constructed an approximate solution for the first game. This result, in particular,
provides various estimates of the value functions of the differential games. Second,
we studied the games with many particle in the limit when the number of players
tends to infinity. Assuming that the players are identical and interact via external
media, we arrive to the mean field game theory first proposed by Lasry, Lions and
(independently) by Huang, Malhamé, Caines. In this direction we studied the viability
property of the system consisting of identical particles and properties of the first-order
mean field games.

The main results of the thesis are the following.

1. We considered approximate solution for the zero-sum continuous-time stochastic
game using on the solutions of model game. Generally, it is assumed that the
dynamics of the original and the model games are different. A suboptimal strat-
egy for the first (respectively, second) player is constructed based on a function
satisfying so called 𝑢-stability (respectively, 𝑣-stability) condition for the model
game. This provides the estimates of the value function for the original game by
𝑢- and 𝑣-stable functions for the model game.

2. The general result was applied to several particular cases. It gives approxima-
tions of the value function of the zero-sum differential game by either solutions
of Cauchy problems for parabolic PDEs or solutions of the systems of ODEs.
Furthermore, using the same methodology, we constructed approximately opti-
mal strategies for the Markov games corresponding to large particle systems with
mean field interaction.

3. For the two-person nonzero-sum differential game we constructed the approx-
imate Nash equilibrium in the class of public-signal correlated strategies with
memory. The proposed construction relies on a pair of function satisfying stabil-
ity condition for a model continuous time differential game. It is proved that if
the model game converge to the original one, then the limiting points of players’
outcomes corresponding to the constructed approximate Nash equilibria lie in the
convex hull of the set of Nash value in the class of punishment strategies.

4. We concretized the general construction of approximate Nash equilibrium based
on a solution of a model game and designed approximate Nash equilibria using
solutions of systems of parabolic PDEs and solutions of system of differential
inclusions.

5. We studied the viability condition for the infinite system of identical players
obeying deterministic evolution with the mean field interaction. We obtained the
Nagumo-type viability theorem. To this end, we proposed an analog of a tangent
cone.

6. We proposed the minimax approach to deterministic mean field games. In fact,
this approach is the variant of the probabilistic approach that uses probabilities
on the space of trajectories. We studied the stability of solutions of mean field
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game under stochastic perturbations. Furthermore, we proved that each solu-
tion of mean field game within the probabilistic approach is a minimax solution.
Additionally, we constructed an approximate Nash equilibrium for a finite player
game based on a solution of mean field game.

7. We examined the dependence of the solution of mean field game on initial distri-
bution of players. To this end we introduced the value multifunction that assigns
to an initial time and an initial distribution of players a set of expected outcomes
of the representative player. We defined a mean field game dynamics and proved
that if a given multifunction is viable with respect to this dynamics, then it is
a value mulifunction. Furthermore, using the methodology developed for the vi-
ability analysis of mean field type control systems, we derived the infinitesimal
form of the viability condition. It can be regarded as a generalization of the
master equation of mean field games.
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3 Main results

3.1 Approximate solutions of continuous-time stochastic game

Here we briefly discuss the main results of papers [1], [2]. In those paper we as-
sumed that we are given with two systems determined by the Lévy–Khintchine type

13



generators 𝐿𝑖
𝑡[𝑢, 𝑣], 𝑖 = 1, 2:

𝐿𝑖
𝑡[𝑢, 𝑣]𝜑(𝑥) =

1

2
⟨𝐺𝑖(𝑡, 𝑥, 𝑢, 𝑣)∇,∇⟩𝜑(𝑥) + ⟨𝑓 𝑖(𝑡, 𝑥, 𝑢, 𝑣),∇⟩𝜑(𝑥)

+

∫︁
R𝑑

[𝜑(𝑥+ 𝑦) − 𝜑(𝑥) − ⟨𝑦,∇𝜑(𝑥)⟩1𝐵1(𝑦)]𝜈𝑖(𝑡, 𝑥, 𝑢, 𝑣, 𝑑𝑦).

Here 𝑢 (respectively, 𝑣) is the control of the first (respectively, second) player. Below
we assume that each generator is defined on a space 𝒟𝑖 ⊂ 𝐶(R𝑑) that contains 𝐶𝑏(R𝑑)
as well as the linear and quadratic functions. It is assumed that the first player tries
to minimize

E𝛾(𝑋(𝑇 ));

the aim of the second player is opposite. In the following 𝐿1 provides the dynamics
of the original system, whereas 𝐿2 determines motions of the model system for which
we know the solution or its estimates. The purpose of the mentioned papers is two
construct approximate solution in the original system.

Now, let us introduce the definition of strategies. Here we assume that the players
can use memory and additional information coming from the model that is stochastic.
This drive us to the following concept of stochastic strategies with memory.

Definition 3.1 [1, Definition 1]. Let 𝑡0 be an initial time. A strategy of the first player
on [𝑡0, 𝑇 ] is a 5-tuple u = (Ω𝑈 ,ℱ𝑈 , {ℱ𝑈

𝑠 }𝑠∈[𝑡0,𝑇 ], 𝑢𝑥(·), 𝑃
𝑈
𝑥(·)) satisfying the following

conditions:

1. (Ω𝑈 ,ℱ𝑈 , {ℱ𝑈
𝑠 }𝑠∈[𝑡0,𝑇 ]) is a filtered space;

2. for each function 𝑥(·) ∈ D𝑡0 , 𝑢𝑥(·) is a {ℱ𝑈
𝑠 }𝑠∈[𝑡0,𝑇 ]-progressive measur-

able stochastic process with values in 𝑈 , whereas 𝑃𝑈
𝑥(·) is a probability on

(Ω𝑈 ,ℱ𝑈 , {ℱ𝑈
𝑠 }𝑠∈[𝑡0,𝑇 ]);

3. if, for all 𝑠 ∈ [𝑡0, 𝑡], 𝑦(𝑠) = 𝑥(𝑠), then

∙ for any 𝐴 ∈ ℱ𝑈
𝑡 , 𝑃𝑈

𝑥(·)(𝐴) = 𝑃𝑈
𝑦(·)(𝐴);

∙ for any 𝑠 ∈ [𝑡0, 𝑡], 𝑢𝑥(·)(𝑠) = 𝑢𝑦(·)(𝑠) 𝑃
𝑈
𝑥(·)-a.s.;

4. for any 𝑡 ∈ [𝑡0, 𝑇 ], the function (𝑥(·), 𝑠, 𝜔) ↦→ 𝑢𝑥(·)(𝑠, 𝜔) is measurable with respect
to F𝑡0,𝑡 ⊗ ℬ([𝑡0, 𝑡]) ⊗ℱ𝑈

𝑡0,𝑡
.

Here 𝑥(·) is a trajectory chosen from the Skorokhod space D𝑡0 , 𝐷([𝑡0, 𝑇 ],R𝑑). The
symbol F𝑠,𝑡 denotes the 𝜎-algebra on D𝑡0 generated by events on [𝑠, 𝑡].

A strategy u = (Ω𝑈 ,ℱ𝑈 , {ℱ𝑈
𝑠 }𝑠∈[𝑡0,𝑇 ], 𝑢𝑥(·), 𝑃

𝑈
𝑥(·)) is called stepwise if there exists

a partition ∆ = {𝑡𝑙}𝑟𝑙=1 of the interval [𝑡0, 𝑇 ] such that equality 𝑥(𝑡𝑘) = 𝑦(𝑡𝑘), 𝑘 =
0, . . . , 𝑙− 1 implies that 𝑃𝑥(·)(𝐴) = 𝑃𝑦(·)(𝐴) for any 𝐴 ∈ ℱ𝑈

𝑡𝑙−0 and 𝑢𝑥(·)(𝑠) = 𝑢𝑦(·)(𝑠) for
𝑠 ∈ [0, 𝑡𝑙).

Note that the presented definition of strategy includes feedback strategies, and
randomized feedback strategies.

A strategy of the second player is a 5-tuple v = (Ω𝑉 ,ℱ𝑉 , {ℱ𝑉
𝑠 }𝑠∈[𝑡0,𝑇 ], 𝑣𝑥(·), 𝑃

𝑉
𝑥(·))

satisfying conditions similar to the conditions of Definition 3.1 with 𝑣𝑥(·) taking values
in 𝑉 .
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Definition 3.2 [1, Definition 2]. Let (𝑡0, 𝑥0) be an initial position, and let u =
(Ω𝑈 ,ℱ𝑈 , {ℱ𝑈

𝑠 }𝑠∈[0,𝑇 ], 𝑢𝑥(·), 𝑃
𝑈
𝑥(·)), v = (Ω𝑉 ,ℱ𝑉 , {ℱ𝑉

𝑠 }𝑠∈[𝑡0,𝑇 ], 𝑣𝑥(·), 𝑃
𝑉
𝑥(·)) be strategies of

the first and the second players respectively. A 5-tuple (Ω𝑋 ,ℱ𝑋 , {ℱ𝑋
𝑠 }𝑠∈[𝑡0,𝑇 ], 𝑋(·), 𝑃 )

is a realization of the motion generated by the strategies u, v and the initial position
(𝑡0, 𝑥0) if the following conditions hold true:

1. (Ω𝑋 ,ℱ𝑋 , {ℱ𝑋
𝑠 }𝑠∈[𝑡0,𝑇 ]) is a filtered space;

2. 𝑃 is a probability on (Ω,ℱ , {ℱ𝑠}𝑠∈[𝑡0,𝑇 ]), where Ω , Ω𝑋 × Ω𝑈 × Ω𝑉 , ℱ , ℱ𝑋 ⊗
ℱ𝑈 ⊗ℱ𝑉 , ℱ𝑠 , ℱ𝑋

𝑠 ⊗ℱ𝑈
𝑠 ⊗ℱ𝑉

𝑠 ;

3. 𝑋(·) is a {ℱ𝑠}𝑠∈[𝑡0,𝑇 ]-adapted process on (Ω,ℱ , {ℱ𝑠}𝑠∈[𝑡0,𝑇 ]) with values in R𝑑;

4. 𝑋(𝑡0) = 𝑥0 𝑃 -a.s;

5. for any 𝜑 ∈ 𝒟1, the process

𝜑(𝑋(𝑡)) −
∫︁ 𝑡

𝑡0

𝐿1
𝜏 [𝑢(𝜏), 𝑣(𝜏)]𝜑(𝑋(𝜏))𝑑𝜏 (18)

is a {ℱ𝑠}𝑠∈[𝑡0,𝑇 ]-martingale; here 𝑢 and 𝑣 are {ℱ𝑠}𝑠∈[𝑡0,𝑇 ]-progressively measurable
stochastic processes defined by the rules

𝑢(𝜏, 𝜔𝑋 , 𝜔𝑈 , 𝜔𝑉 ) , 𝑢𝑋(·,𝜔𝑋 ,𝜔𝑈 ,𝜔𝑉 )(𝜏, 𝜔
𝑈),

𝑣(𝜏, 𝜔𝑋 , 𝜔𝑈 , 𝜔𝑉 ) , 𝑣𝑋(·,𝜔𝑋 ,𝜔𝑈 ,𝜔𝑉 )(𝜏, 𝜔
𝑉 ),

where (𝜔𝑋 , 𝜔𝑈 , 𝜔𝑉 ) ∈ Ω;

6. for any 𝑥(·) ∈ D𝑡0 and any random variable 𝜑′ on (Ω𝑈 ,ℱ𝑈),

E𝑈
𝑥(·)𝜑

′ = E(𝜑′|𝑋(·) = 𝑥(·)),

where E𝑈
𝑥(·) denotes the expectation corresponding to the probability 𝑃𝑈

𝑥(·);

7. for any 𝑥(·) ∈ D𝑡0 and any random variable 𝜑′′ on (Ω𝑉 ,ℱ𝑉 ),

E𝑉
𝑥(·)𝜑

′′ = E(𝜑′′|𝑋(·) = 𝑥(·)),

where E𝑉
𝑥(·) denotes the expectation corresponding to the probability 𝑃 𝑉

𝑥(·).

