Modular differential operators and t-deformations of modular forms

Valery Gritsenko

Laboratoire Paul Painlevé, Lille ILMSAF, NRU HSE, Moscow

Sirius Mathematics Center, Sochi, 27/02/2020

The space of all versal deformations of the 14 exceptional Arnold's singularities is one parameter extension (t-extension) of type IV domains, i.e. $S O_{0}(2, n) / K$.
K. Saito's problem (1980-th): How one can extend orthogonal modular forms onto this non-classical homogeneous domain?
V. Gritsenko (2008): A non-trivial t-deformation exists for all modular forms except one example, the Borcherds Φ_{12}.
K. Saito: how can we extend possible automorphic discriminants of these exceptional singularities onto the corresponding t-domain? (This work is in progress.)
"Blow up of Cohen-Kuznetzov operator and an automorphic problem of K. Saito". Proc. of RIMS Symposium "Automorphic Representations, Automorphic Forms, L-functions, and Related Topics', Kokyuroki 1617 (2008), pp. 83-97.

2. t-deformation of the type IV domain and Saito's problem

Let L be a quadratic lattice of signature $(2, n)(n \geq 3)$. The t-deformation of the homogeneous domain of $O(2, n)$ is

$$
\mathcal{D}_{L}^{t}=\left\{[\mathbf{w}] \in \mathbb{P}(L \otimes \mathbb{C})|(\mathbf{w}, \overline{\mathbf{w}})>|(\mathbf{w}, \mathbf{w})|=t\}^{+} .\right.
$$

Definition. A t-modular form of weight k and character χ for an arithemtic subgroup $\Gamma<O^{+}(L)$ is a holomorphic function $F:\left(\mathcal{D}_{L}^{t}\right)^{\bullet} \rightarrow \mathbb{C}$ on the affine cone $\left(\mathcal{D}_{L}^{t}\right)^{\bullet}$ over \mathcal{D}_{L}^{t} such that $F(\alpha v)=\alpha^{-k} F(v) \quad \forall \alpha \in \mathbb{C}^{*}$ and $F(g v)=\chi(g) F(v) \quad \forall g \in \Gamma$.

For $t=0$ we have the type IV domain \mathcal{D}_{L} and $O^{+}(L)$ forms.
Example: $w \in\left(\mathcal{D}_{L}^{t}\right)^{\bullet}$ is a modular form of weight -2 .
Saito's problem. To construct a t-deformation of a $O^{+}(L)$-modular form of weight k.

The tube realisation with a hyperbolic lattice $L_{1}=u^{\perp} / \mathbb{Z} u\left(u^{2}=0\right)$ $\mathcal{H}^{t}=\mathcal{H}^{t}\left(L_{1}\right)=\left\{(Z ; t) \in\left(L_{1} \otimes \mathbb{C}\right) \times \mathbb{C} \left\lvert\,(\operatorname{Im} Z, \operatorname{Im} Z)>\frac{|t|-\operatorname{Re} t}{2}\right.\right\}^{+}$
The relation with the projective model \mathcal{D}_{L}^{t} is given by the following correspondence

$$
(Z ; t) \mapsto v=\left(\begin{array}{c}
\frac{t-(Z, Z)}{2} \\
Z \\
1
\end{array}\right) \in \mathcal{D}_{L}^{t}, \quad t=(w, w) \text { if } w \in \mathcal{D}_{L}^{t} .
$$

The fractional linear action of $O^{+}(L \otimes \mathbb{R})$ on the tube domain \mathcal{H}^{t} and the automorphic factor $j(g ; Z, t)$ of this action are defined as follows

$$
g \cdot v=j(g ; Z, t)\left(\begin{array}{c}
\frac{t^{\prime}-\left(Z^{\prime}, Z^{\prime}\right)}{Z^{\prime}} \\
Z^{\prime} \\
1
\end{array}\right)=j(g ; Z, t) g\langle(Z, t)\rangle .
$$

4. t-deformation of $O\left(2, n_{0}+2\right)$-modular forms

Theorem (V. Gritsenko, 2008) For any modular form (except the Borcherds form Φ_{12}) there exists its non-trivial t-deformation.
The case of $k>\frac{n_{0}}{2}$. Let $L=2 U \oplus L_{0}(-1)$ be a lattice of signature $\left(2, n_{0}+2\right)$ where $n_{0}=\operatorname{rank} L_{0}>0, L_{1}=U \oplus L_{0}(-1)$ and

$$
F(Z)=\sum_{I \in L_{1}^{*},(I, I) \geq 0} a(I) \exp (2 \pi i(I, Z)) \in M_{k}\left(\tilde{O}^{+}(L), \chi\right) .
$$

Then
$F(Z ; t)=F(Z)+\sum_{l \in L_{1}^{*}} \sum_{\nu \geq 1} \frac{a(I)(I, I)^{\nu}\left(-\pi^{2} t^{2}\right)^{\nu}}{\left(k-\frac{n_{0}}{2}\right) \ldots\left(k-\frac{n_{0}}{2}+\nu-1\right) \nu!} \exp (2 \pi i(I, Z))$
is a t-modular form of type $M_{k}^{t}\left(\tilde{O}^{+}(L), \chi\right)$.

