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1 Introduction

1.1 Subject of the study

Mathematical methods for multidimensional time series processing in application to real-time

electrophysiological signals analysis are widely used in the field of neuroscience. Such ap-

proaches are necessary for the experiments which include the task of instantaneous real-time

evaluation of the central nervous system (CNS) activity state. Registration of this activity is

usually carried out by using a set of sensors that are sensitive to changes in the electromagnetic

field is produced as a result of the CNS work. Examples of such acquisition techniques are elec-

troencephalography (EEG), magnetoencephalography (MEG), electrocorticography (ECoG).

In this paper, EEG signals will be considered as basic electrophysiological signals, but the

results of this work are equally applicable to MEG and ECoG data analysis. In general, ex-

periments that require an instant evaluation of the CNS state can be presented in the form

of a closed-loop system, shown in Fig. 1. Namely: (1) the activity of the participant’ CNS

is measured in real-time by several sensors, (2) multi-channel signals are processed and some

target characteristics of the CNS state are extracted, (3) these characteristics are used to form

a stimulus for the subject, or to control the program or an external device. The circuit is

closed at the moment when the subject perceives the stimulus or observes (feels) a result of the

program/device acting causally dependent on the CNS activity measurements processing.

Figure 1: Closed-loop neuroscience paradigms

In the literature, such experimental paradigms are referred to as Closed-loop neuroscience

paradigms. Examples of these closed-loop paradigms are:

1. Brain-computer interface (BCI), in which brain activity is used to directly control an
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external program or device [1]. This paradigm provides communication with completely

paralyzed patients, replaces lost motor function, and facilitates post-stroke neuro-rehabilitation.

2. Neurofeedback (NFB) is a paradigm in which the target characteristics of brain activity

are transformed into a visual, auditory, or tactile stimulus interpreted by a participant

[2]. The aim of the participant is to hold the stimulus in a certain state, for example, to

try to increase the height of the column displayed on the screen, which corresponds to

maintaining the target characteristic of brain activity in the desired range. As a result,

participants of the NFB session learn to regulate their own CNS activity. This paradigm is

used both for the correction of the psychoemotional state, for peak-performance training,

as well as for the treatment of a wide range of neurodegenerative diseases, including

epilepsy.

3. Stimulation (transcranial magnetic, direct current, alternating current) of brain activity,

depending on the current CNS state [3, 4]. In this paradigm, brain activity is monitored

in real-time and, a decision is made about the moment when the stimulation is turned on

based on the current brain state parameters estimation. Such a setting can be useful for

suppressing pathological activity or causing a certain behavioral response, which is used,

for example, to suppress tremor in patients with Parkinsonism or reduce the likelihood

of epileptic seizure.

4. Behavioral experiments with online monitoring of brain activity, when stimuli or tasks are

presented at the moments when the CNS is in a certain state [5]. This kind of paradigm

is an alternative to the extensive approach, in which stimuli are presented at random time

points, and then at the post-processing stage a researcher selects the trials that correspond

to time intervals with the desired type of activity. Using online monitoring allows for a

significant reduction of the experiment duration and simplifies results interpretation.

It should be noted that the ways of presenting feedback in these paradigms can vary

considerably - from a stimulus displayed on the screen to an electromagnetic pulse or phase

synchronization of direct electrical stimulation. However, the signal processing stage is often

similar in these paradigms and represents the main object of the thesis.

Spatial and temporal filtering are two basic operations used in the processing of a mul-

tichannel EEG signal.

Spatial filtering is the reduction of a multidimensional (multichannel) signal to a one-

dimensional time series. Such a transformation can be performed trivially, by selecting a single

"real" channel (or lead, as it is called in the EEG literature) for subsequent analysis. A more

general method involves the formation of a "virtual" channel, which is usually performed by
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linearly combining several channels into one. This operation is called linear spatial filtering.

