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1 Introduction

Numerical optimization remains an active area of research since 1980’s, mo-
tivated by a vast range of applications, e.g. operations research, optimal
control. Starting with the works [1, 2] one of the main areas of research
in numerical optimization became interior-point methods. These methods
combine Newton steps with penalty approach and allow to solve a very gen-
eral class of convex problems in polynomial-time, which is justified both
theoretically and practically. The new century introduced new challenges
for numerical methods in optimization. Thanks to increasing amount of
available data and more powerful computational resources, machine learning
became an area of intensive research. A cornerstone optimization problem in
machine learning is the empirical risk minimization with the key aspect be-
ing large dimension of the decision variable and large number of components
used in the objective function. In this setting the Newton iteration becomes
expensive in general since it requires matrix inversion. This motivated a
sacrifice of logarithmic dependence on the accuracy to a cheap iteration and
the use of first-order methods to solve such problems. Another reason was
that the data is usually noisy and there is no need to solve the optimization
problem to a high accuracy in this setting. Another main application for
first-order methods is signal processing and image analysis, where the goal
is to reconstruct a high-dimensional signal from high-dimensional data, e.g.
noisy images.

Yet, known already for a long time [3, 4, 5], first-order methods entered
their renaissance in 2000’s. Some important facts on these methods were
already known for 15 years. In particular, the concept of black-box oracle
[6] allowed to obtain lower worst-case complexity bounds for different classes
of problems and methods. In particular, a gap was discovered between the
lower bound O(1/k2) and an upper bound O(1/k) for the convergence rate
of the gradient method for minimizing convex smooth functions. Here k is
the iteration counter. This gap led to an important phenomenon of accel-
eration for first-order methods and accelerated gradient method [7]. In the
new century many extensions of this algorithm were proposed motivated by
image processing problems and machine learning, including composite ver-
sions [8, 9], accelerated stochastic gradient method [10], accelerated variance
reduction methods [11, 12, 13, 14, 15]. In addition to accelerated stochastic
gradient methods for finite-sum problems, which use a random choice of the
gradient of the component, acceleration was introduced for other randomized
methods such as random coordinate descent [16] and random gradient-free
optimization [17]. The latter is motivated by problems, in which only zero-
order oracle is available, e.g. when the objective is given as a solution of
some auxiliary problem. For this setting, it is important to analyze zero-
order methods with inexact function values since this auxiliary problem may
be possible to solve only inexactly. In the setting of first-order methods in-
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exactness may also be encountered in practice. Accelerated gradient method
with inexact gradients was analyzed in [18], and an important framework of
inexact first-order oracle was introduced in [19]. Another important exten-
sion of accelerated first-order methods are accelerated methods for problems
with linear constraints, which was proposed in [20], yet with a non-optimal
rate O(1/k) for the constraints feasibility.

Object and goals of the dissertation. The goal of the dissertation is
twofold. The first goal is to further extend the existing first and zero-order
methods for problems with inexactness in function and gradient values, the
inexactness being deterministic or stochastic. The second goal is to construct
new primal-dual first-order methods, which allow to solve simultaneously
the primal and dual problem with optimal convergence rates. A particular
focus is made on problems with linear constraints and the application of the
proposed methods to optimal transport distance and barycenter problems.

The obtained results:

1. We propose a stochastic intermediate gradient method for convex prob-
lems with stochastic inexact oracle.

2. We develop a gradient method with inexact oracle for deterministic
non-convex optimization.

3. We develop gradient-free method with inexact oracle for deterministic
convex optimization.

4. We develop a method to calculate the derivative of the pagerank vector
and in combination with the above two methods propose gradient-
based and gradient-free optimization methods for learning supervised
pagerank model.

5. We develop a concept of inexact oracle for the methods which use
directional derivatives and propose accelerated directional derivative
method for smooth stochastic convex optimization. We also develop
an accelerated and non-accelerated directional derivative method for
strongly convex smooth stochastic optimization.

6. We develop primal-dual methods for solving infinite-dimensional games
in convex-concave and strongly convex-concave setting.

7. We develop non-adaptive and adaptive accelerated primal-dual gra-
dient method for strongly convex minimization problems with linear
equality and inequality constraints.

8. We apply this algorithm to the optimal transport problem and obtain
new complexity estimates for this problem, which in some regime are
better than the ones for the Sinkhorn’s algorithm.
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9. We propose a stochastic primal-dual accelerated gradient method for
problems with linear constraints and apply it to the problem of ap-
proximation of Wasserstein barycenter.

10. We propose a primal-dual extension of accelerated methods which use
line-search to define the stepsize and to be adaptive to the Lipschitz
constant of the gradient.

Author’s contribution includes the development of the listed above
optimization methods, proving convergence rates and complexity result theo-
rems for these methods and their applications to optimal transport problems
and learning problem for a supervised pagerank model.

Novelties. The proposed versions of accelerated first and zero-order
methods for convex optimization under different types of inexactness are
novel. The proposed primal-dual methods for the listed setups are also novel,
and allow to obtain new methods for optimal transport problems. In par-
ticular, we obtain new complexity results for non-regularized optimal trans-
port problem and a new distributed algorithm for approximating Wasserstein
barycenter of a set of measures using samples from these measures.

As a result of the work on this dissertation, 10 papers were published:
First-tier publications:

1. Dvurechensky, P., and Gasnikov, A. Stochastic intermediate gradient
method for convex problems with stochastic inexact oracle. Journal
of Optimization Theory and Applications 171, 1 (2016), 121–145, Sco-
pus Q1 (main co-author; the author of this thesis proposed main al-
gorithms, formulated and proved convergence rate theorems for the
proposed methods).

2. Gasnikov, A. V., and Dvurechensky, P. E. Stochastic intermediate gra-
dient method for convex optimization problems. Doklady Mathematics
93, 2 (2016), 148–151, Scopus Q2 (main co-author; the author of this
thesis proposed main algorithms, formulated and proved convergence
rate theorems for the proposed methods).

3. Bogolubsky, L., Dvurechensky, P., Gasnikov, A., Gusev, G., Nesterov,
Y., Raigorodskii, A. M., Tikhonov, A., and Zhukovskii, M. Learning
supervised pagerank with gradient-based and gradient-free optimiza-
tion methods. In Advances in Neural Information Processing Systems
29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-
nett, Eds. Curran Associates, Inc., 2016, pp. 4914–4922, CORE A*
(the author of this thesis proposed general gradient-free (Algorithm
1,2) and gradient (Algorithm 3,4) methods with inexact oracle, pro-
posed a method for approximating the derivative of the pagerank vec-
tor, formulated and proved convergence rate theorems for the proposed
methods: Lemma 1,2, Theorem 1-4).
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4. Dvurechensky, P., Gorbunov, E., and Gasnikov, A. An accelerated
directional derivative method for smooth stochastic convex optimiza-
tion. European Journal of Operational Research (2020), https://doi.
org/10.1016/j.ejor.2020.08.027, Scopus Q1 (main co-author; the
author of this thesis proposed a concept of inexact oracle for direc-
tional derivatives in stochastic convex optimization, proved (in insepa-
rable cooperation with E. Gorbunov) convergence rate Theorem 1 for
the accelerated directional derivative method, proved convergence rate
Theorems 3,4 for strongly convex problems).

5. Dvurechensky, P., Nesterov, Y., and Spokoiny, V. Primal-dual meth-
ods for solving in infinite-dimensional games. Journal of Optimization
Theory and Applications 166, 1 (2015), 23–51, Scopus Q1 (main co-
author; the author of this thesis developed main algorithms and proved
convergence rate theorems).

6. Dvurechensky, P., Gasnikov, A., and Kroshnin, A. Computational op-
timal transport: Complexity by accelerated gradient descent is better
than by Sinkhorn’s algorithm. In Proceedings of the 5th International
Conference on Machine Learning (2018), J. Dy and A. Krause, Eds.,
vol. 80 of Proceedings of Machine Learning Research, pp. 1367–1376,
CORE A* (main co-author; the author of this thesis proposed gen-
eral primal-dual adaptive accelerated gradient method (Algorithm 3)
for problems with linear constraints, proved convergence rate Theorem
3, proposed an algorithm for approximating optimal transport (OT)
distance (Algorithm 4), obtained complexity bound for approximat-
ing OT distance (Theorem 4), performed numerical experiments for
comparison of this method with the Sinkhorn’s method).

7. Dvurechensky, P., Dvinskikh, D., Gasnikov, A., Uribe, C. A., and
Nedić, A. Decentralize and randomize: Faster algorithm for Wasser-
stein barycenters. In Advances in Neural Information Processing Sys-
tems 31 (2018), S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, and R. Garnett, Eds., NeurIPS 2018, Curran Associates,
Inc., pp. 10783–10793, CORE A* (main co-author; the author of this
thesis proposed the general idea of the paper, general primal-dual ac-
celerated stochastic gradient method (Algorithm 2) for problems with
linear constraints, proved convergence rate Theorem 2, proposed an
algorithm for approximating Wasserstein barycenter (Algorithm 4),
proved (in inseparable cooperation with D. Dvinskikh) its complex-
ity Theorem 3).

8. Guminov, S. V., Nesterov, Y. E., Dvurechensky, P. E., and Gasnikov,
A. V. Accelerated primal-dual gradient descent with linesearch for
convex, nonconvex, and nonsmooth optimization problems. Doklady
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Mathematics 99, 2 (2019), 125-128, Scopus Q2 (the author of this the-
sis proposed a primal-dual variant of the accelerated gradient method
with linesearch for problems with linear constraints, proved conver-
gence rate Theorem 3).

9. Nesterov, Y., Gasnikov, A., Guminov, S., and Dvurechensky, P. Primal-
dual accelerated gradient methods with small-dimensional relaxation
oracle. Optimization Methods and Software (2020), https://doi.
org/10.1080/10556788.2020.1731747, Scopus Q1 (the author of this
thesis proposed a primal-dual variant of the universal accelerated gradi-
ent method with small-dimensional relaxation (Algorithm 7) for prob-
lems with linear constraints, proved its convergence rate Theorem 4.1).

Second-tier publications:

1. Chernov, A., Dvurechensky, P., and Gasnikov, A. Fast primal-dual gra-
dient method for strongly convex minimization problems with linear
constraints. In Discrete Optimization and Operations Research: 9th
International Conference, DOOR 2016, Vladivostok, Russia, Septem-
ber 19-23, 2016, Proceedings (2016), Y. Kochetov, M. Khachay, V.
Beresnev, E. Nurminski, and P. Pardalos, Eds., Springer International
Publishing, pp. 391–403, Web of Science and Scopus (main co-author;
the author of this thesis developed main algorithm and proved conver-
gence rate theorem).

Reports at conferences and seminars:

1. International Workshop "Advances in Optimization and Statistics",
Berlin, 15.05.2014–16.05.2014, "Stochastic Intermediate Gradient Method
for Convex Problems with Inexact Stochastic Oracle".

2. Seminar "Modern Methods in Applied Stochastics and Nonparametric
Statistics", Berlin, 03.06.2014, "Gradient methods for convex problems
with stochastic inexact oracle".

3. V International Conference on Optimization Methods and Applica-
tions (OPTIMA-2014), Petrovac, Montenegro, 28.09.2014–04.10.2014,
"Gradient-free optimization methods with ball randomization".

4. VI traditional school for young scientists "Control, information, op-
timization", Moscow, 22.06.2014-29.06.2014, "Gradient methods for
convex problems with stochastic inexact oracle".

5. 38-th conference-school of IITP RAS "Information technologies and
systems", Nizhnii Novgorod, 01.09.2014–05.09.2014, "Stochastic Inter-
mediate Gradient Method for Convex Problems with Inexact Stochas-
tic Oracle".
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6. Workshop “Frontiers of High Dimensional Statistics, Optimization, and
Econometrics”, Moscow, 26.02.2015–27.02.2015, "Random gradient-free
methods for random walk based web page ranking functions learning".

7. VII traditional school for young scientists "Control, information, opti-
mization", Moscow, 14.06.2014-20.06.2014, "Semi-Supervised PageR-
ank Model Learning with Gradient-Free Optimization Methods".

8. 29-th conference-school of IITP RAS "Information technologies and
systems", Sochi, 07.09.2014–11.09.2015, "Stochastic Intermediate Gra-
dient Method: convex and strongly-convex case".

9. 30th annual conference of Belgian Operational Research Society (OR-
BEL 30), Louvain-la-Neuve, Belgium, 28.01.2016–29.01.2016, "Ran-
dom gradient-free methods for ranking algorithm learning".

10. Workshop on Modern Statistics and Optimization, Moscow, 23.02.2016–
24.02.2016, "Gradient and gradient-free methods for pagerank algo-
rithm learning".

11. VII International Conference Optimization and Applications (OPTIMA
2016), Petrovac, Montenegro, 25.09.2016–02.10.2016, "Accelerated Primal-
Dual Gradient Method for Linearly Constrained Minimization Prob-
lems".

12. VIII Moscow International Conference on Operations Research (ORM
2016), Moscow, 17.10.2016–22.10.2016, "Accelerated Primal-Dual Gra-
dient Method for Composite Optimization with Unknown Smoothness
Parameter"

13. Conference on Neural Information Processing Systems (NIPS
2016), Barcelona, 05.12.2016–10.12.2016, "Learning Supervised PageR-
ank with Gradient-Based and Gradient-Free Optimization Methods".