5. $n_{0}=-1$: t-deformation of Cohen-Kuznetsov-Zagier

Degeneration of Theorem for $n_{0}=-1$. Jacobi type forms $J_{k, m}^{t}$: $\tau \in \mathbb{H}_{1}, t \in \mathbb{C}$,

$$
\varphi\left(\frac{a \tau+b}{c \tau+d}, \frac{t}{c \tau+d}\right)=(c \tau+d)^{k} \exp \left(2 \pi i m \frac{c t^{2}}{c \tau+d}\right) \varphi(\tau, t) .
$$

Let $f(\tau) \in M_{k}\left(S L_{2}(\mathbb{Z})\right)$. Then

$$
\varphi_{f}(\tau, t)=\sum_{m=0}^{\infty} \frac{(2 \pi i)^{m}(k-1)!}{m!(k+m-1)!} f^{(m)}(\tau) t^{2 m}
$$

is a Jacobi type form of weight k and index 1 . This lifting gives the generating function for the Rankin-Cohen brackets:

$$
\varphi_{f}(\tau, t) \varphi_{g}(\tau,-i t)=\sum_{I \geq 0}[f(\tau), g(\tau)]_{2 l} t^{2 l}, \quad[f, g]_{2 l} \in M_{k_{f}+k_{g}+2 /}
$$

6. Algebra with two operators

In the ring $M_{*}\left[G_{2}\right]$ we fix two natural operators:

$$
D, G_{2} \bullet: M_{*}\left[G_{2}\right] \rightarrow M_{*}\left[G_{2}\right] .
$$

$D=\frac{1}{2 \pi i} \frac{d}{d \tau}=q \frac{d}{d q}\left(q=e^{2 \pi i \tau}\right)$ and multiplication by

$$
G_{2}(\tau)=-D(\log (\eta(\tau)))=-\frac{1}{24}+\sum_{n \geq 1} \sigma_{1}(n) q^{n}
$$

In particular, $D\left(G_{2}\right)=-2 G_{2}^{2}+\frac{5}{6} G_{4}$. We have the quasi-modular operator

$$
D_{k}=D+2 k G_{2} \bullet: M_{k} \rightarrow M_{k+2}
$$

and its iterations

$$
D_{k, n}=D_{k+2(n-1)} \circ \cdots \circ D_{k+2} \circ D_{k}: M_{k} \rightarrow M_{k+2 n}
$$

7. The main part of the n-th iteration of D_{k}

Proposition. The major quasi-modular part $E_{k, n}$ of $D_{k, n}$ is given by the following sum

$$
E_{k, n}=\sum_{\nu=0}^{n} \frac{n!\Gamma(k+n)}{\nu!(n-\nu)!\Gamma(k+\nu)}\left(2 G_{2}\right)^{n-\nu} D^{\nu}: M_{k} \rightarrow M_{k+2 n} .
$$

(We use 「-functions in the formulation in order to apply the same calculus in the case of negative or half integral weights.) Proof. Using only one relation

$$
\begin{equation*}
D\left(G_{2} \bullet\right) \equiv-2 G_{2}^{2} \bullet+G_{2} \cdot D \quad \bmod M_{*}, \tag{1}
\end{equation*}
$$

we obtain the proof

$$
D_{k+2 l}\left(E_{k, l}\right)=E_{k, l+1}+\frac{5}{3} G_{4} \cdot E_{k, l-1} \equiv E_{k, l+1} \quad \bmod M_{*}
$$

8. Automorphic correction: Gritsenko, 1996

For $m=0$ a Jacobi type form of index 0 is a formal power series over the rings of modular forms: $J_{k, 0}^{t}=M_{k+*}[[t]]$. We can define the following operator of automorphic correction (Gritsenko, 1996)

$$
\begin{gathered}
\mathrm{AC}_{m}: J_{k, m}^{t} \rightarrow J_{k, 0}^{t} \\
\mathrm{AC}_{m}: \varphi(\tau, t) \mapsto e^{-8 \pi^{2} m G_{2}(\tau) t^{2}} \varphi(\tau, t)=\sum_{n \geq 0} f_{k+n}(\tau) t^{n} \in J_{k, 0}^{t}
\end{gathered}
$$

where $f_{k+n}(\tau) \in M_{k+n}\left(S L_{2}(\mathbb{Z})\right)$. As a corollary of Proposition above we get Cohen-Kuznetsov-Zagier lifting:

$$
\begin{gathered}
M_{k} \xrightarrow{\nabla_{E}(X)} J T_{k, 0} \\
\nabla_{D}(X) \searrow \downarrow_{k, 1} .
\end{gathered}
$$