Notice that if both strategies are stepwise, then one can prove the existence of at
least one realization. However, given the strategies u, v, the outcome is not defined in
the unique way. The values

𝐽*(𝑡0, 𝑥0, u, v) , sup{E𝑔(𝑋(𝑇 )) : (Ω𝑋 ,ℱ𝑋 , {ℱ𝑋
𝑠 }𝑠∈[0,𝑇 ], 𝑋(·), 𝑃 ) realizing a

motion generated by the strategies u and v and the initial position (𝑡0, 𝑥0)},

𝐽*(𝑡0, 𝑥0, u, v) , inf{E𝑔(𝑋(𝑇 )) : (Ω𝑋 ,ℱ𝑋 , {ℱ𝑋
𝑠 }𝑠∈[0,𝑇 ], 𝑋(·), 𝑃 ) realizing a

motion generated by the strategies u and v and the initial position (𝑡0, 𝑥0)}
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are the upper and lower outcomes according to the strategies u and v. The upper value
of the game is

Val+(𝑡0, 𝑥0) = inf
u

sup
v
𝐽*(𝑡0, 𝑥0, u, v).

The lower value is equal to

Val−(𝑡0, 𝑥0) = sup
v

inf
u
𝐽*(𝑡0, 𝑥0, u, v).

Obviously,
Val−(𝑡0, 𝑥0) ≤ Val+(𝑡0, 𝑥0).

The main result of paper [1] is the constructions of suboptimal strategies and the
estimate upper and lower value functions for the original game using the model of the
game given by the generator 𝐿2.

We assume that the solution of the model game is given in the form of stable
function.

Definition 3.3 [1, Definition 4]. A function 𝑐+ : [0, 𝑇 ]×R𝑑 → R is said to be 𝑢-stable
with respect to the generator 𝐿2 if

1. 𝑐+(𝑇, 𝑥) = 𝑔(𝑥);

2. for any 𝑡, 𝜃 ∈ [0, 𝑇 ], 𝑡 < 𝜃, there exists a filtered space (̃︀Ω𝑡,𝜃, ̃︀ℱ 𝑡,𝜃, { ̃︀ℱ 𝑡,𝜃
𝑠 }𝑠∈[𝑡,𝜃]) such

that, for any 𝑦 ∈ R𝑑, 𝑣 ∈ 𝑉 , one can find a { ̃︀ℱ 𝑡,𝜃
𝑠 }𝑠∈[𝑡,𝜃]-progressively measurable

generalized control of the first player on [𝑡, 𝜃] 𝜇𝑡,𝜃
𝑦,𝑣, a { ̃︀ℱ 𝑡,𝜃

𝑠 }𝑠∈[𝑡,𝜃]-adapted process
𝑌 𝑡,𝜃
𝑦,𝑣 with values in R𝑑, and a probability ̃︀𝑃 𝑡,𝜃

𝑦,𝑣 on ̃︀Ω𝑡,𝜃 such that 𝑌 𝑡,𝜃
𝑦,𝑣 (𝑡) = 𝑦 ̃︀𝑃 𝑡,𝜃

𝑦,𝑣-
a.s., for any 𝜑 ∈ 𝒟2,

𝜑(𝑌 𝑡,𝜃
𝑦,𝑣 (𝑠)) −

∫︁ 𝑠

𝑡

∫︁
𝑈

𝐿2
𝜏 [𝑤, 𝑣]𝜑(𝑌 𝑡,𝜃

𝑦,𝑣 (𝜏))𝜇𝑡,𝜃
𝑦,𝑣(𝜏, 𝑑𝑤)𝑑𝜏 (19)

is a { ̃︀ℱ 𝑡,𝜃
𝑠 }𝑠∈[𝑡,𝜃]-martingale and

𝑐+(𝑡, 𝑦) ≥ ̃︀E𝑡,𝜃
𝑦,𝑣𝑐+(𝜃, 𝑌 𝑡,𝜃

𝑦,𝑣 (𝜃)); (20)

3. for any random variable 𝜑 on ̃︀Ω𝑡,𝜃, the dependence of ̃︀𝐸𝑡,𝜃
𝑦,𝑣𝜑 on 𝑦 and 𝑣 is mea-

surable;

4. for any 𝜑 ∈ 𝒟2, the function (𝑦, 𝑣, 𝑠) ↦→ ̃︀𝐸𝑡,𝜃
𝑦,𝑣𝜑(𝑌 𝑡,𝜃

𝑦,𝑣 (𝑠)) is measurable.

Here ̃︀E𝑡,𝜃
𝑦,𝑣 denotes the expectation corresponding to the probability ̃︀𝑃 𝑡,𝜃

𝑦,𝑣.

Further, put

Σ𝑖(𝑡, 𝑥, 𝑢, 𝑣) ,
𝑑∑︁

𝑗=1

𝐺𝑖
𝑗𝑗(𝑡, 𝑥, 𝑢, 𝑣) +

∫︁
R𝑑

‖𝑦‖2𝜈𝑖(𝑡, 𝑥, 𝑢, 𝑣, 𝑑𝑦);

𝑏𝑖(𝑡, 𝑥, 𝑢, 𝑣) , 𝑓 𝑖(𝑡, 𝑥, 𝑢, 𝑣) +

∫︁
R𝑑∖𝐵1

𝑦𝜈𝑖(𝑡, 𝑥, 𝑢, 𝑣, 𝑑𝑦).

The function Σ𝑖 estimates the stochasticity of the generator 𝐿𝑖, whilst 𝑏𝑖 plays the role
of the effective drifts. We impose the continuity conditions (those include Lipschitz
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continuity of 𝑏𝑖), as well as the boundness of Σ𝑖 and 𝑏𝑖. The most important assumption
is the following analog of the Isaacs’ condition which states that, for at least one 𝑖 = 1, 2
and every 𝑡 ∈ [0, 𝑇 ], 𝑥, 𝑝 ∈ R𝑑, 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 ,

min
𝑢∈𝑈

max
𝑣∈𝑉

⟨𝑝, 𝑏𝑖(𝑡, 𝑥, 𝑢, 𝑣)⟩ = max
𝑣∈𝑉

min
𝑢∈𝑈

⟨𝑝, 𝑏𝑖(𝑡, 𝑥, 𝑢, 𝑣)⟩.

Further, let 𝑀 𝑖
0 be a constant such that

|Σ𝑖(𝑡, 𝑥, 𝑢, 𝑣)| ≤𝑀 𝑖
0 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ R𝑑, 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉,

𝐾𝑖 be a Lipschitz constant for the function 𝑥 ↦→ 𝑏𝑖(𝑡, 𝑥, 𝑢, 𝑣),

κ ,
1

2
sup

𝑡∈[0,𝑇 ],𝑥∈R𝑑,𝑢∈𝑈,𝑣∈𝑉
‖𝑏1(𝑡, 𝑥, 𝑢, 𝑣) − 𝑏2(𝑡, 𝑥, 𝑢, 𝑣)‖2,

𝜖 , κ +𝑀1
0 +𝑀2

0 . (21)

Now, let choose 𝑖 such that for 𝑏𝑖 the Isaacs’ condition is fulfilled and set

𝛽 , 3 + 2𝐾𝑖. (22)

Finally, put 𝐶 ,
√

2𝑇𝑒𝛽𝑇 .

Theorem 3.4 [1, Theorem 8]. If 𝑐+ is 𝑢-stable with respect to 𝐿2, then one can con-
structively build a strategy ̂︀uΔ such that, for any (𝑡0, 𝑥0) ∈ [0, 𝑇 ] × R𝑑,

lim
𝛿↓0

sup{𝐽(𝑡0, 𝑥0,̂︀uΔ, v) : 𝑑(∆) ≤ 𝛿} ≤ 𝑐+(𝑡0, 𝑥0) +𝑅 · 𝐶
√
𝜖.

Here 𝑅 is the Lipschitz constant for the payoff function 𝛾. The proof of this theorem
is based on the variant of Krasovski-Subbotin extremal shift rule for the continuous-
time stochastic systems.

Using the definition of the value function we obtain the following.

Corollary 3.5 [1, Corollary 9]. If 𝑐+ is 𝑢-stable with respect to 𝐿2, then, for (𝑡0, 𝑥0) ∈
[0, 𝑇 ] × R𝑑,

Val+(𝑡0, 𝑥0) ≤ 𝑐+(𝑡0, 𝑥0) +𝑅 · 𝐶
√
𝜖.

The notion of 𝑣-stability can be introduced in the same spirit as 𝑢-stability by
interchanging of the players. Using it we obtain the following estimate

Corollary 3.6 [1, Corollary 10]. If 𝑐− is 𝑣-stable with respect to 𝐿2, then, for (𝑡0, 𝑥0) ∈
[0, 𝑇 ] × R𝑑,

𝑐−(𝑡0, 𝑥0) −𝑅 · 𝐶
√
𝜖 ≤ Val−(𝑡0, 𝑥0).

3.2 Particular cases

Let us present estimates for some concrete class of continuous-time differential
games.
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3.2.1 Stochastic model for differential game

We assume here that the original game is given by the deterministic evolution

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢, 𝑣), (23)

whereas the model system is described by the stochastic differential equation

𝑑𝑋(𝑡) = 𝑓(𝑡,𝑋(𝑡), 𝑢, 𝑡)𝑑𝑡+ 𝜎𝑑𝑊𝑡.

The generators now are equal to

𝐿1
𝑡 [𝑢, 𝑣]𝜑(𝑥) = ⟨𝑓(𝑡, 𝑥, 𝑢, 𝑣),∇𝜑(𝑥)⟩,

𝐿2
𝜏 [𝑢, 𝑣]𝜑(𝑥) = ⟨∇𝜑(𝑥), 𝑓 1(𝑡, 𝑥, 𝑢, 𝑣)⟩ +

𝜎2

2
· △𝜑(𝑥).

We assume that the Isaacs’ condition is fulfilled for the original game. Thus, the
deterministic game has the value. As above, we denote it by Val. Applying the general
theory we get the following.

Proposition 3.7 Proposition 16 and Corollary 18 of [1]. If 𝜓𝜎 is a solution of

𝜕𝜓

𝜕𝑡
+ min

𝑢∈𝑈
max
𝑣∈𝑉

⟨∇𝜓, 𝑓 1(𝑡, 𝑥, 𝑢, 𝑣)⟩ +
𝜎2

2
△𝜓 = 0, 𝜓(𝑇, 𝑥) = 𝛾(𝑥),

then 𝜓𝜎 is 𝑢- and 𝑣-stable with respect to the generator

𝐿2
𝜏 [𝑢, 𝑣]𝜑(𝑥) = ⟨∇𝜑(𝑥), 𝑓 1(𝑡, 𝑥, 𝑢, 𝑣)⟩ +

𝜎2

2
· △𝜑(𝑥). (24)

Thus, there exists a constant 𝐶1 such that

|Val(𝑡0, 𝑥0) − 𝜓𝜎(𝑡0, 𝑥0)| ≤ 𝑅𝐶1𝜎.