14. Workshop Shape, Images and Optimization, Münster, Germany, 28.02.2017
–03.03.2017, "Gradient Method With Inexact Oracle for Composite
Non-Convex Optimization".

15. Optimization and Statistical Learning, Les Houches, France, 10.04.2017
– 14.04.2017, "Gradient Method With Inexact Oracle for Composite
Non-Convex Optimization".

16. Foundations of Computational Mathematics, Barcelona, Spain, 10.07.2017
– 19.07.2017, "Gradient Method With Inexact Oracle for Composite
Non-Convex Optimization".
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17. Co-Evolution of Nature and Society Modelling, Problems & Experi-
ence. Devoted to Academician Nikita Moiseev centenary (Moiseev-
100), Moscow, 07.11.2017 – 10.11.2017, "Adaptive Similar Triangles
Method: a Stable Alternative to Sinkhorn’s Algorithm for Regularized
Optimal Transport".

18. 18th French-German-Italian Conference on Optimization, Germany,
25.09.2017 – 28.09.2017, Paderborn, Germany, "Gradient method with
inexact oracle for composite non-convex optimization"

19. 3. International Matheon Conference on Compressed Sensing and its
Applications, Berlin, 04.12.2017 – 08.12.2017, "Adaptive Similar Tri-
angles Method: a Stable Alternative to Sinkhorn’s Algorithm for Reg-
ularized Optimal Transport".

20. Games, Dynamics and Optimization (GDO2018), Vienna, Austria,
13.03.2018 – 15.03.2018, "Primal-Dual Methods for Solving Infinite
-Dimensional Games".

21. International Conference on Machine Learning (ICML 2018),
Stockholm, Sweden, 10.07.2018 – 15.07.2018, "Computational optimal
transport: Complexity by accelerated gradient descent is better than
by Sinkhorn’s algorithm".

22. 23rd International Symposium on Mathematical Programming, Bor-
deaux, France, 01.07.2018 – 06.07.2018, "Computational Optimal Trans-
port: Accelerated Gradient Descent vs Sinkhorn".

23. Grenoble Optimization Days 2018: Optimization algorithms and appli-
cations in statistical learning, Grenoble, France, 28.06.2018 – 29.06.2018,
"Faster algorithms for (regularized) optimal transport".

24. Statistical Optimal Transport Conference, Moscow, 24.07.2018 – 25.07.2018,
"Computational Optimal Transport: Accelerated Gradient Descent vs
Sinkhorn’s Algorithm".

25. Conference on Neural Information Processing Systems (NIPS
2018), Montreal, Canada, 02.12.2018 – 08.12.2018, "Decentralize and
randomize: Faster algorithm for Wasserstein barycenters".

26. Optimization and Statistical Learning, Les Houches, France, 24.03.2019
– 29.03.2019, "Distributed optimization for Wasserstein barycenter".

27. International Conference on Machine Learning (ICML 2019),
Long Beach, USA, 09.06.2019 – 15.06.2019, "On the Complexity of
Approximating Wasserstein Barycenters".
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28. International Conference on Continuous Optimization (ICCOPT 2019),
Berlin, Germany, 03.08.2019 – 08.08.2019, "A Unifying Framework for
Accelerated Randomized Optimization Methods".

29. Workshop on optimization and applications, Moscow, 27.09.2019, "Ac-
celerated Alternating Minimization for Optimal Transport".

30. Recent advances in mass transportation, Moscow, 23.09.2019 - 27.09.2019,
"On the complexity of optimal transport problems".

31. Workshop by the GAMMActivity Group on Computational and Math-
ematical Methods in Data Science, Berlin, Germany, 24.10.2019 –
25.10.2019, "On the complexity of optimal transport problems".

32. HSE-Yandex autumn school on generative models, Moscow, 26.11.2019
– 29.11.2019, "Optimization methods for optimal transport".

33. Workshop on Mathematics of Deep Learning 2019, Berlin, Germany,
03.12.2019 – 05.12.2019, "On the complexity of optimal transport prob-
lems".

34. Workshop on PDE Constrained Optimization under Uncertainty and
Mean Field Games, Berlin, Germany, 28.01.2020 – 30.01.2020, "Dis-
tributed optimization for Wasserstein barycenters".

2 Optimization with inexact oracle

In this section we briefly describe the methods and their convergence prop-
erties for optimization problems under inexact information. We consider
first-order methods and directional derivative methods.

2.1 Stochastic intermediate gradient method for convex prob-
lems with stochastic inexact oracle

The results of this subsection are published in [21, 22].
Let E be a finite-dimensional real vector space and E∗ be its dual. We

denote the value of a linear function g ∈ E∗ at x ∈ E by 〈g, x〉. Let ‖ · ‖ be
some norm on E. We denote by ‖ · ‖∗ the dual norm for ‖ · ‖E , i.e.
‖g‖∗ = supy∈E{〈g, y〉 : ‖y‖E ≤ 1}. By ∂f(x) we denote the subdifferen-
tial of the function f(x) at a point x. In this subsection, we consider the
composite optimization problem of the form

min
x∈Q
{ϕ(x) := f(x) + h(x)}, (1)

where Q ⊂ E is a closed and convex set, h(x) is a simple convex function,
f(x) is a convex function with stochastic inexact oracle [23]. This means
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that, for every x ∈ Q, there exist fδ,L(x) ∈ R and gδ,L(x) ∈ E∗, such that

0 ≤ f(y)− fδ,L(x)− 〈gδ,L(x), y − x〉 ≤ L

2
‖x− y‖2 + δ, ∀y ∈ Q, (2)

and also that, instead of (fδ,L(x), gδ,L(x)) (we will call this pair a (δ, L)-
oracle), we use their stochastic approximations (Fδ,L(x, ξ), Gδ,L(x, ξ)). The
latter means that, for any point x ∈ Q, we associate with x a random
variable ξ whose probability distribution is supported on a set Ξ ⊂ R and
such that EξFδ,L(x, ξ) = fδ,L(x), EξGδ,L(x, ξ) = gδ,L(x) and Eξ(‖Gδ,L(x, ξ)−
gδ,L(x)‖∗)2 ≤ σ2.

To deal with such problems we will need a prox-function d(x), which is
differentiable and strongly convex with parameter 1 on Q with respect to
‖ · ‖. Let x0 be the minimizer of d(x) on Q. By translating and scaling
d(x), if necessary, we can always ensure that d(x0) = 0, d(x) ≥ 1

2‖x− x0‖2,
∀x ∈ Q. We define also the corresponding Bregman distance: V (x, z) =
d(x) − d(z) − 〈∇d(z), x − z〉. Let {αi}i≥0, {βi}i≥0, {Bi}i≥0 ⊂ R be three
sequences of coefficients satisfying

α0 ∈]0, 1], βi+1 ≥ βi > L, ∀i ≥ 0, (3)
0 ≤ αi ≤ Bi, ∀i ≥ 0, (4)

α2
kβk ≤ Bkβk−1 ≤

(
k∑
i=0

αi

)
βk−1, ∀k ≥ 1. (5)

Ak :=
k∑
i=0

αi, τi :=
αi+1

Bi+1
(6)

The Stochastic Intermediate Gradient Method (SIGM) is described below as
Algorithm 1. Let a ≥ 1 and b ≥ 0 be some parameters. Let us assume that
we know a number R such that

√
2d(x∗) ≤ R. We set for p ∈ [1, 2]

αi =
1

a

(
i+ p

p

)p−1

, ∀i ≥ 0, (7)

βi = L+
bσ

R
(i+ p+ 1)

2p−1
2 , ∀i ≥ 0, (8)

Bi = aα2
i =

1

a

(
i+ p

p

)2p−2

, ∀i ≥ 0. (9)

Theorem 2.1. If the sequences {αi}i≥0, {βi}i≥0, {Bi}i≥0 are chosen ac-
cording to (7), (8), (9) with a = 2

2p−1
2 and b = 2

5−2p
4 p

1−2p
2 , then the sequence
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yk generated by the SIGM satisfies

Eξ0,...,ξkϕ(yk)− ϕ∗ ≤
LR2pp2

2p−3
2

(k + p)p
+
σR2

3+2p
4
√
p(k + p+ 2)p−

1
2

(k + p)p
+

+ 22p−1

((
k + p

p

)p−1

+ 1

)
δ ≤ C1LR

2

kp
+
C2σR√

k
+ C3k

p−1δ =

= Θ

(
LR2

kp
+
σR√
k

+ kp−1δ

)
,

where C1 = 4
√

2, C2 = 16
√

2, C3 = 48.

Algorithm 1 Stochastic Intermediate Gradient Method (SIGM)
Require: The sequences {αi}i≥0, {βi}i≥0, {Bi}i≥0, functions d(x), V (x, z).
Ensure: The point yk.
1: Compute x0 := arg minx∈Q{d(x)}. Let ξ0 be a realization of the random

variable ξ. Calculate Gδ,L(x0, ξ0). Set k = 0.
2: y0 := arg minx∈Q{β0d(x) + α0〈Gδ,L(x0, ξ0), x− x0〉+ α0h(x)}.
3: repeat
4: zk := arg minx∈Q{βkd(x) +

∑k
i=0 αi〈Gδ,L(xi, ξi), x− xi〉+Akh(x)}.

5: xk+1 := τkzk + (1− τk)yk.
6: Let ξk+1 be a realization of the random variable ξ. Calculate

Gδ,L(xk+1, ξk+1).
7: x̂k+1 := arg minx∈Q{βkV (x, zk) + αk+1〈Gδ,L(xk+1, ξk+1), x − zk〉 +

αk+1h(x).}.
8: wk+1 := τkx̂k+1 + (1− τk)yk.
9: yk+1 :=

Ak+1−Bk+1

Ak+1
yk +

Bk+1

Ak+1
wk+1.

10: until

It is possible to obtain an upper bound on the probability of large de-
viations for the ϕ(yk) − ϕ∗. To do that, we make the following additional
assumptions.

1. ξ0, . . . , ξk are i.i.d random variables.

2. Gδ,L(x, ξ) satisfies the light-tail condition

Eξ
[
exp

(
‖Gδ,L(x, ξ)− gδ,L(x)‖2∗

σ2

)]
≤ exp(1).

3. SetQ is bounded, and we know a numberD > 0, such that maxx,y∈Q ‖x− y‖ ≤
D.
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Theorem 2.2. If the sequences {αi}i≥0, {βi}i≥0, {Bi}i≥0 are chosen ac-
cording to (7), (8), (9) with a = 2

2p−1
2 and b = 2

5−2p
4 p

1−2p
2 , then the sequence

yk generated by the SIGM satisfies

P

(
ϕ(yk)− ϕ∗ >

C1LR
2

kp
+
C2(1 + Ω)σR√

k
+ C3k

p−1δ +
C4Dσ

√
Ω√

k

)

≤ P

(
ϕ(yk)− ϕ∗ >

LR2pp2
2p−3

2

(k + p)p
+

(1 + Ω)σR2
3+2p

4
√
p(k + p+ 2)p−

1
2

(k + p)p

+ 22p−1

((
k + p

p

)p−1

+ 1

)
δ +

2Dσ
√

6Ωp√
k + p

)
≤ 3 exp(−Ω),

where C1 = 4
√

2, C2 = 16
√

2, C3 = 48, C4 = 4
√

3.

Next, we consider two modifications of the SIGM for strongly convex
problems. For the first modification, we obtain the rate of convergence in
terms of the non-optimality gap expectation and for the second we bound the
probability of large deviations from this rate. We additionally assume that
E is a Euclidean space with scalar product 〈·, ·〉 and norm ‖x‖ :=

√
〈x,Hx〉,

where H is a symmetric positive definite matrix. Without loss of generality,
we assume that the function d(x) satisfies conditions 0 = arg minx∈Q d(x)
and d(0) = 0. Also we assume that the function ϕ(x) is strongly convex, i.e.
µ
2‖x − y‖2 ≤ ϕ(y) − ϕ(x) − 〈g(x), y − x〉 for all x, y ∈ Q, g(x) ∈ ∂ϕ(x).
As a corollary, we have

ϕ(x)− ϕ(x∗) ≥ µ

2
‖x− x∗‖2, ∀x ∈ Q, (10)

where x∗ is the solution of the problem (1). We also assume that d(x) satisfies
the following property. If x0 is a random vector such that Ex0‖x−x0‖2 ≤ R2

0

for some fixed point x and number R0, then, for some V > 0,

Ex0d

(
x− x0

R0

)
≤ V 2

2
. (11)

Theorem 2.3. After k ≥ 1 outer iterations of Algorithm 2, we have

Eϕ(uk)− ϕ∗ ≤
µR2

0

2
e−k +

C3e2p−1

e− 1

(
4eC1LV

2

µ

) p−1
p

δ, (15)

E‖uk − x∗‖2 ≤ R2
0e−k +

C3e2p

µ(e− 1)

(
4eC1LV

2

µ

) p−1
p

δ. (16)

As a consequence, if we choose the error δ of the oracle satisfying

δ ≤ ε(e− 1)

2pC3e

(
4eC1LV

2

µ

) 1−p
p

, (17)
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Algorithm 2 Stochastic Intermediate Gradient Method for Strongly Convex
Problems
Require: The function d(x), point u0, number R0 such that ‖u0−x∗‖ ≤ R0,

number p ∈ [1, 2].
Ensure: The point uk+1.
1: Set k = 0.
2: Calculate

Nk :=

⌈(
4eC1LV

2

µ

) 1
p

⌉
. (12)

3: repeat
4: Calculate

mk := max

{
1,

⌈
16ek+2C2

2σ
2V 2

µ2R2
0Nk

⌉}
, (13)

R2
k := R2

0e−k +
2peC3δ

µ(e− 1)

(
4eC1LV

2

µ

) p−1
p (

1− e−k
)
. (14)

5: Run Algorithm 1 with x0 = uk and prox-function d
(
x−uk
Rk

)
for

Nk steps, using oracle G̃kδ,L(x) := 1
mk

∑mk
i=1Gδ,L(x, ξi), where ξi,

i = 1, ...,mk are i.i.d, on each step and sequences {αi}i≥0, {βi}i≥0,
{Bi}i≥0 defined in Theorem 2.1.