The one-dimensional time series obtained after the spatial filtering stage will be referred to

as the virtual lead signal or virtual sensor signal. The researcher’s task is to estimate the

coefficients of the spatial filter based on the requirements of the experimental paradigm. It is

known that the human brain can be divided into areas based on functional characteristics, for

example, the visual system is located in the occipital lobe, motor control refers to the areas near

the central gyrus, the frontal cortex is responsible for a range of executive cognitive functions.

The purpose of spatial filtering is usually to isolate the activity of the specific brain region.

It should also be noted that spatial filtering allows us to switch from EEG-sensors signals to

signals from neuronal sources, thereby reducing the volume conductivity effect (projecting a

single source signal on multiple sensors), which often makes complicates the direct analysis of

sensor data directly.

The spatial filter can be obtained by solving the EEG (MEG or ECoG) inverse problem [6]

or by using the spatial decomposition of multichannel electrophysiological data [7]. Currently, a

wide range of methods for spatial filter weights estimation has been developed. These methods

are mainly used for post-processing of the acquired data. To apply these approaches online,

i.e. in real-time and directly during the experiments, it is necessary to create a platform that

would allow for a flexible configuration of methods’ parameters and the resulting spatial filters.

Spatial filtering in the context of closed-loop experiments in comparison with the direct use of

data from physical EEG leads allows us to focus on functionally specific sources of neuronal

activity, as well as to suppress artifacts and background brain activity. In the case of closed-loop

paradigms, spatial filtering can increase the spatial specificity of the feedback signal.

Temporal filtering allows us to select a specific temporal pattern of CNS activity by cal-

culating a sliding window convolution of time samples of a single lead signal. One of the most

studied components of neuronal activity are the brain rhythms [8]. The first of the discovered

brain rhythms is called alpha rhythm which is an oscillation with a central frequency of 8-12

Hz, discovered by Hans Berger in 1924. For example, the alpha rhythm localized in the oc-

cipital lobe reflects the state of the visual cortex of the brain: when the eyes are closed, visual

information is not sent to the visual cortex, the power of this rhythm increases, while when the

eyes are open, it decreases.

Another important rhythm that is widely used in brain-computer interface paradigms is

the sensorimotor rhythm (or mu rhythm), localized in the area of the central sulcus. The central

frequency of this rhythm lies in the range of 10-14 Hz and, by analogy with the occipital alpha

rhythm, this rhythm reflects the state of the sensorimotor system: in a state of rest and motor

inactivity, this rhythm increases, while performing, observing and imagining movements of a

certain limb, the amplitude of the rhythm decreases in the areas of representation of this limb
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in the sensorimotor cortex.

Rhythmic activity can be represented as a narrow-band, frequency-modulated signal, the

main characteristics of which are the instantaneous phase and amplitude of the oscillations [9].

According to modern concepts, the difference in amplitudes and the phase of brain rhythms

are fundamental parameters associated with the state of the CNS [8, 10]. For closed-loop

paradigms, the task is to estimate the instantaneous phase and/or amplitude (envelope) of a

narrow-band signal from a raw, in general, broadband signal in real-time. It should be noted

that any real-time filtering introduces a delay associated with the causal filtering process. This

delay is of a strictly fundamental nature and is a reflection of the Gabor uncertainty principle

[11] in the signal processing problems, according to which it is impossible to localize a signal in

frequency and time domains with the same accuracy. This delay should not be confused with

the technical delay, which consists of the time of data transfer between the acquisition device

and the computer, the computing time, and the time of stimulus generation by an executive

device, such as a monitor. Usually, with the use of modern software and hardware, technical

delays can be minimized and take values significantly lower in comparison with the fundamental

delay resulting from the causal time filtering.

Thus, in real-time systems, there is a delay between the occurrence of the target brain

activity and the moment when this event is reflected in the feedback signal. Several applications

within the closed-loop paradigm require achieving the lowest possible delay, which often leads

to a reduction in the quality of rhythmic activity parameters estimations. Depending on the

experimental paradigm type, this delay should either be minimized or taken into account during

the stimulus generating process to provide the required temporal specificity.