3.2.2 Markov model for differential game

As above we consider the deterministic differential game with the dynamics given
by (23). Now let us introduce a model system governed by a Markov chain. Let ℎ be
a positive number, 𝑓 1(𝑡, 𝑥, 𝑢, 𝑣) = (𝑓 1

1 (𝑡, 𝑥, 𝑢, 𝑣), . . . , 𝑓 1
𝑑 (𝑡, 𝑥, 𝑢, 𝑣)) and let 𝑒𝑖 denote the

𝑖-th coordinate vector. Put

𝜒𝑖(𝑡, 𝑥, 𝑢, 𝑣) =

⎧⎨⎩
𝑒𝑖, 𝑓 1

𝑖 (𝑡, 𝑥, 𝑢, 𝑣) > 0,
−𝑒𝑖, 𝑓 1

𝑖 (𝑡, 𝑥, 𝑢, 𝑣) < 0,
0, 𝑓 1

𝑖 (𝑡, 𝑥, 𝑢, 𝑣) = 0.

The quantity 𝜒𝑖(𝑡, 𝑥, 𝑢, 𝑣) indicates the direction of motion along the 𝑖-th axe according
to the dynamics 𝑓 1(𝑡, 𝑥, 𝑢, 𝑣). For 𝐴 ⊂ R𝑑

𝜈2(𝑡, 𝑥, 𝑢, 𝑣, 𝐴) ,
1

ℎ

𝑛∑︁
𝑖=1

|𝑓𝑖(𝑡, 𝑥, 𝑢, 𝑣)|𝛿ℎ𝜒𝑖(𝑡,𝑥,𝑢,𝑣)(𝐴).

Recall that 𝛿𝑧 denotes the Dirac measure concentrated at 𝑧.
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Further, set

𝐿2
𝑡 [𝑢, 𝑣]𝜑(𝑥) ,

∫︁
R𝑑

[𝜑(𝑥+ 𝑦) − 𝜑(𝑥)]𝜈2(𝑡, 𝑥, 𝑢, 𝑣, 𝑑𝑦)

=
𝑛∑︁

𝑖=1

|𝑓𝑖(𝑡, 𝑥, 𝑢, 𝑣)|𝜑(𝑥+ ℎ𝜒𝑖(𝑡, 𝑥, 𝑢, 𝑣)) − 𝜑(𝑥)

ℎ
.

(25)

This generator corresponds to the continuous-time Markov chain on ℎZ𝑑 with the
Kolmogorov matrix

𝑄ℎ
𝑥𝑦(𝑡, 𝑢, 𝑣) =

⎧⎨⎩
1
ℎ
|𝑓𝑖(𝑡, 𝑥, 𝑢, 𝑣)|, 𝑦 = 𝑥+ ℎ𝜒𝑖(𝑡, 𝑥, 𝑢, 𝑣),

− 1
ℎ

∑︀𝑑
𝑖=1 |𝑓𝑖(𝑡, 𝑥, 𝑢, 𝑣)|, 𝑥 = 𝑦,

0, 𝑦 ̸= 𝑥, 𝑦 ̸= 𝑥+ ℎ𝜒𝑖(𝑡, 𝑥, 𝑢, 𝑣),

(26)

The following system of ODEs is the Isaacs–Bellman equation for the Markov game
with the Kolmogorov matrix given by (26):

𝑑

𝑑𝑡
𝜁+ℎ (𝑡, 𝑥) + min

𝑢∈𝑈
max
𝑣∈𝑉

𝑑∑︁
𝑖=1

|𝑓𝑖(𝑡, 𝑥, 𝑢, 𝑣)|𝜁
+
ℎ (𝑡, 𝑥+ ℎ𝜒𝑖(𝑡, 𝑥, 𝑢, 𝑣)) − 𝜁+ℎ (𝑡, 𝑥)

ℎ
= 0,

𝜁+ℎ (𝑇, 𝑥) = 𝛾(𝑥).

(27)

Here 𝑥 ∈ ℎZ𝑑 is a parameter.

Theorem 3.8 [1, Proposition 20 and Theorem 21]. Equation (27) has an unique solu-
tion. It provides the following estimate for the value function of the differential game:

|Val(𝑡0, 𝑥0) − 𝜁+ℎ (𝑡0, 𝑥0)| ≤ 𝑅𝐶2

√
ℎ.

Here 𝐶2 is a constant determined by the function 𝑓 .

3.2.3 Deterministic model for mean field interacting particle system

This result is concerned with the construction of the optimal strategies for the
control of the system consisting of 𝑁 interacting particles taking only finite number of
states. We assume that

∙ the state space for each player is {1, . . . , 𝑑}, where 𝑑 is a natural number;

∙ the dynamics of each particle obeys continuous-time Markov chain with the Kol-
mogorov matrox 𝑄(𝑡, 𝑥, 𝑢, 𝑣) = (𝑄𝑖,𝑗(𝑡, 𝑥, 𝑢, 𝑣))𝑖,𝑗=1,𝑑; here 𝑥 = (𝑥1, . . . , 𝑥𝑑) is a
vector describing the density of the states.

Notice that 𝑥 ∈ R𝑑, 𝑥𝑖 ≥ 0,
∑︀𝑑

𝑖=1 𝑥𝑖 = 1. Assuming that ℎ = 1/𝑁 , we obtain that the
examined mean field interacting particle system can be described by the genarator

𝐿1
𝑡 [𝑢, 𝑣]𝜑(𝑥) =

𝑑∑︁
𝑖,𝑗=1

1

ℎ
𝑥𝑖𝑄𝑖𝑗(𝑡, 𝑥, 𝑢(𝑡), 𝑣(𝑡))[𝜑(𝑥− ℎ𝑒𝑖 + ℎ𝑒𝑗) − 𝜑(𝑥)].

As above, 𝑒𝑖 stands for the 𝑖-th coordinate vector.
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Letting ℎ→ 0, we arrive at the following limiting system which serves as the model:

𝐿2
𝑡 [𝑢, 𝑣]𝜑(𝑥) =

𝑑∑︁
𝑘=1

∑︁
𝑖 ̸=𝑘

[𝑥𝑖𝑄𝑖𝑘(𝑡, 𝑥, 𝑢(𝑡), 𝑣(𝑡)) − 𝑥𝑘𝑄𝑘𝑖(𝑡, 𝑥, 𝑢(𝑡), 𝑣(𝑡))]
𝜕𝜑

𝜕𝑥𝑘
(𝑥).

The characteristics of this system solve the ODE

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑥(𝑡)𝑄(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡)). (28)

In [2] (independently of [1]) the following result was obtained.

Theorem 3.9 [2, Theorem 1]. Assume that 𝑐+ is 𝑢-stable for the differential game with
the dynamics (28), then one can define the strategy ̂︀uΔ such that, for any (𝑡0, 𝑥0) ∈
[0, 𝑇 ] × R𝑑,

lim
𝛿↓0

sup{𝐽(𝑡0, 𝑥0,̂︀uΔ, v) : 𝑑(∆) ≤ 𝛿} ≤ 𝑐+(𝑡0, 𝑥0) +𝑅 · 𝐶3

√
ℎ.

Here 𝐶3 is a constant dependent only on the Kolmogorov matrix 𝑄 and the number of
states 𝑑.

An analogous property is fulfilled for the 𝑣-stable function. Finally, if we assume
that the game with the mean field interacting particle dynamics for 𝑁 particles (𝑁 =
1/ℎ) has the value, then

|Valℎ(𝑡0, 𝑥0) − Val(𝑡0, 𝑥0)| ≤ 𝑅𝐶3

√
ℎ.

Here we denote by Valℎ the value of the game for 𝑁 particle system (𝑁 = 1/ℎ); when
Val stands for the value of the limiting game with the dynamics given by (28).

3.3 Approximate equilibria in the nonzero-sum games

Here we extend the methodology developed in [1] to the nonzero-sum games. Re-
call that in many case the nonzero-sum stochastic differential games and the Markov
games are easier to examine than the nonzero-sum differential. Thus, it is tempting to
construct an approximate equilibrium for the differential game based on a solution of
a continuous-time stochastic game.

We consider the differential game with the dynamics

�̇� = 𝑓1(𝑡, 𝑥, 𝑢) + 𝑓2(𝑡, 𝑥, 𝑣), 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ R𝑑, 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉. (29)

Here 𝑢 (respectively, 𝑣) denotes the control of the first (respectively, second) player. We
assume that the purpose of the 𝑖-th player is to maximize the terminal payoff 𝛾𝑖(𝑥(𝑇 )).
Below we assume that 𝑈 and 𝑉 are metric compacts. For the sake of shortness we use
the notations: 𝑓 1(𝑡, 𝑥, 𝑢, 𝑣) , 𝑓1(𝑡, 𝑥, 𝑢) + 𝑓2(𝑡, 𝑥, 𝑣).

The approximate Nash equilibrium is built in the class of public-signal correlated
strategies with memory. Informally, this class can be described as follows. We assume
that both players at each time observe the random signal that is produced by an
external device. Below this information will be a forecasting of a state of a game being
a stochastic model of the original game. The players form their control using this
shared information and the history of the game.

This idea can be formalized in the following way.
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Definition 3.10 [3, Definition 2.1]. A 6-tuple w = (Ω,ℱ , {ℱ𝑡}𝑡∈[𝑡0,𝑇 ], 𝑢𝑥(·), 𝑣𝑥(·), 𝑃𝑥(·))
is called a profile of public-signal correlated strategies on [𝑡0, 𝑇 ] if

(i) (Ω,ℱ , {ℱ𝑡}𝑡∈[𝑡0,𝑇 ]) is a measurable space with a filtration;

(ii) for each 𝑥(·) ∈ 𝐶([𝑡0, 𝑇 ];R𝑑), 𝑃𝑥(·) is a probability on ℱ ;

(iii) for each 𝑥(·) ∈ 𝐶([𝑡0, 𝑇 ];R𝑑), 𝑢𝑥(·) (respectively, 𝑣𝑥(·)) is a {ℱ𝑡}𝑡∈[𝑡0,𝑇 ]-progressively
measurable process taking values in 𝑈 (respectively, 𝑉 );

(iv) if 𝑥(𝑡) = 𝑦(𝑡) for all 𝑡 ∈ [𝑡0, 𝑟], then

∙ for any 𝐴 ∈ ℱ𝑟, 𝑃𝑥(·)(𝐴) = 𝑃𝑦(·)(𝐴),

∙ for any 𝑡 ∈ [𝑡0, 𝑟], 𝑢𝑥(·)(𝑡) = 𝑢𝑦(·)(𝑡), 𝑣𝑥(·)(𝑡) = 𝑣𝑦(·)(𝑡) 𝑃𝑥(·)-a.s.