6: Set uk+1 = yNk , k = k + 1.
7: until

then we need N =
⌈
ln
(
µR2

0
ε

)⌉
outer iterations and no more than

(
1 +

(
4eC1LV

2

µ

) 1
p

)(
1 + ln

(
µR2

0

ε

))
+

16e3C2
2σ

2V 2

µε(e− 1)

oracle calls to guarantee that Eϕ(uN )− ϕ∗ ≤ ε.

To obtain complexity in terms of large deviations probability, we assume
that the prox-function has quadratic growth with parameter V 2 with respect
to the chosen norm, i.e.

d(x) ≤ V 2

2
‖x‖2, ∀x ∈ Rn. (18)

Now we present a modification of Algorithm 2 and a theorem with a
bound for the probability of large deviations for the non-optimality gap of
this algorithm.
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Algorithm 3 Stochastic Intermediate Gradient Method for Strongly Convex
Problems 2
Require: The function d(x), point u0, number R0 such that ‖u0−x∗‖ ≤ R0,

number p ∈ [1, 2], number N ≥ 1 of outer iterations, confidence level Λ.
Ensure: The point uN .
1: Set k = 0.
2: Calculate

Nk :=

⌈(
6eC1LV

2

µ

) 1
p

⌉
. (19)

3:
4: repeat
5: Calculate

mk := max

{
1,

⌈
36ek+2C2

2σ
2V 2

(
1 + ln

(
3N
Λ

))2
µ2R2

0Nk

⌉
,

⌈
144ek+2C2

4σ
2 ln

(
3N
Λ

)
µ2R2

0Nk

⌉}
,

(20)

R2
k := R2

0e−k +
2peC3δ

µ(e− 1)

(
6eC1LV

2

µ

) p−1
p (

1− e−k
)
, (21)

Qk :=
{
x ∈ Q : ‖x− uk‖2 ≤ R2

k

}
. (22)

6: Run Algorithm 1 applied to the problem minx∈Qk ϕ(x) with x0 =

uk and prox-function d
(
x−uk
Rk

)
for Nk steps using oracle G̃kδ,L(x) :=

1
mk

∑mk
i=1Gδ,L(x, ξi), where ξi, i = 1, ...,mk are i.i.d, on each step and

sequences {αi}i≥0, {βi}i≥0, {Bi}i≥0 defined in Theorem 2.1.
7: Set uk+1 = yNk , k = k + 1.
8: until k = N − 1

Theorem 2.4. After N outer iterations of Algorithm 3, we have

P

{
ϕ(uN )− ϕ∗ > µR2

0

2
e−N +

2p−1eC3δ

(e− 1)

(
6eC1LV

2

µ

) p−1
p

δ

}
≤ Λ. (23)

As a consequence, if we choose error of the oracle δ satisfying

δ ≤ ε(e− 1)

2pC3e

(
6eC1LV

2

µ

) 1−p
p

, (24)

then we need no more than N =
⌈
ln
(
µR2

0
ε

)⌉
outer iterations and no more

14



than (
1 +

(
6eC1LV

2

µ

) 1
p

)(
1 + ln

(
µR2

0

ε

))
+

+
36e3C2

2σ
2V 2

µ(e− 1)ε

(
1 + ln

(
3

Λ

(
1 + ln

(
µR2

0

ε

))))2

+

+
144e3C2

4σ
2

µε(e− 1)
ln

(
3

Λ

(
1 + ln

(
µR2

0

ε

)))
(25)

oracle calls to guarantee that P{ϕ(uN )− ϕ∗ > ε} ≤ Λ.

2.2 Learning supervised pagerank with gradient-based and
gradient-free optimization methods.

In this subsection we consider a parametric model for web-page ranking and
learning the parameters of this model in a supervised setting. The results of
this subsection are published in [24].

2.2.1 Loss-minimization problem statement

We consider minimization of the following loss function

f(ϕ) =
1

|Q|

|Q|∑
q=1

‖(Aqπq(ϕ))+‖22 (26)

as a function of ϕ ∈ Rm over some set of feasible values Φ, where vector
x+ has components [x+]i = max{xi, 0}, the numbers q, rq and matrices
Aq ∈ Rrq×pq , q ∈ Q are given. We denote r = maxq∈Q rq. Moreover, the
probability vectors πq(ϕ) ∈ Rpq are the solutions of the equation

π = απ0
q (ϕ) + (1− α)P Tq (ϕ)π, (27)

where π0
q (ϕ) ∈ Rpq is a given differentiable vector-function with first nq non-

zero components and all the rest being equal to zero, Pq(ϕ) ∈ Rpq×pq is
a given differentiable matrix-valued function. We denote p = maxq∈Q pq,
n = maxq∈Q nq, s = maxq∈Q sq, where sq is the maximum number of non-
zero components in the rows of Pq.

We choose some ϕ̂ and R > 0 such that the set Φ defined as Φ = {ϕ ∈
Rm : ‖ϕ− ϕ̂‖2 ≤ R} lies in the set of vectors with positive components Rm++.
The loss-minimization problem which we solve is as follows

min
ϕ∈Φ

f(ϕ),Φ = {ϕ ∈ Rm : ‖ϕ− ϕ̂‖2 ≤ R}. (28)
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The method [25] for approximation of πq(ϕ) for any fixed q ∈ Q con-
structs a sequence πk and the output π̃q(ϕ,N) (for some fixed non-negative
integer N) by the following rule

π0 = π0
q (ϕ), πk+1 = P Tq (ϕ)πk, π̃q(ϕ,N) =

α

1− (1− α)N+1

N∑
k=0

(1− α)kπk.

(29)

Lemma 2.1. Assume that for some δ1 > 0 Method (29) with N =
⌈

1
α ln 8r

δ1

⌉
−

1 is used to calculate the vector π̃q(ϕ,N) for every q ∈ Q. Then

f̃(ϕ, δ1) =
1

|Q|

|Q|∑
q=1

‖(Aqπ̃q(ϕ,N))+‖22 (30)

satisfies
|f̃(ϕ, δ1)− f(ϕ)| ≤ δ1. (31)

Moreover, the calculation of f̃(ϕ, δ1) requires not more than |Q|(3mps +
3psN + 6r) a.o. and not more than 3ps memory items.

Our generalization of the method [25] for calculation of dπq(ϕ)
dϕT

for any
q ∈ Q is the following. Choose some non-negative integer N1 and calculate
π̃q(ϕ,N1) using (29). Calculate a sequence Πk

Π0 = α
dπ0

q (ϕ)

dϕT
+ (1− α)

pq∑
i=1

dpi(ϕ)

dϕT
[π̃q(ϕ,N1)]i, Πk+1 = P Tq (ϕ)Πk. (32)

The output is (for some fixed non-negative integer N2)

Π̃q(ϕ,N2) =
1

1− (1− α)N2+1

N2∑
k=0

(1− α)kΠk. (33)

In what follows, we use the following norm on the space of matrices
A ∈ Rn1×n2 : ‖A‖1 = maxj=1,...,n2

∑n1
i=1 |aij |.

Lemma 2.2. Let β1 be a number (explicitly computable, see [24]) such that
for all ϕ ∈ Φ

α

∥∥∥∥∥dπ0
q (ϕ)

dϕT

∥∥∥∥∥
1

+ (1− α)

pq∑
i=1

∥∥∥∥dpi(ϕ)

dϕT

∥∥∥∥
1

≤ β1. (34)

Assume that Method (29) with N1 =
⌈

1
α ln 24β1r

αδ2

⌉
− 1 is used for every

q ∈ Q to calculate the vector π̃q(ϕ,N1) and Method (32), (33) with N2 =
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⌈
1
α ln 8β1r

αδ2

⌉
− 1 is used for every q ∈ Q to calculate the matrix Π̃q(ϕ,N2)

(33). Then the vector

g̃(ϕ, δ2) =
2

|Q|

|Q|∑
q=1

(
Π̃q(ϕ,N2)

)T
ATq (Aqπ̃q(ϕ,N1))+ (35)

satisfies
‖g̃(ϕ, δ2)−∇f(ϕ)‖∞ ≤ δ2. (36)

Moreover the calculation of g̃(ϕ, δ2) requires no more than |Q|(10mps +
3psN1 + 3mpsN2 + 7r) a.o. and not more than 4ps + 4mp + r memory
items.

As we see, there is an inexact oracle available for the considered super-
vised learning problem. Thus, in the next subsections, we consider a general
problem with intexact oracle and solve it by zero-order and first-order meth-
ods.

2.2.2 Solving the learning problem by zero-order method

First, we consider a general zero-order method with inexact function evalu-
ations and then we apply it to solve the learning problem. Let E be an m-
dimensional vector space. First, we consider a general function f(·) : E → R
and denote its argument by x or y to avoid confusion with the above text.
We denote the value of linear function g ∈ E∗ at x ∈ E by 〈g, x〉. We choose
some norm ‖ · ‖ in E and say that f ∈ C1,1

L (‖ · ‖) iff

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ L

2
‖x− y‖2, ∀x, y ∈ E . (37)

The problem of our interest is to find minx∈X f(x), where f ∈ C1,1
L (‖ · ‖),

X is a closed convex set and there exists a number D ∈ (0,+∞) such that
diamX := maxx,y∈X ‖x − y‖ ≤ D. Also we assume that the inexact zero-
order oracle for f(x) returns a value f̃(x, δ) = f(x) + δ̃(x), where δ̃(x) is the
error satisfying for some δ > 0 (which is known) |δ̃(x)| ≤ δ for all x ∈ X.
Let x∗ ∈ arg minx∈X f(x). Denote f∗ = minx∈X f(x).

Unlike [17], we define the biased gradient-free oracle gτ (x, δ) = m
τ (f̃(x+

τξ, δ)− f̃(x, δ))ξ, where ξ is a random vector uniformly distributed over the
unit sphere S = {t ∈ Rm : ‖t‖2 = 1}, τ is a smoothing parameter.

Algorithm 4 below is the variation of the projected gradient descent
method. Here ΠX(x) denotes the Euclidean projection of a point x onto
the set X.

Next theorem gives the convergence rate of Algorithm 4. Denote by
Ξk = (ξ0, . . . , ξk) the history of realizations of the vector ξ generated on
each iteration of the algorithm.
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Algorithm 4 Gradient-type method
1: Input: Point x0 ∈ X, stepsize h > 0, number of steps M .
2: Set k = 0.
3: repeat
4: Generate ξk and calculate corresponding gτ (xk, δ).
5: Calculate xk+1 = ΠX(xk − hgτ (xk, δ)).
6: Set k = k + 1.
7: until k > M
8: Output: The point yM = arg minx{f(x) : x ∈ {x0, . . . , xM}}.

Theorem 2.5. Let f ∈ C1,1
L (‖ · ‖2) and convex. Assume that x∗ ∈ intX,

and the sequence xk is generated by Algorithm 4 with h = 1
8mL . Then for

any M ≥ 0, we have

EΞM−1
f(yM )− f∗ ≤ 8mLD2

M + 1
+
τ2L(m+ 8)

8
+
δmD

4τ
+
δ2m

Lτ2
. (38)

Algorithm 5 Gradient-free method for Problem (28)
1: Input: Point ϕ0 ∈ Φ, L – Lipschitz constant for the function f(ϕ) on

Φ, accuracy ε > 0.

2: Define M =
⌈
128mLR2

ε

⌉
, δ = ε

3
2
√

2

16mR
√
L(m+8)

, τ =
√

2ε
L(m+8) .

3: Set k = 0.
4: repeat
5: Generate random vector ξk uniformly distributed over a unit Euclidean

sphere S in Rm.
6: Calculate f̃(ϕk + τξk, δ), f̃(ϕk, δ) using Lemma 2.1 with δ1 = δ.
7: Calculate gτ (ϕk, δ) = m

τ (f̃(ϕk + τξk, δ)− f̃(ϕk, δ))ξk.
8: Calculate ϕk+1 = ΠΦ

(
ϕk − 1

8mLgτ (ϕk, δ)
)
.

9: Set k = k + 1.
10: until k > M
11: Output: The point ϕ̂M = arg minϕ{f(ϕ) : ϕ ∈ {ϕ0, . . . , ϕM}}.

Next, we apply the above method to solve the learning problem (28).
The resulting algorithm is listed as Algorithm 5.