A decrease in temporal specificity leads to low efficiency of the entire paradigm. For

example, an increase in the delay between the mental motor initiation and the beginning of

the actual program cursor movement in a BCI implementation leads to a decrease in the

sense of agency [12]. In the case of the neurofeedback paradigm, analysis of the simulation

data [13] shows that the delay or random time offset of the feedback negatively affects the

learning rate. Indeed, as we will show, reducing the time delay of the NFB signal presentation

leads to an increase in the training efficiency in the neurofeedback paradigm [14]. Thus, the

developer of closed-loop systems is faced with the task of reducing the mathematical part

of the delay to the fundamentally possible minimum, while maintaining the quality of the

envelope or phase estimate. In addition to the classical approaches to this problem [9], there

are specialized methods, such as [15, 16]. However, these approaches are heuristics that are

difficult in implementation and depend on a large number of parameters with no possibility of

explicit control of the system delay parameter.
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1.2 Objectives

The suboptimality of the data processing pipeline in the closed-loop paradigm leads to a de-

crease in the efficiency of various paradigm implementations, making it difficult to apply and

limiting the potential capabilities of the paradigm. The main goal of this work is to develop

methods and software tools for processing electroencephalographic data for real-time use and

aimed at improving the efficiency of implementing closed-loop paradigms.

We should give some comments about the ways of evaluating the effectiveness of the

closed-loop paradigm implementations. The effectiveness of the NFB paradigm is generally

evaluated by the increase of the target signal during the rest state immediately after training

relative to the rest state before training. In addition, one can measure the increase in various

behavioral characteristics after the experiment. BCI efficiency can be measured by the accuracy

of recognizing the state of the subject brain, the accuracy of the subject’s performance in tasks

that require control through the BCI, as well as, for example, by questioning the participants to

estimate their sense of BCI system control. If the experimental paradigm consists of monitoring

and detecting the moments for stimulation, then the effectiveness of the implementation of the

data processing pipeline can be evaluated by the accuracy of determining the target states.

In addition, in many experiments, stimulation occurs at random points in time, and then

the post-processing stage selects stimuli presented at the target points in time. The correct

implementation of algorithms for target states online detection leads to a reduction in the

experiment duration since the number of task/stimulus presentations required for analysis is

collected faster. Reducing the experiment duration decrease the fatigue of the subject and,

as a result, improves the quality of the data obtained. Thus, as a metric of effectiveness in

such experiments, we can estimate the reduction in the experiment duration when using online

detection in comparison with the classical experiment in which the stimulus is not linked to

brain activity.

As noted earlier, the effectiveness of these paradigms implementation largely depends on

the accuracy of the method for evaluating the activity of target neuronal sources. Namely, data

processing methods should have two key properties: (1) high spatial specificity - high accuracy

of target source spatial localization and along with efficient suppression of the background brain

activity and external artifacts, (2) high temporal specificity - low delay between the change in

the activity of the target neuronal population and the moment when this change appears in

the feedback signal.

The thesis is divided into 3 related projects - software, methodological and experimental.

The software project is devoted to the development of a platform for design and conducting

closed-loop paradigms with the possibility of implementing methods that meet the properties

described above (1) and (2). The methodological project is aimed at the direct development of
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digital filters for low-latency quantification of brain rhythms in real time, corresponding to the

property (2). The task of the experimental project is to study the relationship between temporal

specificity (property (2)) and the overall efficiency of the closed-loop paradigms implementation.

These projects are united by a common topic "Mathematical methods for multidimen-

sional time series processing in application to real-time electrophysiological signals analysis"

and represent a complete study. As a result of the study software and algorithmic tools for pro-

cessing multichannel EEG signals were developed and their effectiveness was demonstrated in

the context of motor imagery BCI and NFB paradigms. Currently, all the developed tools and

algorithms are actively used in the research activities of the Center for Bioelectric Interfaces of

the Higher School of Economics.