(v) for any 𝑟, the restrictions of functions (𝑥(·), 𝑡, 𝜔) ↦→ 𝑢𝑥(·)(𝑡, 𝜔), (𝑥(·), 𝑡, 𝜔) ↦→
𝑣𝑥(·)(𝑡, 𝜔) on 𝐶([𝑡0, 𝑇 ];R𝑑) × [𝑡0, 𝑟] × Ω are measurable with respect to F𝑡0,𝑟 ⊗
ℬ([𝑡0, 𝑟]) ⊗ℱ𝑟;

(vi) for any 𝐴 ∈ ℱ , the function 𝑥(·) ↦→ 𝑃𝑥(·)(𝐴) is measurable with respect to F𝑡0,𝑇 .

The key ingredient of the Nash equilibrium is the unilateral deviation. Considering
the public-signal correlated profile of strategies, we are to assume that the deviating
player can use some additional external device. This lead to the following definition.

Definition 3.11 [3, Definition 2.2]. Given a profile of public-signal correlated strate-
gies w = (Ω,ℱ , {ℱ𝑡}𝑡∈[𝑡0,𝑇 ], 𝑃𝑥(·), 𝑢𝑥(·), 𝑣𝑥(·)), we say that a profile of strategies w𝑐 =
(Ω𝑐,ℱ 𝑐, {ℱ 𝑐

𝑡 }𝑡∈[𝑡0,𝑇 ], 𝑃
𝑐
𝑥(·), 𝑢

𝑐
𝑥(·), 𝑣

𝑐
𝑥(·)) is an unilateral deviation by the first (respectively,

the second) player if there exists a filtered measurable space (Ω′,ℱ ′, {ℱ ′}𝑡∈[𝑡0,𝑇 ]) such
that

(i) Ω𝑐 = Ω × Ω′;

(ii) ℱ 𝑐 = ℱ ⊗ ℱ ′;

(iii) ℱ 𝑐
𝑡 = ℱ𝑡 ⊗ℱ ′

𝑡 for 𝑡 ∈ [𝑡0, 𝑇 ];

(iv) for any 𝑥(·) ∈ 𝐶([𝑡0, 𝑇 ];R𝑑) and any 𝐴 ∈ ℱ , 𝑃 𝑐
𝑥(·)(𝐴× Ω′) = 𝑃𝑥(·)(𝐴);

(v) for any 𝑥(·), 𝑡 ∈ [𝑡0, 𝑇 ], 𝜔 ∈ Ω, 𝜔′ ∈ Ω′, 𝑣𝑥(·)(𝑡, 𝜔, 𝜔′) = 𝑣𝑥(·)(𝑡, 𝜔) (respectively,
𝑢𝑥(·)(𝑡, 𝜔, 𝜔

′) = 𝑢𝑥(·)(𝑡, 𝜔)).

Now let us introduce the motion generated by the public-signal correlated profile
of strategies.

Definition 3.12 [3, Definition 2.3]. Let 𝑡0 ∈ [0, 𝑇 ], 𝑥0 ∈ R𝑑, w =
(Ω,ℱ , {ℱ𝑡}𝑡∈[𝑡0,𝑇 ], 𝑃𝑥(·), 𝑢𝑥(·), 𝑣𝑥(·)) be a profile of public-signal correlated strategies on
[𝑡0, 𝑇 ]. We say that a pair (𝑋(·), 𝑃 ) is a realization of the motion generated by w and
initial position (𝑡0, 𝑥0) if

(i) 𝑃 is a probability on ℱ ;

(ii) 𝑋(·) is a {ℱ𝑡}𝑡∈[𝑡0,𝑇 ]-adapted process taking values in R𝑑;
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(iii) 𝑋(𝑡0) = 𝑥0 𝑃 -a.s.;

(iv) for 𝑃 -a.e. 𝜔 ∈ Ω,

𝑑

𝑑𝑡
𝑋(𝑡, 𝜔) = 𝑓1(𝑡,𝑋(𝑡, 𝜔), 𝑢𝑋(·,𝜔)(𝑡, 𝜔)) + 𝑓2(𝑡,𝑋(𝑡, 𝜔), 𝑣𝑋(·,𝜔)(𝑡, 𝜔)).

(v) 𝑃𝑥(·) = 𝑃 (·|𝑋(·) = 𝑥(·)) i.e. given 𝐴 ∈ ℱ ,

𝑃 (𝐴) =

∫︁
𝐶([𝑡0,𝑇 ];R𝑑)

𝑃𝑥(·)(𝐴)𝜒(𝑑(𝑥(·))),

where 𝜒 is a probability on 𝐶([𝑡0, 𝑇 ];R𝑑) defined by the rule: for any Υ ∈ F𝑡0,𝑇 ,
𝜒(Υ) , 𝑃{𝜔 : 𝑋(·, 𝜔) ∈ Υ}.

Notice that if the public-signal correlated profile of strategies is stepwise (i.e. the
strategies is determined only by history at the finite number of time instances), then
there exist at least one realization.

Notice that dynamics (8) corresponds to the generator

𝐿1
𝑡 [𝑢, 𝑣]𝜑(𝑥) , ⟨𝑓1(𝑡, 𝑥, 𝑢) + 𝑓2(𝑡, 𝑥, 𝑣),∇𝜑(𝑥)⟩.

To construct an approximate equilibrium we will use the continuous-time stochastic
game with the dynamics given by

(𝐿2
𝑡 [𝑢, 𝑣]𝜑)(𝑥) ,

1

2
⟨𝐺2(𝑡, 𝑥, 𝑢, 𝑣)∇,∇⟩𝜑(𝑥) + ⟨𝑓 2(𝑡, 𝑥, 𝑢, 𝑣),∇⟩𝜑(𝑥)

+

∫︁
R𝑑

[𝜑(𝑥+ 𝑦) − 𝜑(𝑥) − ⟨𝑦,∇𝜑(𝑥)⟩1𝐵1(𝑦)]𝜈2(𝑡, 𝑥, 𝑢, 𝑣, 𝑑𝑦). (30)

We assume that the objective function of the player 𝑖 in the auxiliary stochastic game
is equal to

E
[︂
𝛾𝑖(𝑋(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔𝑖(𝑡,𝑋(𝑡), 𝑢(𝑡), 𝑣(𝑡))𝑑𝑡

]︂
. (31)

The following stability condition plays a key role in the construction of the approximate
public-signal correlated equilibrium.

Definition 3.13 [3, Definition 3.2]. Let 𝑐1, 𝑐2 : [0, 𝑇 ]×R𝑑 → R be continuous functions.
We say that the pair (𝑐1, 𝑐2) satisfies Condition (𝒞) if, for any 𝑠, 𝑟 ∈ [0, 𝑇 ], 𝑠 < 𝑟,
there exists a filtered measurable space (̂︀Ω𝑠,𝑟, ̂︀ℱ 𝑠,𝑟, { ̂︀ℱ 𝑠,𝑟

𝑡 }𝑡∈[𝑠,𝑟]) satisfying the following
properties:

(i) given 𝑦 ∈ R𝑑, one can find processes 𝜂𝑠,𝑟𝑦 , ̂︀𝑌 𝑠,𝑟
𝑦 and a probability ̂︀𝑃 𝑠,𝑟

𝑦 such that
the 6-tuple (̂︀Ω𝑠,𝑟, ̂︀ℱ 𝑠,𝑟, { ̂︀ℱ 𝑠,𝑟

𝑡 }𝑡∈[𝑠,𝑟], ̂︀𝑃 𝑠,𝑟
𝑦 , 𝜂𝑠,𝑟𝑦 , ̂︀𝑌 𝑠,𝑟

𝑦 ) is a control system admissible
for 𝐿2

𝑡 [𝑢, 𝑣] and, for 𝑖 = 1, 2,

̂︀E𝑠,𝑟
𝑦

[︂
𝑐𝑖(𝑟, ̂︀𝑌 𝑠,𝑟

𝑦 (𝑟)) +

∫︁ 𝑟

𝑠

∫︁
𝑈×𝑉

𝑔𝑖(𝑡, ̂︀𝑌 𝑠,𝑟
𝑦 (𝑡), 𝑢, 𝑣)𝜂𝑠,𝑟𝑦 (𝑡, 𝑑(𝑢, 𝑣))𝑑𝑡

]︂
= 𝑐𝑖(𝑠, 𝑦);
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(ii) for any 𝑦 ∈ R𝑑 and 𝑣 ∈ 𝑉 , one can find a relaxed stochastic control of the
first player 𝜇𝑠,𝑟

𝑦,𝑣, a process 𝑌 1,𝑠,𝑟

𝑦,𝑣 taking values in R𝑑 and a probability 𝑃 1,𝑠,𝑟

𝑦,𝑣 such
that the 6-tuple (̂︀Ω𝑠,𝑟, ̂︀ℱ 𝑠,𝑟, { ̂︀ℱ 𝑠,𝑟

𝑡 }𝑡∈[𝑠,𝑟], 𝑃
1,𝑠,𝑟

𝑦,𝑣 , 𝜇𝑠,𝑟
𝑦,𝑣 ⊗ 𝛿𝑣, 𝑌

1,𝑠,𝑟

𝑦,𝑣 ) is a control system
admissible for 𝐿2

𝑡 [𝑢, 𝑣] and

E1,𝑠,𝑟

𝑦,𝑣

[︂
𝑐2(𝑟, 𝑌

1,𝑠,𝑟

𝑦,𝑣 (𝑟)) +

∫︁ 𝑟

𝑠

∫︁
𝑈

𝑔2(𝑡, 𝑌
1,𝑠,𝑟

𝑦,𝑣 (𝑡), 𝑢, 𝑣)𝜇𝑠,𝑟
𝑦,𝑣(𝑡, 𝑑𝑢)𝑑𝑡

]︂
≤ 𝑐2(𝑠, 𝑦);

(iii) given 𝑦 ∈ R𝑑 and 𝑢 ∈ 𝑈 , one can find a second player’s relaxed stochas-
tic control 𝜈𝑠,𝑟𝑦,𝑢, a process 𝑌 2,𝑠,𝑟

𝑦,𝑢 and a probability 𝑃
2,𝑠,𝑟

𝑦,𝑢 such that the 6-tuple
(̂︀Ω𝑠,𝑟, ̂︀ℱ 𝑠,𝑟, { ̂︀ℱ 𝑠,𝑟

𝑡 }𝑡∈[𝑠,𝑟], 𝑃
2,𝑠,𝑟

𝑦,𝑢 , 𝛿𝑢 ⊗ 𝜈𝑠,𝑟𝑦,𝑢, 𝑌
2,𝑠,𝑟

𝑦,𝑢 ) is a control system admissible for
𝐿2
𝑡 [𝑢, 𝑣] and

E2,𝑠,𝑟

𝑦,𝑢

[︂
𝑐1(𝑟, 𝑌

2,𝑠,𝑟

𝑦,𝑢 (𝑟)) +

∫︁ 𝑟

𝑠

∫︁
𝑉

𝑔1(𝑡, 𝑌
2,𝑠,𝑟

𝑦,𝑢 (𝑡), 𝑢, 𝑣)𝜈𝑠,𝑟𝑦,𝑢(𝑡, 𝑑𝑣)𝑑𝑡

]︂
≤ 𝑐1(𝑠, 𝑦).