Theorem 2.6. Assume that the set Φ in (28) is chosen in a way such that
f(ϕ) is convex on Φ and some ϕ∗ ∈ arg minϕ∈Φ f(ϕ) belongs also to intΦ.
Then the mean total number of arithmetic operations of the Algorithm 5 for
the accuracy ε (i.e. for the inequality EΞM−1

f(ϕ̂M ) − f(ϕ∗) ≤ ε to hold) is
no more than

768mps|Q|LR
2

ε

(
m+

1

α
ln

128mrR
√
L(m+ 8)

ε3/2
√

2
+ 6r

)
.
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2.2.3 Solving the learning problem by first-order method

First we consider a general first-order method with inexact function values
and inexact gradient, and then we apply it to solve the learning problem. Let
E be a finite-dimensional real vector space and E∗ be its dual. We denote
the value of linear function g ∈ E∗ at x ∈ E by 〈g, x〉. Let ‖ · ‖ be some
norm on E , ‖ · ‖∗ be its dual. Our problem of interest in this subsection is a
composite optimization problem of the form

min
x∈X
{ψ(x) := f(x) + h(x)}, (39)

where X ⊂ E is a closed convex set, h(x) is a simple convex function, e.g.
‖x‖1. We assume that f(x) is a general function endowed with an inexact
first-order oracle in the following sense. There exists a number L ∈ (0,+∞)
such that for any δ ≥ 0 and any x ∈ X one can calculate f̃(x, δ) ∈ R and
g̃(x, δ) ∈ E∗ satisfying

|f(y)− (f̃(x, δ)− 〈g̃(x, δ), y − x〉)| ≤ L

2
‖x− y‖2 + δ. (40)

for all y ∈ X. The constant L can be considered as "Lipschitz constant"
because for the exact first-order oracle for a function f ∈ C1,1

L (‖ · ‖) (40)
holds with δ = 0. This is a generalization of the concept of (δ, L)-oracle
considered in [26] for convex problems.

We choose a prox-function d(x) which is continuously differentiable and
1-strongly convex onX with respect to ‖·‖. This means that for any x, y ∈ X
d(y)− d(x)− 〈∇d(x), y− x〉 ≥ 1

2‖y− x‖
2. We define also the corresponding

Bregman distance V (x, z) = d(x)− d(z)− 〈∇d(z), x− z〉.
Theorem 2.7. Assume that f(x) is endowed with the inexact first-order
oracle in the sense of (40) and that there exists a number ψ∗ > −∞ such
that ψ(x) ≥ ψ∗ for all x ∈ X. Then after M iterations of Algorithm (6) it
holds that

‖MK(xK − xK+1)‖2 ≤ 4L(ψ(x0)− ψ∗)
M + 1

+
ε

2
. (41)

Moreover, the total number of inner steps is no more than M + log2
2L
L0

.

Next we apply the general method to the learning problem. We set
E = Rm and ‖ · ‖ = ‖ · ‖2, choose the prox-function d(ϕ) = 1

2‖ϕ‖
2
2 and

V (ϕ, ω) = 1
2‖ϕ− ω‖

2
2. Algorithm 7 is a formal record of the algorithm.

Theorem 2.8. The total number of arithmetic operations in Algorithm 7
for the accuracy ε (i.e. for the inequality ‖MK(ϕK − ϕK+1)‖22 ≤ ε to hold)
is no more than(

8L(f(ϕ0)− f∗)
ε

+ log2

2L

L0

)
·
(

7r|Q|+ 6mps|Q|
α

ln
1024β1rRL

√
m

αε

)
.
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Algorithm 6 Adaptive projected gradient algorithm
1: Input: Point x0 ∈ X, number L0 > 0.
2: Set k = 0, z = +∞.
3: repeat
4: Set Mk = Lk, flag = 0.
5: repeat
6: Set δ = ε

16Mk
. Calculate f̃(xk, δ) and g̃(xk, δ).

7: wk = arg minx∈Q {〈g̃(xk, δ), x〉+MkV (x, xk) + h(x)}
8: If the inequality

f̃(wk, δ) ≤ f̃(xk, δ) + 〈g̃(xk, δ), wk − xk〉+
Mk

2
‖wk − xk‖2 +

ε

8Mk

holds, set flag = 1. Otherwise set Mk = 2Mk.
9: until flag = 1

10: Set xk+1 = wk, Lk+1 = Mk
2 .

11: If ‖Mk(xk − xk+1)‖ < z, set z = ‖Mk(xk − xk+1)‖, K = k.
12: Set k = k + 1.
13: until z ≤ ε
14: Output: The point xK+1.

2.3 An accelerated directional derivative method for smooth
stochastic convex optimization.

In this section we consider directional derivatives methods with inexact or-
acle for stochastic convex optimization. The results of this subsection are
published in [27]. We consider the following optimization problem

min
x∈Rn

{
f(x) := Eξ[F (x, ξ)] =

∫
X
F (x, ξ)dP (x)

}
, (42)

where ξ is a random vector with probability distribution P (ξ), ξ ∈ X , and for
P -almost every ξ ∈ X , the function F (x, ξ) is closed and convex. Moreover,
we assume that, for P almost every ξ, the function F (x, ξ) has gradient
g(x, ξ), which is L(ξ)-Lipschitz continuous with respect to the Euclidean
norm and there exists L2 > 0 such that

√
EξL(ξ)2 6 L2 < +∞. Under this

assumptions, Eξg(x, ξ) = ∇f(x) and f has L2-Lipschitz continuous gradient
with respect to the Euclidean norm. Also we assume that

Eξ[‖g(x, ξ)−∇f(x)‖22] 6 σ2, (43)

where ‖ · ‖2 is the Euclidean norm.
Finally, we assume that an optimization procedure, given a point x ∈ Rn,

direction e ∈ S2(1) and ξ independently drawn from P , can obtain a noisy
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Algorithm 7 Adaptive gradient method for Problem (28)
1: Input: Point ϕ0 ∈ Φ, number L0 > 0, accuracy ε > 0.
2: Set k = 0, z = +∞.
3: repeat
4: Set Mk = Lk, flag = 0.
5: repeat
6: Set δ1 = ε

32Mk
, δ2 = ε

64MkR
√
m
.

7: Calculate f̃(ϕk, δ1) using Lemma 2.1 and g̃(ϕk, δ2) using Lemma
2.2.

8: Find
ωk = arg min

ϕ∈Φ

{
〈g̃(ϕk, δ2), ϕ〉+

Mk

2
‖ϕ− ϕk‖22.

}
9: Calculate f̃(ωk, δ1) using Lemma 2.1.

10: If the inequality

f̃(ωk, δ1) ≤ f̃(ϕk, δ1) + 〈g̃(ϕk, δ2), ωk − ϕk〉+
Mk

2
‖ωk − ϕk‖22 +

ε

8Mk

holds, set flag = 1. Otherwise set Mk = 2Mk.
11: until flag = 1
12: Set ϕk+1 = ωk, Lk+1 = Mk

2 , .
13: If ‖Mk(ϕk − ϕk+1)‖2 < z, set z = ‖Mk(ϕk − ϕk+1)‖2, K = k.
14: Set k = k + 1.
15: until z ≤ ε
16: Output: The point ϕK+1.

stochastic approximation f̃ ′(x, ξ, e) for the directional derivative 〈g(x, ξ), e〉:

f̃ ′(x, ξ, e) = 〈g(x, ξ), e〉+ ζ(x, ξ, e) + η(x, ξ, e),

Eξ(ζ(x, ξ, e))2 6 ∆ζ , ∀x ∈ Rn, ∀e ∈ S2(1),

|η(x, ξ, e)| 6 ∆η, ∀x ∈ Rn,∀e ∈ S2(1), a.s. in ξ, (44)

where S2(1) is the Euclidean sphere of radius one with the center at the
point zero and the values ∆ζ , ∆η are controlled and can be made as small
as it is desired. Note that we use the smoothness of F (·, ξ) to write the
directional derivative as 〈g(x, ξ), e〉, but we do not assume that the whole
stochastic gradient g(x, ξ) is available. We choose a prox-function d(x) which
is continuous, convex on Rn and is 1-strongly convex on Rn with respect to
‖ · ‖p, i.e., for any x, y ∈ Rn d(y) − d(x) − 〈∇d(x), y − x〉 ≥ 1

2‖y − x‖2p.
Without loss of generality, we assume that min

x∈Rn
d(x) = 0. We define also the

corresponding Bregman divergence V [z](x) = d(x) − d(z) − 〈∇d(z), x − z〉,
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x, z ∈ Rn. For the case p = 1, we choose the following prox-function [28]

d(x) =
en(κ−1)(2−κ)/κ lnn

2
‖x‖2κ, κ = 1 +

1

lnn
(45)

and, for the case p = 2, we choose the prox-function to be the squared
Euclidean norm d(x) = 1

2‖x‖
2
2.

Based on the noisy stochastic observations (44) of the directional deriva-
tive, we form the following stochastic approximation of ∇f(x)

∇̃mf(x) =
1

m

m∑
i=1

f̃ ′(x, ξi, e)e, (46)

where e ∈ RS2(1), ξi, i = 1, ...,m are independent realizations of ξ, m is the
batch size.

2.3.1 Algorithms and main results for convex problems

The Accelerated Randomized Directional Derivative (ARDD) method is listed
as Algorithm 8.

Algorithm 8 Accelerated Randomized Directional Derivative (ARDD)
method
Require: x0 —starting point; N > 1 — number of iterations; m > 1 —

batch size.
Ensure: point yN .
1: y0 ← x0, z0 ← x0.
2: for k = 0, . . . , N − 1. do
3: αk+1 ← k+2

96n2ρnL2
, τk ← 1

48αk+1n2ρnL2
= 2

k+2 .
4: Generate ek+1 ∈ RS2(1) independently from previous iterations and

ξi, i = 1, ...,m – independent realizations of ξ.

5: ∇̃mf(xk+1) = 1
m

m∑
i=1

f̃ ′(xk+1, ξi, e)e.

6: xk+1 ← τkzk + (1− τk)yk.
7: yk+1 ← xk+1 − 1

2L2
∇̃mf(xk+1).

8: zk+1 ← argmin
z∈Rn

{
αk+1n

〈
∇̃mf(xk+1), z − zk

〉
+ V [zk] (z)

}
.

9: end for
10: return yN

Theorem 2.9. Let ARDD method be applied to solve problem (42). Then

E[f(yN )]− f(x∗) 6 384Θpn2ρnL2

N2 + 4N
nL2
· σ2

m + 61N
24L2

∆ζ + 122N
3L2

∆2
η

+
12
√

2nΘp
N2

(√
∆ζ

2 + 2∆η

)
+ N2

12nρnL2

(√
∆ζ

2 + 2∆η

)2

,
(47)
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where Θp = V [z0](x∗) is defined by the chosen proximal setup and E[·] =
Ee1,...,eN ,ξ1,1,...,ξN,m [·].

The appropriate choice of the ARDDmethod parameters is given in Table
1.

p = 1 p = 2

N
√

n lnnL2Θ1
ε

√
n2L2Θ2

ε

m max

{
1,
√

lnn
n ·

σ2

ε3/2
·
√

Θ1
L2

}
max

{
1, σ2

ε3/2
·
√

Θ2
L2

}
∆ζ min

{
n(lnn)2L2

2Θ1,
ε2

nΘ1
, ε

3
2√

n lnn
·
√

L2
Θ1

}
min

{
n3L2

2Θ2,
ε2

nΘ2
, ε

3
2

n ·
√

L2
Θ2

}
∆η min

{
√
n lnnL2

√
Θ1,

ε√
nΘ1

, ε
3
4

4√
n lnn

· 4

√
L2
Θ1

}
min

{
n

3
2L2

√
Θ2,

ε√
nΘ2

, ε
3
4√
n
· 4

√
L2
Θ2

}
Calls max

{√
n lnnL2Θ1

ε , σ
2Θ1 lnn
ε2

}
max

{√
n2L2Θ2

ε , σ
2Θ2n
ε2

}
)

Table 1: Algorithm 8 parameters for the cases p = 1 and p = 2.

The Randomized Directional Derivative (RDD) method is listed as Al-
gorithm 9.

Algorithm 9 Randomized Directional Derivative (RDD) method
Require: x0 —starting point; N > 1 — number of iterations; m > 1 —

batch size.
Ensure: point x̄N .
1: for k = 0, . . . , N − 1. do
2: α← 1

48nρnL2
.

3: Generate ek+1 ∈ RS2 (1) independently from previous iterations and
ξi, i = 1, ...,m – independent realizations of ξ.

4: ∇̃mf(xk) = 1
m

m∑
i=1

f̃ ′(xk, ξi, e)e.

5: xk+1 ← argmin
x∈Rn

{
αn
〈
∇̃mf(xk), x− xk

〉
+ V [xk] (x)

}
.

6: end for

7: return x̄N ← 1
N

N−1∑
k=0

xk
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Theorem 2.10. Let RDD method be applied to solve problem (42). Then

E[f(x̄N )]− f(x∗) 6
384nρnL2Θp

N
+

2

L2

σ2

m
+

n

12L2
∆ζ +

4n

3L2
∆2
η

+
8
√

2nΘp

N

(√
∆ζ

2
+ 2∆η

)
+

N

3L2ρn

(√
∆ζ

2
+ 2∆η

)2

, (48)

where Θp = V [z0](x∗) is defined by the chosen proximal setup and E[·] =
Ee1,...,eN ,ξ1,1,...,ξN,m [·].