1.3 Main ideas, results and conclusions of the dissertation

As part of the software project, the NFBLab software platform was developed for implementing

closed-loop paradigms. This software allows one to: (1) configure the data processing path,

including spatial and temporal filtering, including the possibility of individualized settings of

filter parameters for recorded functional samples, (2) flexibly form the design of the experiment,

namely a sequence of blocks indicating their types and signal processing parameters in each

of the blocks, (3) conduct the experiment in a closed-loop paradigm, providing connection,

reception, recording and processing of multichannel electrophysiological data, as well as the

generation of stimuli with the minimum possible delay in generating the feedback signal. The

platform includes a specially developed scripting language that allows us to fully describe the

parameters of the signal processing pipeline and the design of an experiment consisting of a

sequence of blocks, including the possibility of randomizing their sequence. The developed

platform includes both traditional and newly developed data processing methods. Also the

platform is used in subsequent projects as the main tool for testing the developed methods and

conducting experiments in closed-loop paradigms at the HSE Center for Bioelectric Interfaces.

The methodological project deals with development of a family of methods for the low-

latency quantification of the brain rhythms parameters in real-time. The developed approaches

make it possible to effectively estimate the envelope and phase of the narrow-band component

of a broadband electrophysiological signal. At the same time, the total delay of the processing

pipeline is an independent parameter, for every value of which the developed approaches provide

optimal accuracy of the estimation of the narrow-band process instantaneous envelope and

phase. The design of the developed filters is based on solving the optimization problem of

finding a causal complex-valued filter with a finite impulse response (FIR) that approximates a

non-causal ideal filter for evaluating an analytical narrow-band signal. In comparison with the

standard methods used in closed-loop paradigms [15], the developed methods family provides
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a lower value of the delay in the envelope and phase estimation while maintaining the accuracy

of the estimates. At the same time, the user has the opportunity to explicitly configure the

delay-accuracy ratio in the context of a specific application.

The experimental project uses the developed methodology and the software to study the

influence of the feedback signal temporal specificity on the effectiveness of the closed-loop

paradigms implementation. In particular, we tested the hypothesis about the negative impact of

feedback delay on the effectiveness of learning in the NFB paradigm. The experiment included

4 groups of subjects. Subjects from the first three groups were presented with a feedback

stimulus with a total delay of 250, 500 and 750 ms. The fourth group of subjects received

mock feedback and was used as a control group. According to the results of the experiment,

a statistically significant relationship between the efficiency of NFB training and the overall

delay of the NFB system was discovered, the smaller the delay of the NFB, the steeper the

learning curve was observed and the more expressed the sustained the training effect was.

1.4 Theoretical and practical significance

The NFBLab platform, developed as part of the software project, allows us to design and

conduct closed-loop experiments. It is based on the developed file format for signal processing

pipeline and experiment design description. The main method of spatial filtering in NFBLab

is to create spatial filters based on the decomposition of functional samples recorded during

the experiment. In comparison with standard methods based on the solution of the inverse

problem citecongedo04, this approach is more individually specific and allows us to select

areas of brain activity according to their functional behavior and does not require performing

quite time-consuming calculations associated with the evaluation of an individualized direct

electromagnetic model and requiring segmentation of the MRI (magnetic resonance imaging)

of the subject. However, NFBLab allows the user to take advantage of this generally accepted

methodology as well through an efficient interface with the MNE-Python [17] package. The

signal processing path uses the mechanism of composite signals, with the help of which it is

possible to calculate in real-time measures of the functional interaction of areas of the cerebral

cortex. In addition, much attention at the NFBLab development stage was paid to the problem

of reducing latency in the signal processing loop. The mathematical delay of the applied

methods acts as an independent parameter, whose value is set by the user when designing

the signal processing pipeline. There is an opportunity to introduce additional artificial delay

for experiments to study the effect of system latency on the effectiveness of the closed-loop

paradigm. The software platform also provides the ability to design experiments with an

almost arbitrary design, sequence, and duration of blocks, including randomizing their order

and using methods for statistical normalization of signals. The developed software is a platform
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for testing new methods of low-latency estimation of rhythm parameters developed as the part

of this thesis. This software platform is an open source project written in python [18] and is

currently being developed by a team of developers and users around the world.