9. t-Jacobi deformation of $S L_{2}$-forms

In fact,

$$
\nabla_{E}(X)=1+\sum_{n \geq 1} \frac{E_{k, n}}{n!\Gamma(k+n)} X^{n}=e^{2 G_{2} X} \nabla_{D}(X)
$$

where

$$
\nabla_{D}(X)=\sum_{\nu \geq 0} \frac{D^{\nu}}{\nu!\Gamma(k+\nu)} X^{\nu}
$$

If $X=-4 \pi^{2} m t^{2}$, then the last series defines the CKZ-operator from $M_{k}\left(S L_{2}(Z)\right)$ to $J_{k, m}^{t}$

$$
\nabla_{D}(X)(f)=\sum_{\nu \geq 0} \frac{D^{\nu}(f)}{\nu!\Gamma(k+\nu)} X^{\nu} \in J_{k, m}^{t}
$$

The same algebraic construction works for Jacobi modular forms!

10. Jacobi forms in many variables

Let $L_{0}>0$ be a positive definite even integral lattice.
Definition. A Jacobi type form of weight k and index m with parameter $t\left(t^{2}\right.$ in the previous definition!) with respect to an even integral positive definite lattice L_{0} is a holomorphic function $\phi(\tau, \mathfrak{z} ; t)$ on $\mathbb{H}_{1} \times\left(L_{0} \otimes \mathbb{C}\right) \times \mathbb{C}$ which satisfies two equations

$$
\begin{aligned}
\phi\left(\frac{a \tau+b}{c \tau+d}, \frac{\mathfrak{z}}{c \tau+d} ;\right. & \left.\frac{t}{(c \tau+d)^{2}}\right)= \\
& (c \tau+d)^{k} \exp \left(\pi i m \frac{c(t+(\mathfrak{z}, \mathfrak{z}))}{c \tau+d}\right) \phi(\tau, \mathfrak{z} ; t)
\end{aligned}
$$

for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ and for $\forall \lambda, \mu \in L_{0}$

$$
\phi(\tau, \mathfrak{z}+\lambda \tau+\mu ; t)=\exp (-\pi i m((\lambda, \lambda) \tau+2(\lambda, \mathfrak{z}))) \phi(\tau, \mathfrak{z} ; t) .
$$

For $t=0$ one gets the Jacobi forms of the lattice index $L_{0}(m)$.

11. t-deformation with the heat operator

We put

$$
H=2 \frac{\partial}{\partial \tau} \frac{\partial}{\partial \omega}-S_{0}\left[\frac{\partial}{\partial \mathfrak{z}}\right], \quad G_{2}^{\prime}=-8 \pi^{2} m G_{2},
$$

where S_{0} is the Gram matrix of L_{0}. Then we have

$$
H_{k}=H-8 \pi^{2} m\left(2 k-n_{0}\right) G_{2} \bullet: J_{k, m}\left(L_{0}\right) \rightarrow J_{k+2, m}\left(L_{0}\right)
$$

We make the following changes in the previous algebraic structure:

$$
D \mapsto H, \quad k \mapsto k-\frac{n_{0}}{2}, \quad G_{2} \mapsto G_{2}^{\prime}=-8 \pi^{2} m G_{2}
$$

Changing the structure constants in the previous proof we get a t-deformation of Jacobi modular forms $\phi(\tau, \mathfrak{z}) \exp (2 \pi i \omega) \in J_{k, L_{0}}$:

$$
\begin{array}{cc}
J_{k, L_{0}, m} \stackrel{\nabla_{E}(X)}{\longrightarrow} & J_{k, L_{0}, m}^{t} \\
\nabla_{H}(X) & { }_{J k, L_{0}, m}^{t}
\end{array}
$$

12. Applications

1) The algebraic method works for any modular form $f(\tau)$ or Jacobi modular form of negative, zero, half-integral weight or real weight.
2) The method gives CKZ-lifting of quasi-modular forms:

$$
\nabla_{D}^{\prime}(X)\left(G_{2}\right)=1-2 \sum_{\nu \geq 1} \frac{D^{\nu-1}\left(G_{2}\right)}{\nu!(\nu-1)!} X^{\nu} \in J_{0, m}^{t}, \quad X=(2 i \pi m z)^{2}
$$

3) The t-deformation gives interesting operator constructions for Siegel modular forms of genus 2 and for $\operatorname{SU}(2,2)$ or $\operatorname{Sp}(2,2)$ forms.
4) For the case of singular weight $k=\frac{n_{0}}{2}$ we have another construction of t-deformation. It gives a strange (quasi-modular) t-deformation of Siegel theta-series. It would be interesting to interpret this deformation in terms of a " t-deformed" (?) heat equation.