The appropriate choice of the RDD method parameters is given in Table
2.

p = 1 p = 2

N L2Θ1 lnn
ε

nL2Θ2
ε

m max
{

1, σ
2

εL2

}
max

{
1, σ

2

εL2

}
∆ζ min

{
(lnn)2

n L2
2Θ1,

ε2

nΘ1
, εL2

n

}
min

{
nL2

2Θ2,
ε2

nΘ2
, εL2

n

}
∆η min

{
lnn√
n
L2

√
Θ1,

ε√
nΘ1

,
√

εL2
n

}
min

{
√
nL2

√
Θ2,

ε√
nΘ2

,
√

εL2
n

}
Nm max

{
L2Θ1 lnn

ε , σ
2Θ1 lnn
ε2

}
max

{
nL2Θ2
ε , nσ

2Θ2
ε2

}
Table 2: Algorithm 9 parameters for the cases p = 1 and p = 2.

2.3.2 Algorithms and main results for strongly convex problems.

To obtain faster rates, we assume additionally that f is µp-strongly convex
w.r.t. p-norm. Our algorithms and proofs rely on the following assumption.
Let x∗ be some fixed point and x be a random point such that Ex

[
‖x −

x∗‖2p
]
6 R2

p, then

Exd
(
x− x∗
Rp

)
6

Ωp

2
, (49)

where Ex denotes the expectation with respect to random vector x and Ωp

is defined as follows. For p = 1 and our choice of the prox-function (45),
Ωp = en(κ−1)(2−κ)/κ lnn = O(lnn) with κ = 1 + 1

lnn , see [6, 29]. For p = 2
and our choice of the prox-function, Ωp = 1. Our Accelerated Randomized
Directional Derivative method for strongly convex problems (ARDDsc) is
listed as Algorithm 10.
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Algorithm 10 Accelerated Randomized Directional Derivative method for
strongly convex functions (ARDDsc)
Require: x0 —starting point s.t. ‖x0 − x∗‖2p ≤ R2

p; K > 1 — number of
iterations; µp – strong convexity parameter.

Ensure: point uK .
1: Set N0 =

⌈√
8aL2Ωp
µp

⌉
, where a = 384n2ρn.

2: for k = 0, . . . , K − 1 do
3: mk := max

{
1,
⌈

32σ2N02k

nL2µpR2
p

⌉}
, R2

k := R2
p2
−k + 4∆

µp

(
1− 2−k

)
,

4: Set dk(x) = R2
kd
(
x−uk
Rk

)
.

5: Run ARDD with starting point uk and prox-function dk(x) for N0

steps with batch size mk.
6: Set uk+1 = yN0 , k = k + 1.
7: end for
8: return uK

Theorem 2.11. Let f in problem (42) be µp-strongly convex and ARDDsc
method be applied to solve this problem. Then

Ef(uK)− f∗ 6 µpR2
p

2 · 2−K + 2∆. (50)

where ∆ = 61N0
24L2

∆ζ+
122N0

3L2
∆2
η+

12
√

2nR2
pΩp

N2
0

(√
∆ζ

2 + 2∆η

)
+

N2
0

12nρnL2

(√
∆ζ

2 + 2∆η

)2

.

Moreover, under an appropriate choice of ∆ζ and ∆η s.t. 2∆ 6 ε/2, the or-
acle complexity to achieve ε-accuracy of the solution is

Õ

(
max

{
n

1
2

+ 1
q

√
L2Ωp

µp
log2

µpR
2
p

ε
,
n

2
q σ2Ωp

µpε

})
.

The appropriate choice of the ARDDsc method parameters is given in
Table 3.

p = 1 p = 2

∆ζ min
{
ε
√

L2µ1

n lnnΩ1
, ε2 n(lnn)2L2

2Ω1

R2
1µ
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, ε · µ1

nΩ1

}
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{
ε
√

L2µ2

n2Ω2
, ε2 n

3L2
2Ω2

R2
2µ

2
2
, ε · µ2

nΩ2

}
∆η min

{√
ε 4

√
L2µ1

n lnnΩ1
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√
n lnnL2

√
Ω1

R1µ1
,
√
ε ·
√
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nΩ1

}
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{√
ε 4

√
L2µ2

n2Ω2
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√
n3L2

√
Ω2

R2µ2
,
√
ε ·
√

µ2

nΩ2

}
Calls max

{√
n lnnL2Ω1

µ1
log2

µ1R2
1

ε , σ
2Ω1 lnn
µ1ε

}
max

{
n
√

L2Ω2
µ2

log2
µ2R2

2
ε , nσ

2Ω2
µ2ε

}
Table 3: Algorithm 10 parameters for the cases p = 1 and p = 2.

Our Randomized Directional Derivative method for strongly convex prob-
lems (RDDsc) is listed as Algorithm 11.
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Algorithm 11 Randomized Directional Derivative method for strongly con-
vex functions (RDDsc)
Require: x0 —starting point s.t. ‖x0 − x∗‖2p ≤ R2

p; K > 1 — number of
iterations; µp – strong convexity parameter.

Ensure: point uK .
1: Set N0 =

⌈
8aL2Ωp
µp

⌉
, where a = 384nρn.

2: for k = 0, . . . , K − 1 do
3: mk := max

{
1,
⌈

16σ22k

L2µpR2
p

⌉}
, R2

k := R2
p2
−k + 4∆

µp

(
1− 2−k

)
,

4: Set dk(x) = R2
kd
(
x−uk
Rk

)
.

5: Run RDD with starting point uk and prox-function dk(x) for N0 steps
with batch size mk.

6: Set uk+1 = yN0 , k = k + 1.
7: end for
8: return uK

Theorem 2.12. Let f in problem (42) be µp-strongly convex and RDDsc
method be applied to solve this problem. Then

Ef(uK)− f∗ 6 µpR2
p

2 · 2−K + 2∆. (51)

where ∆ = n
12L2

∆ζ+
4n

3L2
∆2
η+

8
√

2nR2
pΩp

N0

(√
∆ζ

2 + 2∆η

)
+ N0

3L2ρn

(√
∆ζ

2 + 2∆η

)2

.

Moreover, under an appropriate choice of ∆ζ and ∆η s.t. 2∆ 6 ε/2, the or-
acle complexity to achieve ε-accuracy of the solution is

Õ

(
max

{
n

2
qL2Ωp

µp
log2

µpR
2
p

ε
,
n

2
q σ2Ωp

µpε

})
.

The appropriate choice of the RDDsc method parameters is given in
Table 4.

p = 1 p = 2

∆ζ min
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εL2
n , ε2 (lnn)2L2

2

nR2
1µ

2
1
, ε µ1
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}
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}
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nR1µ1
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√
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}
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}
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}
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}
Table 4: Algorithm 11 parameters for the cases p = 1 and p = 2.
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3 Primal-dual methods

In this section, we focus on the developed primal-dual first-order methods
for convex problems with linear constraints.

3.1 Primal-dual methods for solving infinite-dimensional games

The results of this subsection are published in [30]. Consider two moving
objects with dynamics given by the following equations:

ẋ(t) = Ax(t)x(t) +B(t)u(t), ẏ(t) = Ay(t)y(t) + C(t)v(t),

(x(0), y(0)) = (x0, y0). (52)

Here x(t) ∈ Rn, y(t) ∈ Rm are the phase vectors of these objects, u(t) is
the control of the first object (pursuer), and v(t) is the control of the second
object (evader). Matrices Ax(t), Ay(t), B(t), and C(t) are continuous and
have appropriate sizes. The system is considered on the time interval [0, θ].
Controls are restricted in the following way u(t) ∈ P ⊆ Rp, v(t) ∈ Q ⊆
Rq ∀t ∈ [0, θ]. We assume that P,Q are closed, convex sets.

The goal of the pursuer is to minimize the value of the functional:

F (u, v) + Φ(x(θ), y(θ)) :=

∫ θ

0
F̃ (τ, u(τ), v(τ))dτ + Φ(x(θ), y(θ)). (53)

The goal of the evader is the opposite. We need to find an optimal guaranteed
result for each object, which leads to the problem of finding the saddle point
of the above functional. We assume the following:

• u(·) ∈ L2([0, θ],Rp), and v(·) ∈ L2([0, θ],Rq) (for the notation simpli-
fication we denote L2([0, θ],Rp) by L2

p and L2([0, θ],Rq) by L2
q),

• the saddle point in this class of strategies exists,

• the function F (u, v) is upper semi-continuous in v and lower semi-
continuous in u,

• Φ(x, y) is continuous.

Denote by Vx(t, τ) the transition matrix of the first system in (52). It is
the unique solution of the following matrix Cauchy problem

dVx(t, τ)

dt
= Ax(t)Vx(t, τ), t ≥ τ, Vx(τ, τ) = E.

Here E is the identity matrix. If the matrix Ax(t) is constant, then
Vx(t, τ) = e(t−τ)A.
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If we solve the first differential equation in (52), then we can express x(θ)
as a result of the application of the linear operator B : L2

p → Rn:

x(θ) = Vx(θ, 0)x0 +

∫ θ

0
Vx(θ, τ)B(τ)u(τ)dτ := x̃0 + Bu. (54)

Below, we will use the conjugate operator B∗ for the operator B. Let us find
it explicitly. Let µ be a n-dimensional vector. Then

〈µ,Bu〉 = 〈µ,
∫ θ

0
Vx(θ, τ)B(τ)u(τ)dτ〉 =

∫ θ

0
〈µ, Vx(θ, τ)B(τ)u(τ)〉dτ =

=

∫ θ

0
〈BT (τ)V T

x (θ, τ)µ, u(τ)〉dτ = 〈B∗µ, u〉.

Note that the vector ζ(t) = V T
x (θ, t)µ is the solution of the following Cauchy

problem:
ζ̇(t) = −ATx (t)ζ(t), ζ(θ) = µ, t ∈ [0, θ].

So we can solve this ODE and find B∗µ using the obtained solution ζ(t) as
B∗µ(t) = BT (t)ζ(t).

In the same way, we introduce the transition matrix Vy(t, τ) of the second
system in (52), the operator C : L2

q → Rm defined by the formula
Cv :=

∫ θ
0 Vy(θ, τ)C(τ)v(τ)dτ , and the vector ỹ0 := Vy(θ, 0)y0. The adjoint

operator C∗ also can be computed using the solution of some ODE.
So below we study differential game problem in the following form:

min
u∈U

[
max
v∈V
{F (u, v) + Φ(x, y) : y = ỹ0 + Cv} : x = x̃0 + Bu

]
, (55)

where

U := {u(·) ∈ L2
p : u(t) ∈ P ∀t ∈ [0, θ]},V := {v(·) ∈ L2

q : v(t) ∈ Q ∀t ∈ [0, θ]}

are sets of admissible strategies of the players and u ∈ U , v ∈ V mean
u(·) ∈ U , v(·) ∈ V. Our goal is to introduce a computational method for
finding an approximate solution of the problem (55).

First, we consider the problem (55) under two assumptions.
A1 The sets P and Q are bounded.
A2 In (53) the functional F (·, v) is convex for any fixed v, F (u, ·) is

concave for any fixed u, Φ(·, y) is convex for any fixed y, and Φ(x, ·) is
concave for any fixed x.

From A1, since the norms of the operators B, C are bounded, x(θ), y(θ)
are also bounded and we can equivalently reformulate the problem (55) in
the following way:

min
u∈U ,x∈X

[
max

v∈V,y∈Y
{F (u, v) + Φ(x, y) : y = ỹ0 + Cv} : x = x̃0 + Bu

]
=

max
v∈V,y∈Y

[
min

u∈U ,x∈X
{F (u, v) + Φ(x, y) : x = x̃0 + Bu} : y = ỹ0 + Cv

]
, (56)
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where the sets X and Y are closed, convex and bounded. Let us introduce
the spaces of dual variables λ ∈ Rm and µ ∈ Rn corresponding to the linear
constraints in the problem (56), and some norms ‖ · ‖λ and ‖ · ‖µ in these
spaces. We define the norms in the dual space in the standard way

‖sλ‖λ,∗ := max{〈sλ, λ〉 : ‖λ‖λ ≤ 1}, ‖sµ‖µ,∗ := max{〈sµ, µ〉 : ‖µ‖µ ≤ 1}.

Lemma 3.1. Let the Assumptions A1, A2 hold. Also assume that the
function F (u, v) is upper semi-continuous in v and lower semi-continuous in
u, the function Φ(x, y) is continuous, and that the sets P and Q are convex
and closed. Then the problem (56) is equivalent to the problem

minλ maxµ{minu∈U maxv∈V [F (u, v)− 〈µ,Bu〉+ 〈λ, Cv〉]

+ minx∈X maxy∈Y [Φ(x, y) + 〈µ, x〉 − 〈λ, y〉]− 〈µ, x̃0〉+ 〈λ, ỹ0〉},
(57)

which we call the conjugate problem to (56).

We denote by ψ(λ, µ) the function, for which the goal in (57) is to find
its saddle point.