Here ̂︀E𝑠,𝑟
𝑦 (respectively, E1,𝑠,𝑟

𝑦,𝑢 , E2,𝑠,𝑟

𝑦,𝑢 ) denotes the expectation according to the proba-
bility ̂︀𝑃 𝑠,𝑟

𝑦 (respectively, 𝑃 1,𝑠,𝑟

𝑦,𝑢 , 𝑃 2,𝑠,𝑟

𝑦,𝑢 ).

Informally speaking, the meaning of Condition (𝒞) is as follows. The first part of
this condition means that both players can maintain the value (𝑐1(𝑠, 𝑦), 𝑐2(𝑠, 𝑦)) on the
time interval [𝑠, 𝑟] choosing an appropriate controlled stochastic system. Parts (ii), (iii)
mean that if player 𝑖 uses a constant control on [𝑠, 𝑟], then the other player can find
a control such that the outcome of the player 𝑖 on [𝑠, 𝑟] is not greater than 𝑐𝑖(𝑠, 𝑦).
Here we assume that the terminal part of the 𝑖-th player’s reward on [𝑠, 𝑟] is given by
𝑐𝑖(𝑟, ·). Additionally, to avoid technical issues we assume that all mentioned controlled
systems exploit the same filtered measurable space.

Now let us assume that the model system is close to the original one i.e., for any
𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ R𝑑, 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 ,

|Σ2(𝑡, 𝑥, 𝑢, 𝑣)| ≤ 𝛿2, ‖𝑓 1(𝑡, 𝑥, 𝑢, 𝑣) − 𝑏2(𝑡, 𝑥, 𝑢, 𝑣)‖2 ≤ 2𝛿2, |𝑔𝑖(𝑡, 𝑥, 𝑢, 𝑣)| ≤ 𝛿.

Here, as above,

Σ2(𝑡, 𝑥, 𝑢, 𝑣) ,
𝑑∑︁

𝑗=1

𝐺2
𝑗𝑗(𝑡, 𝑥, 𝑢, 𝑣) +

∫︁
R𝑑

‖𝑦‖2𝜈2(𝑡, 𝑥, 𝑢, 𝑣, 𝑑𝑦);

𝑏2(𝑡, 𝑥, 𝑢, 𝑣) , 𝑓 2(𝑡, 𝑥, 𝑢, 𝑣) +

∫︁
R𝑑∖𝐵1

𝑦𝜈2(𝑡, 𝑥, 𝑢, 𝑣, 𝑑𝑦).

Under this condition and some regularity assumption we prove the following.

Theorem 3.14 [3, Theorem 3.3]. Let continuous functions 𝑐1, 𝑐2 : [0, 𝑇 ] × R𝑑 → R be
such that

∙ 𝑐𝑖(𝑇, 𝑥) = 𝛾𝑖(𝑥);

∙ (𝑐1, 𝑐2) satisfies Condition (𝒞).
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Then, for any (𝑡0, 𝑥0) ∈ [0, 𝑇 ]×R𝑑, and 𝜀 > (𝑅𝐶+𝑇 )𝛿, there exists a profile of public-
signal correlates strategies w* providing the 𝜀-equilibrium at (𝑡0, 𝑥0). Moreover, if 𝑋*

and 𝑃 * are generated by w* and (𝑡0, 𝑥0), E* denotes the expectation according to 𝑃 *,
then

|E*𝛾𝑖(𝑋
*(𝑇 )) − 𝑐𝑖(𝑡0, 𝑥0)| ≤ 𝜀.

In Theorem 3.14 𝐶 is a constant determined by the dynamics of the original game.
The natural question here is the limiting behaviour when 𝛿 tends to zero. It was

proved [3, Theorem 5.2]) that the limiting values of the expected outcomes correspond-
ing to the public-signal correlated equilibria according to Theorem 3.1 of [3] lies in the
convex hull of the Nash values in the class of deterministic punishment strategies.

3.4 Equilibria based on system of Bellman equations

3.4.1 Case of smooth solutions

The main result here is the following.

Theorem 3.15 [3, Theorem 4.1]. Let functions 𝑐1, 𝑐2 : [0, 𝑇 ] × R𝑑 → R, 𝑢0 : [0, 𝑇 ] ×
R𝑑 → 𝑈 , 𝑣0 : [0, 𝑇 ] × R𝑑 → 𝑉 be of the class 𝐶2 and satisfy the following conditions:

𝜕𝑐𝑖
𝜕𝑡

+ 𝐿2
𝑡 [𝑢

0(𝑡, 𝑥), 𝑣0(𝑡, 𝑥)]𝑐𝑖(𝑡, 𝑥) + ℎ𝑖(𝑡, 𝑥, 𝑢
0(𝑡, 𝑥), 𝑣0(𝑡, 𝑥)) = 0,

𝑐𝑖(𝑇, 𝑥) = 𝛾𝑖(𝑥),
(32)

where 𝑢0(𝑡, 𝑥) and 𝑣0(𝑡, 𝑥) provide the Nash equilibrium for the one-shot game with the
payoff functions

𝐿2
𝑡 [𝑢, 𝑣]𝑐𝑖(𝑡, 𝑥) + ℎ𝑖(𝑡, 𝑥, 𝑢, 𝑣), 𝑖 = 1, 2.

Assume, additionally, that given 𝑠, 𝑟 ∈ [0, 𝑇 ], 𝑠 < 𝑟, there exist solutions of the martin-
gale problems on [𝑠, 𝑟] for the generators 𝐿2

𝑡 [𝑢
0(𝑡, ·), 𝑣0(𝑡, ·)], 𝐿2

𝑡 [𝑢, 𝑣
0(𝑡, ·)], 𝐿2

𝑡 [𝑢
0(𝑡, ·), 𝑣],

𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 ; moreover, one can find a common filtered measurable space with a fil-
tration suitable for all mentioned problems.

Then, the pair (𝑐1, 𝑐2) satisfies Condition (𝒞). In particular, for any (𝑡0, 𝑥0) ∈
[0, 𝑇 ] × R𝑑, 𝜀 > (𝑅𝐶 + 𝑇 )𝛿, there exists the public-signal correlated 𝜀-equilibrium at
(𝑡0, 𝑥0).

3.4.2 Approximation by solutions of second-order PDEs

The assumption that the system of Hamilton-Jacobi equations admits a 𝐶2-solution
in many case is too restrictive. Let us weaken it for the case of model determined by
the stochastic differential equation of the following form:

𝑑𝑋(𝑡) = 𝑓 2(𝑡,𝑋(𝑡), 𝑢(𝑡), 𝑣(𝑡))𝑑𝑡+ 𝜎(𝑡,𝑋(𝑡))𝑑𝑊 (𝑡). (33)

This system corresponds to the generator

𝐿2
𝑡 [𝑢, 𝑣]𝜑(𝑥) = ⟨𝑓 2(𝑡, 𝑥, 𝑢, 𝑣),∇𝜑(𝑥)⟩ +

1

2
⟨𝐺2(𝑡, 𝑥)∇,∇𝜑(𝑥)⟩, (34)

where 𝐺2(𝑡, 𝑥) = 𝜎(𝑡, 𝑥)𝜎𝑇 (𝑡, 𝑥). We assume that 𝑊 (𝑡) is a 𝑑-dimensional Wiener
process, 𝜎 is a nondegenerate and bounded 𝑑 × 𝑑-matrix. The crucial assumption is
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the following: there exist measurable functions 𝑢𝑁(𝑡, 𝑥, 𝑝1, 𝑝2), 𝑣𝑁(𝑡, 𝑥, 𝑝1, 𝑝2) taking
values in 𝑈 and 𝑉 respectively such that, for any 𝑡 ∈ [0, 𝑇 ], 𝑥, 𝑝1, 𝑝2 ∈ R𝑑, 𝑢 ∈ 𝑈 ,
𝑣 ∈ 𝑉 ,

ℋ1(𝑡, 𝑥, 𝑝1, 𝑢
𝑁(𝑡, 𝑥, 𝑝1, 𝑝2), 𝑣

𝑁(𝑡, 𝑥, 𝑝1, 𝑝2)) ≥ ℋ1(𝑡, 𝑥, 𝑝1, 𝑢, 𝑣
𝑁(𝑡, 𝑥, 𝑝1, 𝑝2)),

ℋ2(𝑡, 𝑥, 𝑝2, 𝑢
𝑁(𝑡, 𝑥, 𝑝1, 𝑝2), 𝑣

𝑁(𝑡, 𝑥, 𝑝1, 𝑝2)) ≥ ℋ2(𝑡, 𝑥, 𝑝2, 𝑢
𝑁(𝑡, 𝑥, 𝑝1, 𝑝2), 𝑣).

Here 𝐼 stands for the identity matrix, whereas

ℋ𝑖(𝑡, 𝑥, 𝑝, 𝑢, 𝑣) , ⟨𝑝, 𝑓 2(𝑡, 𝑥, 𝑢, 𝑣)⟩ + 𝑔𝑖(𝑡, 𝑥, 𝑢, 𝑣).

Theorem 3.16 [3, Theorem 4.5]. Assume that (𝑐1, 𝑐2) is a strong solution of

𝜕𝑐𝑖
𝜕𝑡

+ ℋ𝑖(𝑡, 𝑥,∇𝑐𝑖, 𝑢𝑁(𝑡, 𝑥,∇𝑐1,∇𝑐2), 𝑣𝑁(𝑡, 𝑥,∇𝑐1,∇𝑐2))

+ ⟨𝐺(𝑡, 𝑥)∇,∇⟩𝑐𝑖(𝑡, 𝑥) = 0, 𝑐𝑖(𝑇, 𝑥) = 𝛾𝑖(𝑥).

Then (𝑐1, 𝑐2) satisfies condition (𝒞) for the generator 𝐿2 given by (34).

3.4.3 Approximation by solution of differential inclusions

Let us rewrite system (8) in the coordinate-wise form

𝑑

𝑑𝑡
𝑥𝑗(𝑡) = 𝑓1,𝑗(𝑡, 𝑥1(𝑡), . . . , 𝑥𝑑(𝑡), 𝑢) + 𝑓2,𝑗(𝑡, 𝑥1(𝑡), . . . , 𝑥𝑑(𝑡), 𝑣), 𝑗 = 1, . . . , 𝑑.

Here 𝑥𝑗(𝑡) stands for the 𝑗-th coordinate of the vector 𝑥(𝑡). Let ℎ be a positive number.
As above 𝑒𝑗 stands for the 𝑗-th coordinate vector.

Put

𝑄1
𝑥,𝑦(𝑡, 𝑢) ,

⎧⎨⎩
1
ℎ
|𝑓1,𝑗(𝑡, 𝑥, 𝑢)|, 𝑦 = 𝑥+ ℎ sgn(𝑓1,𝑗(𝑡, 𝑥, 𝑢)) · 𝑒𝑗,

− 1
ℎ

∑︀𝑑
𝑗=1 |𝑓1,𝑗(𝑡, 𝑥, 𝑢)|, 𝑦 = 𝑥,

0, otherwise.

Analogously, set

𝑄2
𝑥,𝑦(𝑡, 𝑣) ,

⎧⎨⎩
1
ℎ
|𝑓2,𝑗(𝑡, 𝑥, 𝑣)|, 𝑦 = 𝑥+ ℎ sgn(𝑓2,𝑗(𝑡, 𝑥, 𝑣)) · 𝑒𝑗,

− 1
ℎ

∑︀𝑑
𝑗=1 |𝑓2,𝑗(𝑡, 𝑥, 𝑣)|, 𝑦 = 𝑥,

0, otherwise.