3.1.1 Algorithm for convex-concave problem

We assume that we are given some prox-function dλ(λ) with prox-center λ0,
which is strongly convex with convexity parameter σλ in the given norm
‖ · ‖λ. For µ we introduce the similar assumptions. Since (λ∗, µ∗) is the
saddle point, (λ∗, µ∗) is a weak solution to the following variational inequality
〈g(λ, µ), (λ−λ∗, µ−µ∗)〉 ≥ 0, ∀λ, µ, where g(λ, µ) := (ψ′λ(λ, µ),−ψ′µ(λ, µ)).
We apply the method of Simple Dual Averages (SDA) from [31] for finding an
approximate solution of the finite-dimensional problem (57). Let us choose
some κ ∈]0, 1[. We consider a space of z := (λ, µ) with the norm

‖z‖z :=
√
κσλ ‖λ‖2λ + (1− κ)σµ ‖µ‖2µ, (58)

an oracle g(z) := (gλ(z),−gµ(z)), a new prox-function
d(z) := κdλ(λ) + (1 − κ) dµ(µ), which is strongly convex with constant
σ0 = 1 with respect to the norm (58). We define W := Rm × Rn. The con-
jugate norm for (58) is ‖g‖z,∗ :=

√
1
κσλ
‖gλ‖2λ,∗ + 1

(1−κ)σµ
‖gµ‖2µ,∗. So we have a

uniform upper bound for the answers of the oracle ‖g(λ, µ)‖2z,∗ ≤ L2 :=
L2
λ

κσλ
+

L2
µ

(1−κ)σµ
, where Lλ :=

√
θ ‖C‖λ,L2

q
diam2Q + diamλ,∗Y + ‖ỹ0‖λ,∗ and Lµ :=

√
θ ‖B‖µ,L2

p
diam2P + diamµ,∗X + ‖x̃0‖µ,∗.

The SDA method for solving (57) is the following

1. Initialization: Set s0 = 0. Choose z0, γ > 0.
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2. Iteration (k ≥ 0):

Compute gk = g(zk). Set sk+1 = sk+gk. (M1)

βk+1 = γβ̂k+1. Set zk+1 = πβk+1
(−sk+1).

Here the sequence β̂k+1 is defined by relations β̂0 = β̂1 = 1, β̂i+1 = β̂i + 1
β̂i
,

for i ≥ 1. The mapping πβ(s) is defined in the following way πβ(s) :=
arg minz∈W {−〈s, z〉+ βd(z)} .

We chooseDλ, Dµ such that dλ(λi) ≤ Dλ, dµ(µi) ≤ Dµ for all i ≥ 0 and
also, the pair (λ∗, µ∗) is an interior solution: Bλ

r/
√
κσλ

(λ∗) ⊆ Wλ := { λ : dλ(λ) ≤ Dλ},
and Bµ

r/
√

(1−κ)σµ
(µ∗) ⊆ Wµ := { µ : dµ(µ) ≤ Dµ } for some r > 0.

Then we have z∗ := (λ∗, µ∗) ∈ FD := { z ∈W : d(z) ≤ D } with
D := κDλ + (1− κ)Dµ and Bz

r(z
∗) ⊆ FD.

Let us introduce a gap function

δk(D) := max
z

{
k∑
i=0

〈gi, zi − z〉 : z ∈ FD

}
. (59)

From the Theorem 2 in [31] we have

1

k + 1
δk(D) ≤ β̂k+1

k + 1

(
γD +

L2

2γ

)
. (60)

Denote

(ûk+1, v̂k+1, x̂k+1, ŷk+1) :=
1

k + 1

k∑
i=0

(ui, vi, xi, yi), (61)

where (ui, vi), (xi, yi) are the saddle points at the point (λi, µi) in (57). We
define a function

φ(u, x, v, y) := minλ maxµ{F (u, v) + Φ(x, y) + 〈µ, x− x̃0 − Bu〉+
+〈λ, Cv + ỹ0 − y〉 : dλ(λ) ≤ Dλ, dµ(µ) ≤ Dµ}.

(62)

Since dλ(λ∗) ≤ Dλ, dµ(µ∗) ≤ Dµ, and the conjugate problem is equivalent
to the initial one, we conclude that the initial problem is equivalent to the
problem

min
u∈U ,x∈X

max
v∈V,y∈Y

φ(u, x, v, y). (63)

Let us introduce two auxiliary functions:

ξ(u, x) := max
v∈V,y∈Y

φ(u, x, v, y), (64)

η(v, y) := min
u∈U ,x∈X

φ(u, x, v, y). (65)

Note that ξ(u, x) is convex, η(v, y) is concave, and ξ(u, x) ≥ φ(u∗, x∗, v∗, y∗) ≥
η(v, y) for all u ∈ U , v ∈ V, x ∈ X, y ∈ Y , where φ(u∗, x∗, v∗, y∗) is the solu-
tion to (63).
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Theorem 3.1. Let the assumptions A1 and A2 be true. Then the points
(61) generated by the method (M1) satisfy:

ξ(ûk+1, x̂k+1)− η(v̂k+1, ŷk+1) ≤ β̂k+1

k + 1

(
γD +

L2

2γ

)
, (66)

‖x̃0 + Bûk+1 − x̂k+1‖µ,∗ ≤
β̂k+1

√
σµ

r(k+1)

(
γD + L2

2γ

)
,

‖ỹ0 + Cv̂k+1 − ŷk+1‖λ,∗ ≤
β̂k+1

√
σλ

r(k+1)

(
γD + L2

2γ

)
.

(67)

3.1.2 Algorithm for strongly convex-concave problem

In this subsection, we consider the problem (55), under stronger assumptions
and obtain faster convergence rates.

A3 The function F (·, v) is strongly convex for any fixed v with constant
σFu which does not depend on v, and function F (u, ·) is strongly concave for
any fixed u with constant σFv which does not depend on u. Assume that:

‖∇uF (u, v1)−∇uF (u, v2)‖L2
p
≤ Luv ‖v1 − v2‖L2

q
, (68)

‖∇vF (u1, v)−∇vF (u2, v)‖L2
q
≤ Lvu ‖u1 − u2‖L2

p
. (69)

A4 Φ(·, y) is strongly convex for any fixed y with respect to the norm
‖ · ‖µ,∗ with constant σΦx which doesn’t depend on y and Φ(x, ·) is strongly
concave for any fixed x with respect to the norm ‖ · ‖λ,∗ with constant σΦy

which doesn’t depend on x. Also we assume that:

‖∇xΦ(x, y1)−∇xΦ(x, y2)‖µ ≤ Lxy ‖y1 − y2‖λ,∗ , (70)

‖∇yΦ(x1, y)−∇yΦ(x2, y)‖λ ≤ Lyx ‖x1 − x2‖µ,∗ , (71)

‖∇xΦ(x1, y)−∇xΦ(x2, y)‖µ ≤ Lxx ‖x1 − x2‖µ,∗ , (72)

‖∇yΦ(x, y1)−∇yΦ(x, y2)‖λ ≤ Lyy ‖y1 − y2‖λ,∗ . (73)

Similarly to Lemma 3.1, we get that the conjugate problem for (55) is

minλ maxµ{ minu∈U maxv∈V [F (u, v)− 〈µ,Bu〉+ 〈λ, Cv〉]
+ minx maxy [Φ(x, y) + 〈µ, x〉 − 〈λ, y〉]− 〈µ, x̃0〉+ 〈λ, ỹ0〉 }.

(74)
We assume that the norms ‖ · ‖λ and ‖ · ‖µ are Euclidian. Let us in-

troduce the prox-function dλ(λ) := σλ
2 ‖λ‖

2
λ. The function dλ(λ) is strongly

convex in this norm with the convexity parameter σλ. For the variable µ we
introduce the prox-function dµ(µ) :=

σµ
2 ‖µ‖

2
µ, which is strongly convex with

the convexity parameter σµ with respect to the norm ‖ · ‖µ.
For any λ1, λ2 ∈ Rm we can define the Bregman distance:

ωλ(λ1, λ2) := dλ(λ2)− dλ(λ1)− 〈∇dλ(λ1), λ2 − λ1〉.
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Using the explicit expression for dλ(λ), we get ωλ(λ1, λ2) = σλ
2 ‖λ1 − λ2‖2.

Let us choose λ̄ = 0 as the center of the space Rm. Then we have ωλ(λ̄, λ) =
dλ(λ). For µ we introduce the similar settings.

Finding the saddle point (λ∗, µ∗) for the conjugate problem (74) is equiv-
alent to solving the variational inequality

〈g(λ, µ), (λ− λ∗, µ− µ∗)〉 ≥ 0, ∀λ, µ, (75)

where g(λ, µ) := (∇λψ(λ, µ),−∇µψ(λ, µ)). (76)

Let us choose some κ ∈]0, 1[. Consider a space of z := (λ, µ) with the
norm

‖z‖z :=
√
κσλ ‖λ‖2λ + (1− κ)σµ ‖µ‖2µ,

an oracle g(z) := (∇λψ(λ, µ),−∇µψ(λ, µ)), a new prox-function

d(z) := κdλ(λ) + (1− κ)dµ(µ)

which is strongly convex with constant σ0 = 1. We define W := Rm × Rn,
the Bregman distance

ω(z1, z2) := κωλ(λ1, λ2) + (1− κ)ωλ(µ2, µ2)

which has an explicit form of ω(z1, z2) = d(z1 − z2), and center z̄ = (0, 0).
Then, ω(z̄, z) = d(z). Note that the norm in the dual space is defined as

‖g‖z,∗ :=

√
1

κσλ
‖gλ‖2λ,∗ +

1

(1− κ)σµ
‖gµ‖2µ,∗.

In accordance to [32] for solving (75), we can use the following method:

1. Initialization: Fix β = L (Lipshitz constant of g) . Set s−1 = 0.

2. Iteration (k ≥ 0):

Compute xk = Tβ(z̄, sk−1), (M2)

Compute zk = Tβ(xk,−g(xk)),

Set sk = sk−1 − g(zk).

Here Tβ(z, s) := arg maxx∈W {〈s, x− z〉 − βω(z, x)}.
Similarly to [31], we can prove that the method (M2) generates a bounded

sequence {zi}i≥0. Hence the sequences {λi}i≥0, {µi}i≥0 are also bounded.
Also, since the saddle point in the problem (55) exists, there exists a saddle
point (λ∗, µ∗) for the conjugate problem (74). These arguments allow us to
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choose Dλ, Dµ such that dλ(λi) ≤ Dλ, dµ(µi) ≤ Dµ for all i ≥ 0, which also
ensure that (λ∗, µ∗) is an interior solution:

Bλ
r/
√
κσλ

(λ∗) ⊆Wλ := {λ : dλ(λ) ≤ Dλ} ,

Bµ

r/
√

(1−κ)σµ
(µ∗) ⊆Wµ := {µ : dµ(µ) ≤ Dµ}

for some r > 0. Then we have z∗ := (λ∗, µ∗) ∈ FD := {z ∈W : d(z) ≤ D}
with D := κDλ + (1− κ)Dµ and Bz

r(z
∗) ⊆ FD.

Theorem 3.2. Let the Assumptions A3 and A4 be true, κ =
σµ

σµ+σλ
, and

L =
σλ+σµ
σµσλ

√√√√2

(
‖C‖2

λ,L2
q

σFv
+ 1

σΦy
+
‖B‖

µ,L2
p
‖C‖

λ,L2
q
Lvu

σFuσFv
+

Lyx
σΦxσΦy

)
√√√√(‖B‖µ,L2

p
‖C‖

λ,L2
q
Luv

σFuσFv
+

Lxy
σΦxσΦy

+
‖B‖2

µ,L2
p

σFu
+ 1

σΦx

)
.

(77)

Let the points zi = (λi, µi), i ≥ 0 be generated by the method (M2). Let the
points in (61) be defined by points (ui, vi), (xi, yi) which are the saddle points
at the points (λi, µi) in (74). Then for functions ξ(u, x), η(v, y) defined in
(64) and (65) we have:

ξ(ûk+1, x̂k+1)− η(v̂k+1, ŷk+1) ≤ LD

k + 1
. (78)

Also the following is true:

‖Bûk+1 + x̃0 − x̂k+1‖µ,∗ ≤
LD
√
σµ

r(k + 1)
, ‖Cv̂k+1 + ỹ0 − ŷk+1‖λ,∗ ≤

LD
√
σλ

r(k + 1)
.

3.2 Accelerated primal-dual gradient method for strongly
convex problems with linear constraints

The results of this subsection are published in [33, 34].
The main motivation for the algorithms in this subsection is approximat-

ing the optimal transport (OT) distance, which amounts to solving the OT
problem [35]:

min
X∈U(r,c)

〈C,X〉,

U(r, c) := {X ∈ Rn×n+ : X1 = r, XT1 = c}, (79)

where X is transportation plan, C ∈ Rn×n+ is a given ground cost matrix,
r, c ∈ Rn are given vectors from the probability simplex ∆n, 1 is the vector
of all ones. The regularized OT problem is

min
X∈U(r,c)

〈C,X〉+ γR(X), (80)
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where γ > 0 is the regularization parameter and R(X) is a strongly convex
regularizer, e.g. negative entropy or squared Euclidean norm. Our goal is to
find X̂ ∈ U(r, c) such that

〈C, X̂〉 ≤ min
X∈U(r,c)

〈C,X〉+ ε. (81)

In this case, 〈C, X̂〉 is an ε-approximation for the OT distance and X̂ is an
approximation for the transportation plan.

Let us introduce some notation. For a general finite-dimensional real
vector space E, we denote by E∗ its dual, given by linear pairing 〈g, x〉,
x ∈ E, g ∈ E∗; by ‖ · ‖E the norm in E and by ‖ · ‖E,∗ the norm in E∗,
which is dual to ‖ · ‖E . For a linear operator A : E → H, we define its norm
as ‖A‖E→H = maxx∈E,u∈H∗{〈u,Ax〉 : ‖x‖E = 1, ‖u‖H,∗ = 1}. We say that
a function f : E → R is γ-strongly convex on a set Q ⊆ E w.r.t. a norm in
E iff, for any x, y ∈ Q, f(y) ≥ f(x) + 〈∇f(x), y − x〉 + γ

2‖x − y‖
2
E , where

∇f(x) is any subgradient of f(x) at x.
For a matrix A and a vector a, we denote eA, ea, lnA, ln a their entrywise

exponents and natural logarithms respectively. For a vector a ∈ Rn, we
denote by ‖a‖1 the sum of absolute values of its elements, and by ‖a‖2 its
Euclidean norm, and by ‖a‖∞ the maximum absolute value of its elements.
Given a matrix A ∈ Rn×n, we denote by vec(A) the vector in Rn2 , which
is obtained from A by writing its columns one below another. For a matrix
A ∈ Rn×n, we denote ‖A‖1 = ‖vec(A)‖1 and ‖A‖∞ = ‖vec(A)‖∞. Further,
we define the entropy of a matrix X ∈ Rn×n+ by

H(X) := −
n∑

i,j=1

Xij lnXij . (82)

For two matrices A,B, we denote their Frobenius inner product by 〈A,B〉.
We denote by ∆n := {a ∈ Rn+ : aT1 = 1} the probability simplex in Rn.

We start by the following template minimization problem

min
x∈Q⊆E

{f(x) : Ax = b} , (83)

where E is a finite-dimensional real vector space, Q is a simple closed convex
set, A is a given linear operator from E to some finite-dimensional real vector
space H, b ∈ H is given, f(x) is a γ-strongly convex function on Q with
respect to some chosen norm ‖ · ‖E on E.
The Lagrange dual problem for (83), written as a minimization problem, is

min
λ∈H∗

{
ϕ(λ) := 〈λ, b〉+ max

x∈Q

(
−f(x)− 〈ATλ, x〉

)}
. (84)

Note that ∇ϕ(λ) = b−Ax(λ) is Lipschitz-continuous [36]

‖∇ϕ(λ1)−∇ϕ(λ1)‖H ≤ L‖λ1 − λ2‖H,∗,

34



Algorithm 12 Adaptive Primal-Dual Accelerated Gradient Descent
(APDAGD)
Require: Accuracy εf , εeq > 0, initial estimate L0 s.t. 0 < L0 < 2L.
1: Set i0 = k = 0, M−1 = L0, β0 = α0 = 0, η0 = ζ0 = λ0 = 0.
2: repeat {Main iterate}
3: repeat {Line search}
4: Set Mk = 2ik−1Mk, find αk+1 s.t. βk+1 := βk + αk+1 = Mkα

2
k+1.

Set τk = αk+1/βk+1.
5: λk+1 = τkζk + (1− τk)ηk.
6: ζk+1 = ζk − αk+1∇ϕ(λk+1).
7: ηk+1 = τkζk+1 + (1− τk)ηk.
8: until

ϕ(ηk+1) ≤ϕ(λk+1) + 〈∇ϕ(λk+1), ηk+1 − λk+1〉+
Mk

2
‖ηk+1 − λk+1‖22.

9: x̂k+1 = τkx(λk+1) + (1− τk)x̂k.
10: Set ik+1 = 0, k = k + 1.
11: until f(x̂k+1) + ϕ(ηk+1) ≤ εf , ‖Ax̂k+1 − b‖2 ≤ εeq.
Ensure: x̂k+1, ηk+1.

where x(λ) := arg minx∈Q
(
−f(x)− 〈ATλ, x〉

)
and L ≤ ‖A‖2E→H

γ . This es-
timate can be pessimistic and our algorithm does not use it and adapts
automatically to the local value of the Lipschitz constant.

We assume that the dual problem (84) has a solution and there exists
some R > 0 such that ‖λ∗‖2 ≤ R < +∞, where λ∗ is the solution to (84)
with minimum value of ‖λ∗‖2.

Theorem 3.3. Assume that the objective in the primal problem (83) is γ-
strongly convex and that the dual solution λ∗ satisfies ‖λ∗‖2 ≤ R. Then, for
k ≥ 1, the points x̂k, ηk in Algorithm 12 satisfy

f(x̂k)− f∗ ≤ f(x̂k) + ϕ(ηk) ≤
16‖A‖2E→HR2

γk2
, (85)

‖Ax̂k − b‖2 ≤
16‖A‖2E→HR

γk2
, (86)

‖x̂k − x∗‖E ≤
8

k

‖A‖E→HR
γ

, (87)

where x∗ and f∗ are respectively an optimal solution and the optimal value
in (83). Moreover, the stopping criterion in step 11 is correctly defined.

Now we apply the general method to derive a complexity estimate for
finding X̂ ∈ U(r, c) satisfying (81). We use entropic regularization of problem
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Algorithm 13 Approximate OT by APDAGD
Require: Accuracy ε.
1: Set γ = ε

3 lnn .
2: for k = 1, 2, ... do
3: Make step of APDAGD and calculate X̂k and ηk.
4: Find X̂ as the projection of X̂k on U(r, c) by Algorithm 2 in [37].
5: if 〈C, X̂ − X̂k〉 ≤ ε

6 and f(x̂k) + ϕ(ηk) ≤ ε
6 then

6: Return X̂.
7: else
8: k = k + 1 and continue.
9: end if

10: end for

(79) and consider the regularized problem (80) with the regularizer R(X) =
−H(X), where H(X) is given in (82). We define E = Rn2 , ‖ · ‖E = ‖ · ‖1,
and variable x = vec(X) ∈ Rn2 to be the vector obtained from a matrix
X by writing each column of X below the previous column. Also we set
f(x) = 〈C,X〉−γH(X), Q = ∆n2 , bT = (rT , cT ) and A : Rn2 → R2n defined
by the identity (A vec(X))T = ((X1)T , (XT1)T ). With this setting, we solve
problem (83) by our APDAGD. Let X̂k be defined by identity vec(X̂k) =
x̂k, where x̂k is generated by APDAGD. We also define X̂ ∈ U(r, c) to be
the projection of X̂k onto U(r, c) constructed by Algorithm 2 in [37]. The
pseudocode of our procedure for approximating the OT distance is listed as
Algorithm 13.

Theorem 3.4. Algorithm 13 outputs X̂ ∈ U(r, c) satisfying (81) in

O

(
min

{
n9/4

√
R‖C‖∞ lnn

ε
,
n2R‖C‖∞ lnn

ε2

})
(88)

arithmetic operations.

3.3 Distributed primal-dual accelerated stochastic gradient
method

The results of this subsection are published in [38].
We start with some notation. We define M1

+(X ) – the set of positive
Radon probability measures on a metric space X , and S1(n) = {a ∈ Rn+ |∑n

l=1 al = 1} the probability simplex. We use C(X ) as the space of contin-
uous functions on X . We denote by δ(x) the Dirac measure at point x. We
refer to λmax(W ) as the maximum eigenvalue of matrix W. We also use bold
symbols for stacked vectors p = [pT1 , · · · , pTm]T ∈ Rmn, where p1, ..., pm ∈ Rn.
In this case [p]i = pi – the i-th block of p. For a vector λ ∈ Rn, we denote
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by [λ]l its l-th component. We refer to the Euclidean norm of a vector
‖p‖2 :=

√∑n
l=1([p]l)2 as 2-norm.

Following the line of work started by [39], we consider entropic regu-
larization for the optimal transport problem. Assume that we are given a
positive Radon probability measure µ with density q(y) on a metric space
Y, and a discrete probability measure ν =

∑n
i=1 piδ(zi) with weights p and

finite support given by points z1, . . . , zn ∈ Z from a metric space Z. The
regularized Wasserstein distance in semi-discrete setting between µ and ν is
defined as

Wγ(µ, ν) = min
π∈Π(µ,ν)

{
n∑
i=1

∫
Y
ci(y)πi(y)dy + γKL(π|ξ)

}
,

where ci(y) = c(zi, y) is a cost function for transportation of a unit of mass
from point zi to point y, ξ is the uniform distribution on Y ×Z, KL(π|ξ) =∑n

i=1

∫
Y πi(y) log

(
πi(y)
ξ

)
dy, and the set of admissible coupling measures π

is defined as follows

Π(µ, ν) =

{
π ∈M1

+(Y)× S1(n) :

n∑
i=1

πi(y) = q(y), y ∈ Y,
∫
Y
πi(y)dy = pi,∀ i = 1, . . . , n

}
.

For a set of positive Radon probability measures (µ1, . . . , µm) the regularized
Wasserstein barycenter in the semi-discrete setting is defined as the solution
p to the problem

min
p∈S1(n)

m∑
i=1

Wγ,µi(p) = min
p1=···=pm

p1,...,pm∈S1(n)

m∑
i=1

Wγ,µi(pi), (89)

where we fixed the support z1, . . . , zn ∈ Z of the barycenter ν and char-
acterize it by the vector p ∈ Sn(1), i.e., ν =

∑n
i=1 piδ(zi) and Wγ,µ(p) :=

Wγ(µ, ν).
We now describe the distributed optimization setting for solving the sec-

ond problem in (89). We assume that each measure µi is held by an agent i
on a network and this agent can sample from this measure. We model such
a network as a fixed connected undirected graph G = (V,E), where V is the
set of m nodes and E is the set of edges. We assume that the graph G does
not have self-loops. The network structure imposes information constraints,
specifically, each node i has access to µi only and a node can exchange in-
formation only with its immediate neighbors, i.e., a node i can communicate
with node j if and only if (i, j) ∈ E.

We represent the communication constraints imposed by the network by
introducing a single equality constraint instead of the constraints p1 = · · · =
pm in (89). To do so, we define the Laplacian matrix W̄∈ Rm×m of the
graph G such that a) [W̄ ]ij = −1 if (i, j) ∈ E, b) [W̄ ]ij = deg(i) if i = j,
c) [W̄ ]ij = 0 otherwise. Here deg(i) is the degree of the node i, i.e., the
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number of neighbors of the node. Finally, define the communication matrix
(also referred to as an interaction matrix) by W := W̄ ⊗ In.

In this setting,
√
Wp = 0 if and only if p1 = · · · = pm. Using this fact, we

equivalently rewrite problem (89) as the maximization problem with linear
equality constraint

max
p1,...,pm∈S1(n)√

Wp=0

−
m∑
i=1

Wγ,µi(pi). (90)

Given that problem (90) is an optimization problem with linear con-
straints, we introduce a stacked vector of dual variables λ = [λT1 , · · · , λTm]T ∈
Rmn for the constraints

√
Wp = 0 in (90). Then, the Lagrangian dual prob-

lem for (90) is

min
λ∈Rmn

max
p1,...,pm∈S1(n)

{
m∑
i=1

〈λi, [
√
Wp]i〉 −Wγ,µi(pi)

}

= min
λ∈Rmn

m∑
i=1

W∗γ,µi([
√
Wλ]i), (91)

where [
√
Wp]i and [

√
Wλ]i denote the i-th n-dimensional block of vectors√

Wp and
√
Wλ respectively, andW∗γ,µi(·) is the Fenchel-Legendre transform

of Wγ,µi(pi).
Next, we consider a general smooth stochastic convex optimization prob-

lem which is dual to some optimization problem with linear equality con-
straints. For any finite-dimensional real vector space E, we denote by E∗

its dual. Let ‖ · ‖E denote some norm on E and ‖ · ‖E,∗ denote the norm
on E∗ which is dual to ‖ · ‖E ‖λ‖E,∗ = max‖x‖E≤1〈λ, x〉. For a linear op-
erator A : E1 → E2, we define the adjoint operator AT : E∗2 → E∗1 in
the following way 〈u,Ax〉 = 〈ATu, x〉, ∀u ∈ E∗2 , x ∈ E1. We say that
a function f : E → R has a L-Lipschitz-continuous gradient w.r.t. norm
‖ · ‖E,∗ if it is differentiable and its gradient satisfies Lipschitz condition
‖∇f(x)−∇f(y)‖E,∗ ≤ L‖x− y‖E , ∀x, y ∈ E.

Our next goal is to provide an algorithm for a primal-dual pair of prob-
lems

(P ) min
x∈Q⊆E

{f(x) : Ax = b} , (D) min
λ∈Λ

{
〈λ, b〉+ max

x∈Q

(
−f(x)− 〈ATλ, x〉

)}
.

where Q is a simple closed convex set, A : E → H is given linear operator,
b ∈ H is given, Λ = H∗. We define

ϕ(λ) := 〈λ, b〉+ max
x∈Q

(
−f(x)− 〈ATλ, x〉

)
= 〈λ, b〉+ f∗(−ATλ) (92)

and assume it to be smooth with L-Lipschitz-continuous gradient. Here
f∗ is the Fenchel-Legendre dual for f . We also assume that f∗(−ATλ) =
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EξF ∗(−ATλ, ξ), where ξ is random vector. Also, we define F (x, ξ) to be the
Fenchel-Legendre conjugate function to F ∗, i.e. it satisfies F ∗(−ATλ, ξ) =
maxx∈Q{〈−ATλ, x〉 − F (x, ξ)} and x(λ, ξ) to be the solution of this maxi-
mization problem. Under these assumptions, the dual problem (D) can be
accessed by a stochastic oracle

(Φ(x, ξ),∇Φ(λ, ξ)) = (F ∗(−ATλ, ξ),∇F ∗(−ATλ, ξ))

satisfying EξΦ(λ, ξ) = ϕ(λ), Eξ∇Φ(λ, ξ) = ∇ϕ(λ), which we use in our
algorithm. Finally, we assume that dual problem (D) has a solution λ∗ and
there exists some R > 0 such that ‖λ∗‖2 ≤ R < +∞.