We consider the Markov game with the state space equal to ℎZ𝑑 and the Kolmogorov
matrix 𝑄(𝑡, 𝑢, 𝑣) = 𝑄1(𝑡, 𝑢) +𝑄2(𝑡, 𝑣), where the first player’s outcome is

E
[︂
𝛾1(𝑋(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔1(𝑡,𝑋(𝑡), 𝑢(𝑡))𝑑𝑡

]︂
,

while the second player maximizes

E
[︂
𝛾2(𝑋(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔2(𝑡,𝑋(𝑡), 𝑣(𝑡))𝑑𝑡

]︂
.
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The Bellman equation for this controlled Markov chain is as follows. Given 𝑡 ∈
[0, 𝑇 ], 𝑥 ∈ ℎZ𝑑, 𝜁 : ℎZ𝑑 → R, 𝜇 ∈ 𝒫(𝑈), 𝜈 ∈ 𝒫(𝑉 ) set

̂︀𝐻1(𝑡, 𝑥, 𝜁, 𝜇) ,
∫︁
𝑈

⎡⎣ ∑︁
𝑦∈ℎZ𝑑

𝑄1
𝑥,𝑦(𝑡, 𝑥, 𝑢)𝜁(𝑦) + 𝑔1(𝑡, 𝑥, 𝑢)

⎤⎦𝜇(𝑑𝑢),

̂︀𝐻2(𝑡, 𝑥, 𝜁, 𝜈) ,
∫︁
𝑉

⎡⎣ ∑︁
𝑦∈ℎZ𝑑

𝑄2
𝑥,𝑦(𝑡, 𝑥, 𝑣)𝜁(𝑦) + 𝑔2(𝑡, 𝑥, 𝑣)

⎤⎦ 𝜈(𝑑𝑣).

The functions ̂︀𝐻1, ̂︀𝐻2 play the role of pre-Hamiltonians. Further, put

𝒪1(𝑡, 𝑥, 𝜁) , Argmax
𝜇∈𝒫(𝑈)

̂︀𝐻1(𝑡, 𝑥, 𝜁, 𝜇), 𝒪2(𝑡, 𝑥, 𝜁) , Argmax
𝜈∈𝒫(𝑉 )

̂︀𝐻2(𝑡, 𝑥, 𝜁, 𝜈).

Finally, if 𝜁1, 𝜁2 are real valued functions defined on ℎZ𝑑, denote

ℋ1(𝑡, 𝑥, 𝜁1, 𝜁2) , max
𝜇∈𝒫(𝑈)

̂︀𝐻1(𝑡, 𝑥, 𝜁1, 𝜇)

+

⎧⎨⎩
∫︁
𝑉

∑︁
𝑦∈ℎZ𝑑

𝑄2
𝑥,𝑦(𝑡, 𝑥, 𝑣)𝜁1(𝑦)𝜈(𝑑𝑢) : 𝜈 ∈ 𝒪2(𝑡, 𝑥, 𝜁2)

⎫⎬⎭ ,

ℋ2(𝑡, 𝑥, 𝜁1, 𝜁2) , max
𝜈∈𝒫(𝑉 )

̂︀𝐻2(𝑡, 𝑥, 𝜁2, 𝜈)

+

⎧⎨⎩
∫︁
𝑈

∑︁
𝑦∈ℎZ𝑑

𝑄1
𝑥,𝑦(𝑡, 𝑥, 𝑢)𝜁2(𝑦)𝜇(𝑑𝑢) : 𝜇 ∈ 𝒪1(𝑡, 𝑥, 𝜁1)

⎫⎬⎭ .

The multifunctions ℋ1 and ℋ2 are analogs of the Hamiltonians.
The following system of differential inclusions is the natural analog of the system

of the Bellman equations

𝑑

𝑑𝑡
𝜁𝑖(𝑡, 𝑥) ∈ −ℋ𝑖(𝑡, 𝑥, 𝜁1, 𝜁2), 𝜁𝑖(𝑇, 𝑥) = 𝛾𝑖(𝑥), 𝑖 = 1, 2. (35)

Theorem 3.17 [4, Theorem 2]. Let (𝜁1(·, ·), 𝜁2(·, ·)) solves system (35). Then it sat-
isfies condition (𝒞). In particular, if |𝑔1(𝑡, 𝑥, 𝑢)|, |𝑔2(𝑡, 𝑥, 𝑣)| ≤

√
ℎ, then one can con-

struct an approximate public-signal correlated 𝜀-equilibrium for every 𝜀 > (𝑅𝐶+𝑇 )
√
ℎ.

3.5 Viability for the mean field type control systems

The second part of the thesis is concerned with the study of mean field control
systems.

Let us consider the first-order mean field type control system with the dynamics of
each agent given by

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡),𝑚(𝑡), 𝑢(𝑡)). (36)

Here 𝑡 ∈ [0, 𝑇 ] is a time, 𝑥(𝑡) stands for a state of a representative agent (particle),
𝑚(𝑡) is a probability describing distribution of agents, 𝑢(𝑡) is a instantaneous control
of a representative agent. For simplicity we assume that the phase space for each agent
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is the 𝑑-dimensional torus T𝑑 , R𝑑/Z𝑑. Integrating formally (36), we arrive at the
following equation for the flow of probabilities 𝑚(·)

𝑑

𝑑𝑡
𝑚(𝑡) = ⟨𝑓(𝑡, ·,𝑚(𝑡), 𝑢(𝑡)),∇⟩𝑚(𝑡). (37)

Certainly one may use general Definition 1.2 of the flow of probabilities for the generator
𝐿𝑡[𝑚,𝑢]𝜑(𝑥) = ⟨𝑓(𝑡, 𝑥,𝑚, 𝑢),∇𝜑(𝑥)⟩. However, it is more convenient to specify the
probability space as well as the class of controls.

To this end we need some additional designations. If 𝑋 and 𝑌 are Polish spaces,
𝑚 is a measure on 𝑋, then denote by Λ(𝑋,𝑚, 𝑌 ) the set of measures on 𝑋 × 𝑌
with the first marginal equal to 𝑚. Using the disintegration theorem, we associate
𝜉 ∈ Λ(𝑋,𝑚, 𝑌 ) with the measure valued function 𝑋 ∋ 𝑥 ↦→ 𝜉(·|𝑥) ∈ 𝒫(𝑌 ) such that,
for any 𝜑 ∈ 𝐶𝑏(𝑋 × 𝑌 ),∫︁

𝑋×𝑌

𝜑(𝑥, 𝑦)𝜉(𝑑(𝑥, 𝑦)) =

∫︁
𝑋

∫︁
𝑌

𝜑(𝑥, 𝑦)𝜉(𝑑𝑦|𝑥)𝑚(𝑑𝑥).

In the following, denote
𝒰 , Λ([0, 𝑇 ], 𝜆, 𝑈),

where 𝜆 stands for the Lebesgue measure. Given initial position (𝑠, 𝑦) ∈ [0, 𝑇 ] × T𝑑,
𝜉 ∈ 𝒰 and a flow of probabilities 𝑚(·), we say that 𝑥(·) is generated by the initial
position and control 𝜉 if 𝑥(·) solves the initial value problem

𝑑

𝑑𝑡
𝑥(𝑡) =

∫︁
𝑈

𝑓(𝑡, 𝑥(𝑡),𝑚(𝑡), 𝑢)𝜉(𝑑𝑢|𝑡), 𝑥(𝑠) = 𝑦.

We denote the operator assigning to 𝑦 and 𝜉 the corresponding motion by traj𝑠𝑚(·).
Furthermore, if 𝑡 ∈ [0, 𝑇 ], then denote by 𝑒𝑡 the evaluation operator form

𝐶([0, 𝑇 ],T𝑑) to T𝑑 acting by the rule: for 𝑥(·) ∈ 𝐶([0, 𝑇 ],T𝑑), we put

𝑒𝑡(𝑥(·)) = 𝑥(𝑡).

Now, given 𝑚 ∈ 𝒫𝑝(T𝑑), set

𝒜[𝑚] , Λ(T𝑑,𝑚,𝒰).

The set 𝒜[𝑚] is the set of distributions of pairs (𝑦, 𝜉) with the marginal distribution
on T𝑑 equal to 𝑚. Below, if 𝛼 ∈ 𝒜[𝑚], we assume that agents placed at the initial time
in the state 𝑥 choose their control according to the distribution 𝛼(𝑑𝜉|𝑥).

Definition 3.18. Assume that 𝑠 ∈ [0, 𝑇 ] is an initial time, 𝑚* is an initial distribution
of agents, 𝛼 ∈ 𝒜(𝑚*). We say that the function [0, 𝑡] ∋ 𝑡 ↦→ 𝑚(𝑡) ∈ 𝒫𝑝(T𝑑) is a flow of
probabilities generated by 𝛼, if there exists 𝜒 ∈ 𝒫𝑝(𝐶([0, 𝑇 ],T𝑑)) such that

1. 𝜒 = traj𝑠𝑚(·)#𝛼;

2. 𝑚(𝑡) = 𝑒𝑡#𝜒;

3. 𝑚(𝑠) = 𝑚*.
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Equivalently, we can use the approach based on differential inclusion. If we put

𝐹 (𝑡, 𝑥,𝑚) , co{𝑓(𝑡, 𝑥,𝑚, 𝑢) : 𝑢 ∈ 𝑈},

control system (36) can be written as follows:

𝑑

𝑑𝑡
𝑥(𝑡) ∈ 𝐹 (𝑡, 𝑥(𝑡),𝑚(𝑡)), (38)

whereas equation (37) takes the form of the mean field type differential inclusion
(MFDI)

𝑑

𝑑𝑡
𝑚(𝑡) ∈ ⟨𝐹 (𝑡, ·,𝑚(𝑡)),∇⟩𝑚(𝑡). (39)

As equation (37) above this inclusion is formal. We say that a flow of probabilities
[0, 𝑇 ] ∋ 𝑡 ↦→ 𝑚(𝑡) ∈ 𝒫𝑝(T𝑑) is a solution to mean field type differential inclusion (39)
if there exists 𝜒 ∈ 𝒫𝑝(𝐶([0, 𝑇 ];R𝑑)) such that

1. 𝜒-a.e. 𝑥(·) satisfies (38);

2. 𝑚(𝑡) = 𝑒𝑡#𝜒.

Notice that every flow of probabilities generated by 𝑠 and 𝛼 is a solution of (39).
Conversely, given a flow of probabilities𝑚(·) that solves (39), 𝑠 ∈ [0, 𝑇 ] and𝑚* = 𝑚(𝑠),
one can find 𝛼 ∈ 𝒜[𝑚*] generating 𝑚(·).

Now let consider the viability property. It plays the crucial role in the analysis of
first-order mean field games presented below. We restrict our attention to the case
𝑝 = 1. Additionally, we assume time-homogeneous dynamics i.e. 𝑓 does not depend
on 𝑡.

Definition 3.19 [5, Definition 2]. We say that 𝐾 ⊂ 𝒫1(T𝑑) is viable under MFDI (39)
if, for any 𝑚0 ∈ 𝐾, there exist 𝑇 > 0 and a solution to MFDI (39) on [0, 𝑇 ] 𝑚(·) such
that 𝑚(0) = 𝑚0, and 𝑚(𝑡) ∈ 𝐾 for all 𝑡 ∈ [0, 𝑇 ].

To characterize the viability property let us introduce the notion of tangent distri-
butions.

Definition 3.20 [5, Definition 2]. Let 𝑎 > 0. We say that 𝛽 ∈ 𝒫(T𝑑×R𝑑) with margin
on T𝑑 equal to 𝑚 is a tangent probability to 𝐾 at 𝑚 ∈ 𝒫1(T𝑑) with the radius 𝑎 if
there exist sequences {𝜏𝑛}∞𝑛=1 ⊂ (0,+∞), {𝛽𝑛}∞𝑛=1 ⊂ 𝒫(T𝑑 ×R𝑑) such that p1

#𝛽 = 𝑚,
supp(𝛽𝑛) ⊂ T𝑑 ×𝐵𝑎 and

1

𝜏𝑛
dist(Θ𝜏𝑛

#𝛽𝑛, 𝐾) → 0, 𝑊1(𝛽𝑛, 𝛽) → 0, 𝜏𝑛 → 0 as 𝑛→ ∞.

Let us denote the set of tangent probabilities to 𝐾 of the radius 𝑎 by 𝒯 𝑎
𝐾(𝑚).

Further, denote by ℱ(𝑚) the set of probabilities 𝛽 ∈ ℒ(𝑚) such that∫︁
T𝑑×R𝑑

dist(𝑣, 𝐹 (𝑥,𝑚))𝛽(𝑑(𝑥, 𝑣)) = 0.

Theorem 3.21 [5, Theorem 1]. A closed set 𝐾 ⊂ 𝒫1(T𝑑) is viable under MFDI (39)
if and only if, there exists a constant 𝑎 > 0 such that, for any 𝑚 ∈ 𝐾,

𝒯 𝑎
𝐾(𝑚) ∩ ℱ(𝑚) ̸= ∅. (40)
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3.6 First-order mean field games

The following results are obtained for the case of the phase space of each player
equal to R𝑑. We consider the mean field game where each player tries to maximize the
outcome given by

𝛾(𝑥(𝑇 ),𝑚(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔(𝑡, 𝑥(𝑇 ),𝑚(𝑡), 𝑢(𝑡))𝑑𝑡 (41)

subject to conditions

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡),𝑚(𝑡), 𝑢(𝑡)),

𝑡 ∈ [𝑡0, 𝑇 ], 𝑥(𝑡) ∈ R𝑑, 𝑚(𝑡) ∈ 𝒫1(T𝑑), 𝑢(𝑡) ∈ 𝑈,
(42)

and 𝑚(𝑡) is a distribution of players at time 𝑡. It is more convenient to introduce the
additional variable and consider the terminal payoff. In this case we introduce 𝑧(·) by
the rule:

𝑑

𝑑𝑡
𝑧(𝑡) = 𝑔(𝑡, 𝑥(𝑡),𝑚(𝑡), 𝑢(𝑡)), 𝑧(𝑡0) = 0. (43)

Thus, one can assume that each player tries to maximize the terminal payoff

𝛾(𝑥(𝑇 ),𝑚(𝑇 )) + 𝑧(𝑇 ). (44)

Note that (𝑥(𝑡), 𝑧(𝑡)) lies in the extended phase space R𝑑 × R.
We adapt the general definition of the solution to the case of first-order mean

field games. With some abuse of notation we denote the evaluation operator from
𝐶([0, 𝑇 ],R𝑑 × R) to R𝑑 by 𝑒𝑡: if 𝑤(·) = (𝑥(·), 𝑧(·)), then

𝑒𝑡(𝑤(·)) = 𝑥(𝑡).

The evaluation operator taking values in R𝑑 × R is denoted by 𝑒𝑡:

𝑒𝑡(𝑤(·)) = 𝑤(𝑡).

Recall that the relaxation of the system with dynamics (42), (43) satisfy the differential
inclusion

(�̇�(𝑡), �̇�(𝑡)) ∈ 𝐹 (𝑡, 𝑥(𝑡),𝑚(𝑡)), (45)

where
𝐹 (𝑡, 𝑥,𝑚) , co{(𝑓(𝑡, 𝑥,𝑚, 𝑢), 𝑔(𝑡, 𝑥,𝑚, 𝑢)) : 𝑢 ∈ 𝑈}. (46)

Given a flow of probabilities 𝑚(·), 𝑠, 𝑟 ∈ [0, 𝑇 ], 𝑠 < 𝑟, 𝑦 ∈ R𝑑, we denote the set
of solutions of (45) on [𝑠, 𝑟] with the initial condition 𝑥(𝑠) = 𝑦 by Sol(𝑟, 𝑠, 𝑦,𝑚(·)).
Furthermore,

SOL(𝑟, 𝑠,𝑚(·)) ,
⋃︁
𝑦∈T𝑑

Sol(𝑟, 𝑠, 𝑦,𝑚(·)).

Definition 3.22. We say that a pair (𝜙,𝑚(·)), where 𝜙 : [𝑡0, 𝑇 ] × R𝑑 → R is a
continuous function and [𝑡0, 𝑇 ] ∋ 𝑡 ↦→ 𝑚(𝑡) ∈ 𝒫𝑝(T𝑑), is a (minimax) solution to mean
field game (41), (42) if there exists a probability 𝜒 ∈ 𝒫𝑝(𝐶([𝑡0, 𝑇 ];R𝑑 × R)) such that

1. 𝑚(𝑡) = 𝑒𝑡#𝜒;
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2. 𝜙(𝑠, 𝑦) is a value of the optimization problem

maximize [𝛾(𝑥(𝑇 ),𝑚(𝑇 )) + 𝑧(𝑇 ) − 𝑧(𝑠)]

subject to (𝑥(·), 𝑧(·)) ∈ Sol(𝑇, 𝑠, 𝑦,𝑚(·));

3. supp(𝜒) ⊂ SOL(𝑇, 𝑡0,𝑚(·));

4. for every 𝑠, 𝑟 ∈ [𝑡*, 𝑇 ], 𝑠 < 𝑟, and each (𝑥(·), 𝑧(·)) ∈ supp(𝜒),

𝜙(𝑠, 𝑥(𝑠)) + 𝑧(𝑠) = 𝜙(𝑟, 𝑥(𝑟)) + 𝑧(𝑟).

First, we have the existence theorem.

Theorem 3.23 [6, Theorem 1]. Given 𝑚0 ∈ 𝒫1(T𝑑), there exists a solution of mean
field game (41), (42) such that 𝑚(𝑡0) = 𝑚0.

Remark 3.24. In [6] this theorem was proved under additional assumptions that 𝑝 = 1
and 𝑚0 is concentrated on some compact. However, it can be extended to the general
case.

The presented concept of solution of the firts-order mean field games is stable with
respect to stochastic perturbations. To describe the class of admissible perturbation,
let us consider the sequence of stochastic mean field games with the dynamics of each
player given by the Lévy-Khinchine generator:

𝐿𝑛
𝑡 [𝑚,𝑢]𝜑(𝑥) =

1

2
⟨𝐺𝑛(𝑡, 𝑥,𝑚, 𝑢)∇,∇⟩𝜑(𝑥) + ⟨𝑓𝑛(𝑡, 𝑥,𝑚, 𝑢),∇⟩𝜑(𝑥)

+

∫︁
R𝑑

[𝜑(𝑥+ 𝑦) − 𝜙(𝑥) − ⟨𝑦,∇𝜑(𝑥)⟩1𝐵1(𝑦)]𝜈𝑛(𝑡, 𝑥,𝑚, 𝑢, 𝑑𝑦).
(47)

It is assumes that the payoff functional is determined by

E
[︂
𝛾(𝑋(𝑇 ),𝑚(𝑇 )) +

∫︁ 𝑇

𝑡0

𝑔(𝑡,𝑋(𝑡),𝑚(𝑡), 𝑢(𝑡))𝑑𝑡

]︂
,

where 𝑋 stands for the stochastic process generated by 𝐿𝑛. Let us introduce the
following notation:

Σ𝑛(𝑡, 𝑥,𝑚, 𝑢) ,
𝑑∑︁

𝑖=1

𝐺𝑛
𝑖𝑖(𝑡, 𝑥,𝑚, 𝑢) +

∫︁
R𝑑

‖𝑦‖2𝜈𝑛(𝑡, 𝑥,𝑚, 𝑢, 𝑑𝑦),

𝑏𝑛(𝑡, 𝑥,𝑚, 𝑢) , 𝑓𝑛(𝑡, 𝑥,𝑚, 𝑢) +

∫︁
R𝑑∖𝐵1

𝑦𝜈𝑛(𝑡, 𝑥,𝑚, 𝑢, 𝑑𝑦).

We assume that the stochastic mean field games converge to the deterministic one
in the following sense:

sup
𝑡∈[0,𝑇 ],𝑥∈R𝑑,𝑚∈𝒫2(R𝑑)

Σ𝑛(𝑡, 𝑥,𝑚, 𝑢)

1 + ‖𝑥‖2 + 𝜍2(𝑚)
→ 0 as 𝑛→ ∞;

sup
𝑡∈[0,𝑇 ],𝑥∈R𝑑,𝑚∈𝒫2(R𝑑)

‖𝑏𝑛(𝑡, 𝑥,𝑚, 𝑢) − 𝑓(𝑡, 𝑥,𝑚, 𝑢)‖
(1 + ‖𝑥‖ + 𝜍(𝑚))

→ 0 as 𝑛→ ∞.

Here

𝜍(𝑚) ,

[︂∫︁
R𝑑

‖𝑥‖2𝑚(𝑑𝑥)

]︂1/2
.

Under certain regularity condition we have the following.
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Theorem 3.25 [7, Theorem 1]. Assume that for each 𝑛 the pair (𝜙𝑛,𝑚𝑛(·)) solves the
mean field game with the dynamics (47) and payoff functional (41).

Then there exist a pair (𝜙*,𝑚*(·)) that is a solution to mean field game (41), (42)
and a sequence {𝑛𝑙}∞𝑙=1 such that

1. sup𝑡∈[0,𝑇 ]𝑊2(𝑚
𝑛𝑙(𝑡), 𝜇*(𝑡)) → 0 as 𝑙 → ∞;

2.
lim
𝑙→∞

sup
(𝑡,𝑥)∈[0,𝑇 ]×R𝑑

|𝜙𝑛𝑙(𝑡, 𝑥) − 𝜙*(𝑡, 𝑥)| = 0 (48)

Given a solution of the mean field game for 𝑝 = 1, one can construct a Nash
equilibrium for the finite player game where each player controls a cloud of agents
playing according to dynamics (42). It is assumed that each player tries to maximize
the common outcome of his/her agents. If the agents affected by the player 𝑖 start the
position 𝑥𝑖𝑁,0, x = (𝑥1𝑁,0, . . . , 𝑥

𝑁
𝑁,0), then we denote

𝛿𝑁x ,
1

𝑁
(𝛿𝑥1

𝑁,0
+ . . .+ 𝛿𝑥𝑁

𝑁,0
).

Additionally, given a solution of the mean field game one can construct (by certain
rule) the profile of strategies 𝜚𝑁 = (𝜚1𝑁 , . . . , 𝜚

𝑁
𝑁) where 𝜚𝑁 is a probability on 𝒰 .