We additionally assume that the variance of the stochastic approximation
∇Φ(λ, ξ) for the gradient of ϕ can be controlled and made as small as we
desire, e.g. by mini-batching. Also, since ∇Φ(λ, ξ) = b−A∇F ∗(−ATλ, ξ) =
b − Ax(λ, ξ), on each iteration, to find ∇Φ(λ, ξ) we find the vector x(λ, ξ)
and use it for the primal iterates.

Algorithm 14 Accelerated Primal-Dual Stochastic Gradient Method
(APDSGM)
Require: Number of iterations N .
1: C0 = α0 = 0, η0 = ζ0 = λ0 = 0.
2: for k = 0, . . . , N − 1 do
3: Find αk+1 as the largest root of the equation Ck+1 := Ck + αk+1 =

2Lα2
k+1. τk+1 = αk+1/Ck+1.

4: λk+1 = τk+1ζk + (1− τk+1)ηk
5: ζk+1 = ζk − αk+1∇Φ(λk+1, ξk+1).
6: ηk+1 = τk+1ζk+1 + (1− τk+1)ηk.
7: x̂k+1 = τk+1x(λk+1, ξk+1) + (1− τk+1)x̂k.
8: end for
Ensure: The points x̂k+1, ηk+1.

Theorem 3.5. Let ϕ have L-Lipschitz-continuous gradient w.r.t. 2-norm
and ‖λ∗‖2 ≤ R, where λ∗ is a solution of dual problem (D). Given desired
accuracy ε, assume that, at each iteration of Algorithm 14, the stochastic gra-
dient ∇Φ(λk, ξk) is chosen in such a way that Eξ‖∇Φ(λk, ξk)−∇ϕ(λk)‖22 ≤
εLαk
Ck

. Then, for any ε > 0 and N ≥ 0, and expectation E w.r.t. all the
randomness ξ1, . . . , ξN , the outputs ηN and x̂N generated by the Algorithm
14 satisfy

f(Ex̂N )− f∗ ≤ 32LR2

N2
+
ε

2
and ‖AEx̂N − b‖2 ≤

32LR

N2
+

ε

2R
, (93)

Next, we apply the general algorithm to solve the primal-dual pair of
problems (90)-(91) and approximate the regularized Wasserstein barycenter
which is a solution to (90).
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Lemma 3.2. The gradient of the objective function W∗γ(λ) in the dual prob-
lem (91) is λmax(W )/γ-Lipschitz-continuous w.r.t. 2-norm. If its stochastic
approximation is defined as

[∇̃W∗γ(λ)]i =

m∑
j=1

√
W ij∇̃W∗γ,µj (λ̄j), i = 1, ...,m, with

∇̃W∗γ,µj (λ̄j) =
1

M

M∑
r=1

pj(λ̄j), and [pj(λ̄j)]l =
exp(([λ̄j ]l − cl(Y j

r ))/γ)∑n
`=1 exp(([λ̄j ]` − c`(Y j

r ))/γ)
.

(94)

where M is the batch size, λ̄j := [
√
Wλ]j, j = 1, ...,m, Y j

1 , ..., Y
j
r is a sample

from the measure µj, j = 1, ...,m. Then E
Y jr ∼µj ,j=1,...,m,r=1,...,M

∇̃W∗γ(λ) =

∇W∗γ(λ) and

E
Y jr ∼µj ,j=1,...,m,r=1,...,M

‖∇̃W∗γ(λ)−∇W∗γ(λ)‖22 ≤
λmax(W )

M
, λ ∈ Rmn. (95)

Based on this lemma, we see that if, on each iteration of Algorithm 14, the
mini-batch size Mk satisfies Mk ≥ λmax(W )Ck

Lαkε
, the assumptions of Theorem

3.5 hold.
For the particular problem (91) the step 5 of Algorithm 14 can be writ-

ten block-wise [ζk+1]i = [ζk]i − αk+1
∑m

j=1

√
W ij∇̃W∗γ,µj ([

√
Wλk+1]j), i =

1, ...,m. We change the variables and denote λ̄ =
√
Wλ, η̄ =

√
Wη,

ζ̄ =
√
Wζ. Then the step 5 of Algorithm 14 becomes [ζ̄k+1]i = [ζ̄k]i −

αk+1
∑m

j=1Wij∇̃W∗γ,µj ([λ̄k+1]j), i = 1, ...,m.
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Algorithm 15 Distributed computation of Wasserstein barycenter
Require: Each agent i ∈ V is assigned its measure µi.
1: All agents set [η̄0]i = [ζ̄0]i = [λ̄0]i = 0 ∈ Rn,
C0 = α0 = 0 and N

2: For each agent i ∈ V :
3: for k = 0, . . . , N − 1 do
4: Find αk+1 as the largest root of the equation

Ck+1 := Ck + αk+1 = 2Lα2
k+1.

τk+1 = αk+1/Ck+1.
5: Set Mk+1 = max {1, λmax(W )Ck+1/(Lαk+1ε)}
6: [λ̄k+1]i = τk+1[ζ̄k]i + (1− τk+1)[η̄k]i
7: Generate Mk+1 samples {Y i

r }
Mk+1

r=1 from the measure µi and set
∇̃W∗γ,µi([λ̄k+1]i) as in (94).

8: Share ∇̃W∗γ,µi([λ̄k+1]i) with {j | (i, j) ∈ E}
9: [ζ̄k+1]i = [ζ̄k]i − αk+1

∑m
j=1Wij∇̃W∗γ,µj ([λ̄k+1]j)

10: [η̄k+1]i = τk+1[ζ̄k+1]i + (1− τk+1)[η̄k+1]i
11: [p̂k+1]i = τk+1pi([λ̄k+1]i) + (1− τk+1)[p̂k+1]i, where pi(·) is defined in

(94).
12: end for
Ensure: p̂N .

Theorem 3.6. Under the above assumptions, Algorithm 15 after
N =

√
16λmax(W )R2/(εγ) iterations returns an approximation p̂N for the

barycenter, which satisfies
m∑
i=1

Wγ,µi(E[p̂N ]i)−
m∑
i=1

Wγ,µi([p
∗]i) ≤ ε, ‖

√
WEp̂N‖2 ≤ ε/R. (96)

Moreover, the total complexity is O
(
nmaxλmax(W )R2/ε2,

√
λmax(W )R2/(εγ)

)
arithmetic operations.

3.4 Primal-dual accelerated gradient method with small-dimensional
relaxation oracle

The results of this subsection are published in [40, 41].
We consider the following minimization problem

(P1) min
x∈Q⊆E

{f(x) : Ax = b} ,

where E is a finite-dimensional real vector space, Q is a simple closed convex
set, A is given linear operator from E to some finite-dimensional real vector
space H, b ∈ H is given. The Lagrange dual problem to Problem (P1) is

(D1) max
λ∈Λ

{
−〈λ, b〉+ min

x∈Q

(
f(x) + 〈ATλ, x〉

)}
.
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Here we denote Λ = H∗. It is convenient to rewrite Problem (D1) in the
equivalent form of a minimization problem

(P2) min
λ∈Λ

{
〈λ, b〉+ max

x∈Q

(
−f(x)− 〈ATλ, x〉

)}
.

We denote
ϕ(λ) = 〈λ, b〉+ max

x∈Q

(
−f(x)− 〈ATλ, x〉

)
. (97)

Since f is convex, ϕ(λ) is a convex function and, by Danskin’s theorem, its
subgradient is equal to (see e.g. [36])

∇ϕ(λ) = b−Ax(λ) (98)

where x(λ) is some solution of the convex problem

max
x∈Q

(
−f(x)− 〈ATλ, x〉

)
. (99)

In what follows, we make the following assumptions about the dual prob-
lem (D1)

• Subgradient of the objective function ϕ(λ) satisfies Hölder condition
with constant Mν , i.e., for all λ, µ ∈ Λ and some ν ∈ [0, 1]

‖∇ϕ(λ)−∇ϕ(µ)‖∗ 6Mν‖λ− µ‖ν . (100)

• The dual problem (D1) has a solution λ∗ and there exist some R > 0
such that

‖λ∗‖2 6 R < +∞. (101)

We choose Euclidean proximal setup in the dual space, which means
that we introduce Euclidean norm ‖ · ‖2 in the space of vectors λ and choose
the prox-function d(λ) = 1

2‖λ‖
2
2. Then, we have for the Bregman distance

V [ζ](λ) = 1
2‖λ − ζ‖

2
2. Our primal-dual algorithm for Problem (P1) is listed

below as Algorithm 16.

Theorem 3.7. Let the objective ϕ in the problem (P2) have Hölder-continuous
subgradient and the solution of this problem be bounded, i.e. ‖λ∗‖2 6 R.
Then, for the sequence x̂k+1, ηk+1, k > 0, generated by Algorithm 16,

‖Ax̂k − b‖2 6
2R

Ak
+

ε

2R
, |ϕ(ηk) + f(x̂k)| 6 2R2

Ak
+
ε

2
, (102)

where Ak >
[

1+ν
1−ν

] 1−ν
1+ν k

1+3ν
1+ν ε

1−ν
1+ν

2
1+3ν
1+ν M

2
1+ν
ν

.
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Algorithm 16 PDUGDsDR
Require: starting point λ0 = 0, accuracy ε̃f , ε̃eq > 0.
1: Set k = 0, A0 = α0 = 0, η0 = ζ0 = λ0 = 0.
2: repeat
3: βk = argminβ∈[0,1] ϕ

(
ζk + β(ηk − ζk)

)
; λk = ζk + βk(ηk − ζk)

4: hk+1 = argminh>0 ϕ
(
λk − h∇ϕ(λk)

)
; ηk+1 = λk − hk+1∇ϕ(λk) // Choose

∇ϕ(λk) : 〈∇ϕ(λk), ζk − λk〉 > 0

5: Choose ak+1 from ϕ(ηk+1) = ϕ(λk) − a2k+1

2Ak+1
‖∇ϕ(λk)‖22 + εak+1

2Ak+1
// Ak+1 =

Ak + ak+1

6: ζk+1 = ζk − ak+1∇ϕ(λk)
7: Set

x̂k+1 =
1

Ak+1

k∑
i=0

ai+1x(λi) =
ak+1x(λk) +Akx̂

k

Ak+1
.

8: Set k = k + 1.
9: until |f(x̂k+1) + ϕ(ηk+1)| 6 ε̃f , ‖Ax̂k+1 − b‖2 6 ε̃eq.

Ensure: The points x̂k+1, ηk+1.

Let us make a remark on complexity. As it can be seen from Theorem
3.7, whenever Ak > 2R2/ε, the error in the objective value and equality
constraints is smaller than ε. At the same time, using the lower bound
for Ak, we obtain that the number of iterations to achieve this accuracy

is O

(M
2

1+ν
ν R2

ε
2

1+ν

) 1+ν
1+3ν

. Since the algorithm does not use the value of ν,

we can take infimum in ν ∈ [0, 1] of this complexity. This means that the
method is uniformly optimal for the class of problems with Hölder-continuous
gradient.

4 Conclusion

This thesis is based on published papers [21, 22, 24, 27, 30, 33, 34, 38, 40,
41].

In papers [21, 22, 24, 27] we developed optimization methods with (stochas-
tic) inexact first-order oracle, inexact zero-order oracle, inexact directional
derivative oracle. We also considered a particular application to learning a
parametric model for web-page ranking.

Papers [30, 33, 34, 38, 40, 41] devoted to primal-dual methods for con-
vex problems with linear constraints. In particular, we consider infinite-
dimensional problems and propose dimension-independent convergence rates
for this problem. We also consider (stochastic) convex problems with linear
constraints and propose accelerated gradient methods with optimal conver-
gence rates. We apply these methods for approximating optimal transport
distance and barycenters.
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Let us list the main results that are obtained in this thesis and submitted
for defense.

1. Stochastic intermediate gradient method for convex problems with
stochastic inexact oracle.

2. Gradient method with inexact oracle for deterministic non-convex opti-
mization and gradient-free method with inexact oracle for deterministic
convex optimization.

3. A concept of inexact oracle for the methods which use directional
derivatives, accelerated and non-accelerated inexact directional deriva-
tive method for strongly convex smooth stochastic optimization.

4. Primal-dual methods for solving infinite-dimensional games in convex-
concave and strongly convex-concave setting.

5. Non-adaptive and adaptive accelerated primal-dual gradient method
for strongly convex minimization problems with linear equality and
inequality constraints.

6. New complexity estimates for the optimal transport distance problem.

7. Stochastic primal-dual accelerated gradient method for problems with
linear constraints and its application to the problem of approximation
of Wasserstein barycenter.

8. A universal primal-dual accelerated gradient method with line-search.
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