Theorem 3.26 [6, Theorem 3]. If

𝑊1(𝑚0, 𝛿
𝑁
x ) → 0, 𝑁 max

𝑖=1,𝑁

∫︁
R𝑑

‖𝑥− 𝑥𝑖𝑁,0‖𝑚𝑖
𝑁(𝑑𝑥) → 0, for 𝑁 → ∞,

then, for any 𝜀 > 0, there exists a number 𝑁0 such that, for all 𝑁 > 𝑁0, the profile of
strategies 𝜚𝑁 is a 𝜀-Nash equilibrium.

Here 𝑚1
𝑁 , . . . ,𝑚

𝑁
𝑁 are the measures such that 𝑚0 = 𝑚1

𝑁 + . . .+𝑚𝑁
𝑁 , 𝑚𝑖

𝑁(R𝑑) = 1/𝑁
and

𝑊1(𝑚0, 𝛿
𝑁
x ) =

𝑁∑︁
𝑖=1

∫︁
R𝑑

‖𝑥− 𝑥𝑖𝑁,0‖𝑚𝑖
𝑁(𝑑𝑥).

3.7 Viability analysis of the mean field games

The last part of the thesis’ results is concerned with the dependence of the solutions
of the mean field game on the initial distribution of players. This dependence plays
the crucial role in the master equation which is used to establish the convergence of
feedback equilibria to the solution of the mean field game [CDLL19]. Now we assume
that the phase space for each player is T𝑑 , R𝑑/Z𝑑. Moreover, we endow the space of
probabilities over T𝑑 by the 1-Kantorovich metric.

The main object of this part is the value multifunction defined as follows.

Definition 3.27 [8, Definition 3.1]. We say that an upper semicontinuous function
multifunction 𝒱 : [0, 𝑇 ] × 𝒫1(T𝑑) ⇒ 𝐶(T𝑑) is a value multifunction of mean field
game (41), (42) if, for every 𝑡0 ∈ [0, 𝑇 ], 𝑚0 ∈ 𝒫1(T𝑑), and 𝜑 ∈ 𝒱(𝑡0,𝑚0), there exists a
solution to mean field game (41), (42) (𝜙,𝑚(·)) such that

𝜙(𝑡0, ·) = 𝜑(·), 𝑚(𝑡0) = 𝑚0. (49)

31



This multifunction can be characterized via the viability property. To this end, let
us introduce the mean field dynamics on 𝐶(T𝑑)×𝒫1(T𝑑). It relies on several auxiliary
definitions. First, for 𝑠, 𝑟 ∈ [0, 𝑇 ], 𝑠 ≤ 𝑟, 𝑚(·) ∈ 𝐶([𝑠, 𝑟],𝒫1(T𝑑)), define the operator
𝐵𝑠,𝑟

𝑚(·) : 𝐶(T𝑑) → 𝐶(T𝑑) by the rule:

(𝐵𝑠,𝑟
𝑚(·)𝜓)(𝑦) , sup{𝜓(𝑥(𝑟)) + 𝑧(𝑟) − 𝑧(𝑠) : (𝑥(·), 𝑧(·)) ∈ Sol(𝑟, 𝑠, 𝑦,𝑚(·))}.

Additionally, if 𝜑 ∈ 𝐶(T𝑑), 𝜈 ∈ 𝒫1(T𝑑 × R), then denote by [𝜑, 𝜈] the averaging of the
function 𝜑(𝑥) + 𝑧 with respect to 𝜈:

[𝜑, 𝜈] ,
∫︁
T𝑑×R

(𝜑(𝑥) + 𝑧)𝜈(𝑑(𝑥, 𝑧)).

Definition 3.28 [8, Definition 3.5]. For each 𝑠, 𝑟 ∈ [0, 𝑇 ], 𝑠 ≤ 𝑟, define the multi-
function Ψ𝑟,𝑠 : 𝒫1(T𝑑) × 𝐶(T𝑑) ⇒ 𝒫1(T𝑑) × 𝐶(T𝑑) by the rule: (𝜇, 𝜓) ∈ Ψ𝑟,𝑠(𝑚,𝜑) if
and only if there exists a probability 𝜒 ∈ 𝒫1(𝐶([𝑠, 𝑟];T𝑑 ×R)), satisfying the following
properties for 𝜈(𝑡) , 𝑒𝑡#𝜒, and 𝑚(𝑡) , 𝑒𝑡#𝜒:

(Ψ1) 𝑚(𝑠) = 𝑚, 𝑚(𝑟) = 𝜇;

(Ψ2) 𝜑 = 𝐵𝑠,𝑟
𝑚(·)𝜓;

(Ψ3) [𝜓, 𝜈(𝑟)] ≥ [𝜑, 𝜈(𝑠)].

The definition of the viability property is given in the classical way.

Definition 3.29 [8, Definition 3.7]. We say that an upper semicontinuous multifunc-
tion 𝒱 : [0, 𝑇 ]×𝒫1(T𝑑)⇒ 𝐶(T𝑑) is viable with respect to the mean field game dynam-
ics if, for any 𝑠, 𝑟 ∈ [0, 𝑇 ], 𝑠 ≤ 𝑟, 𝑚 ∈ 𝒫1(T𝑑), 𝜑 ∈ 𝒱(𝑠,𝑚), there exist 𝜇 ∈ T𝑑 and
𝜓 ∈ 𝐶(T𝑑) such that

∙ (𝜇, 𝜓) ∈ Ψ𝑟,𝑠(𝑚,𝜑);

∙ 𝜓 ∈ 𝒱(𝑟, 𝜇).

The following statement gives the link between the viability property and the mean
field games.

Theorem 3.30 [8, Theorem 3.10]. Assume that an upper semicontinuous multifunction
𝒱 : [0, 𝑇 ] × R𝑑 ⇒ 𝐶(T𝑑) is viable with respect to the mean field game dynamics and
𝒱(𝑇,𝑚) = {𝛾(·,𝑚)}. Then 𝒱 is a value multifunction.

Further, we obtain the infinitesimal form of the viability condition for the mean
field game dynamics. This relies on the set of tangent distribution to a multivalued
function 𝒱 . First, assume that 𝑚 ∈ 𝒫1(T𝑑), 𝑐 is a positive number. With some abuse
of notation, denote by ℒ𝑐(𝑚) the set of probabilities 𝛽 ∈ 𝒫1(T𝑑 × R𝑑+1) concentrated
on T𝑑 ×𝐵𝑐 × [−𝑐, 𝑐] with the marginal distribution on T𝑑 equal to 𝑚. If, additionally,
𝑠, 𝑟 ∈ [0, 𝑇 ], 𝑠 ≤ 𝑟, then denote by 𝐴𝑠,𝑟

𝑚 the operator on 𝐶(T𝑑) acting by the rule

(𝐴𝑠,𝑟
𝑚 𝜑)(𝑥) , sup{𝜑(𝑥+ (𝑟 − 𝑠)𝑎) + (𝑟 − 𝑠)𝑏 : (𝑎, 𝑏) ∈ 𝐹 (𝑠, 𝑥,𝑚)}. (50)

Here 𝐹 is defined by (46). For 𝜏 ≥ 0, let the shift operator Θ𝜏 : T𝑑 × R𝑑+1 → T𝑑 × R
be given by

Θ𝜏 (𝑥, 𝑎, 𝑏) , (𝑥+ 𝜏𝑎, 𝜏𝑏). (51)
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Definition 3.31 [8, Definition 4.1]. A probability 𝛽 ∈ ℒ𝑐(𝑚) belongs to 𝒟𝑐
𝐹𝒱(𝑡,𝑚, 𝜑)

if there exist sequences {𝜏𝑛}∞𝑛=1 ⊂ (0,+∞), {𝛽𝑛}∞𝑛=1 ⊂ ℒ𝑐(𝑚) and {𝜑𝑛}∞𝑛=1 ⊂ 𝐶(T𝑑)
satisfying the following properties for 𝜈𝑛 , Θ𝜏𝑛

#𝛽𝑛 and 𝑚𝑛 , p#𝜈𝑛:

1. 𝜏𝑛,𝑊1(𝛽, 𝛽𝑛) → 0 as 𝑛→ ∞;

2. 𝜑𝑛 ∈ 𝒱(𝑡+ 𝜏𝑛,𝑚𝑛);

3.
lim
𝑛→∞

‖𝐴𝑡,𝑡+𝜏𝑛
𝑚 𝜑𝑛 − 𝜑‖

𝜏𝑛
= 0;

4.
lim
𝑛→∞

[𝜑𝑛, 𝜈𝑛] − [𝜑, ̂︀𝑚]

𝜏𝑛
≥ 0;

5. ∫︁
T𝑑×R𝑑+1

dist(𝑣;𝐹 (𝑡, 𝑥,𝑚))𝛽(𝑑(𝑥, 𝑣)) = 0.

Here ̂︀𝑚 is a probability on T𝑑 × R defined by the rule: for 𝜑 ∈ 𝐶(T𝑑 × R)∫︁
T𝑑×R

𝜑(𝑥, 𝑧)̂︀𝑚(𝑑(𝑥, 𝑥)) =

∫︁
T𝑑

𝜑(𝑥, 0)𝑚(𝑑𝑥).

For 𝑀,𝐶 > 0, let BL𝑀,𝐶 denote the set of functions 𝜑 ∈ Lip𝐶(T𝑑) such that
‖𝜑‖ ≤𝑀.

Theorem 3.32 [8, Theorem 4.2]. Assume that an upper semicontinuous multifunction
𝒱 : [0, 𝑇 ] × 𝒫1(T𝑑)⇒ 𝐶(T𝑑) has nonempty values and there exist constants 𝑀 and 𝐶
such that, for any 𝑡 ∈ [0, 𝑇 ], 𝑚 ∈ 𝒫1(T𝑑),

𝒱(𝑡,𝑚) ⊂ BL𝑀,𝐶(T𝑑).

Then, 𝒱 is viable with respect to the mean field game dynamics if and only if there
exists a constant 𝑐 > 0 such that, for any 𝑡 ∈ [0, 𝑇 ], 𝑚 ∈ 𝒫1(T𝑑), 𝜑 ∈ 𝒱(𝑡,𝑚),

𝒟𝑐
𝐹𝒱(𝑡,𝑚, 𝜑) ̸= ∅.

This theorem yield the sufficient condition in the infinitesimal form for a given
multifunction to be a value multifunction.

Corollary 3.33 [8, Corollary 4.3]. Let the upper semicontinuous multifunction 𝒱 :
[0, 𝑇 ] × 𝒫1(T𝑑) ⇒ 𝐶(T𝑑) have nonempty values. Assume that, for any 𝑡 ∈ [0, 𝑇 ],
𝑚 ∈ 𝒫1(T𝑑), 𝜑 ∈ 𝒱(𝑡,𝑚),

∙ 𝒱(𝑡,𝑚) ⊂ BL𝑀,𝐶(T𝑑) where the constants 𝑀 and 𝐶 do not dependent on 𝑡 and
𝑚;

∙ 𝒱(𝑇,𝑚) = {𝛾(·,𝑚)};

∙ 𝒟𝑐
𝐹𝒱(𝑡,𝑚, 𝜑) ̸= ∅, where the constant 𝑐 does not depend on 𝑡, 𝑚 and 𝜑.

Then 𝒱 is a value multifunction of mean field game (41), (42).
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