The developed NFBLab platform is a unique software that allows the international com-

munity to conduct reproducible experiments within the closed-loop paradigm. Moreover, NF-

BLab provides the ability to flexibly configure the parameters of the signal processing pipeline

and create a flexible experimental design. Special attention in this software is paid to monitor-

ing the delay in the signal processing loop. As shown by the authors of this study [14] , such a

delay has a significant impact on the effectiveness of training in the neuro-feedback paradigm,

and minimizing this delay opens up previously inaccessible opportunities for forming a loop of

interaction with the human brain, operating at the speed of the brain itself.

This was made possible with the help of a family of low-latency methods developed in

this study for estimation of brain rhythmic activity parameters, which allow reducing the delay

of the feedback signal while maintaining the quality of the estimation in comparison with

classical methods. The approaches from the proposed family allow us to take into account the

nonstationarity of the brain rhythm signal, and also have the ability to adapt to an arbitrary

form of the signal spectrum. In addition, the new methods allow you to explicitly control

the delay of the signal processing pipeline, which is an independent parameter of the methods.

Thus, the proposed methods can be used as the main approaches for instantaneous estimation of

the phase or envelope of the target rhythmic activity in a wide range of closed-loop paradigms,

in which minimizing the delay is a critical requirement. The author of this thesis demonstrated

that the proposed family of methods provides a lower delay and a higher accuracy of estimating

the parameters of the brain rhythms [19] than the existing approaches [15]. Increasing the

temporal specificity allows us to significantly increase the efficiency of the implementation of

these experimental paradigms.

The project to study the effect of feedback temporal specificity on the effectiveness of

the implementation of closed-loop paradigms is the first attempt to systematically study this

phenomenon in the neuro-feedback paradigm. Previously, the effect of delayed sensory feedback

on learning effectiveness has been confirmed in a wide range of behavioral studies. For example,

back in 1948, Grice showed that the effectiveness of learning in the task of discriminating

complex visual patterns significantly depends on the delay of the feedback signal [20]. The

paper [21] shows that the behavioral correlates of learning deteriorate, with an unknown delay

in presenting the feedback. Increasing the feedback delay significantly worsens the sense of

involvement and reduces the sense of authorship while controlling external devices using the

brain-computer interface [12], which is essentially one of the implementations of the closed-loop

paradigm. However, in almost all implementations of neuro-feedback paradigms, insufficient
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attention has been paid to monitoring the value of the delay parameter when presenting a

feedback signal. This study is an attempt to develop a feedback methodology with an explicitly

controlled delay in the presentation of the feedback signal. The prerequisites for the need for

such work were obtained earlier.

A recent study, [22], examined changes in the temporal structure of the EEG caused by

NFB. The alpha rhythm of the EEG was recorded on the parietal lead P4, and the average

power of this signal was presented to the subjects through visual feedback. The task of the

subject was to increase the level of the average power of the alpha rhythm. Analysis of episodes

of high-power alpha rhythm showed that the subjects could not modulate the amplitude of

the rhythm or the duration of maintaining a state of high-amplitude alpha rhythm. Instead,

the increase in the average power of the alpha rhythm in the session was achieved solely by

increasing the specific number of episodes of entering the target state, characterized by a high

value of the instantaneous amplitude of the alpha oscillation. As a result, it was hypothesized

that to increase the efficiency of the NFB, instead of using the average power of the rhythm

over the entire time interval, episodes of entering the state of high synchronization of the alpha

rhythm should be considered as discrete events. The importance of the discrete component

in the interpretation of neuronal activity was also demonstrated in citeshin17, where the

authors showed that the number of beta-rhythm spindles per unit time (not the amplitude

or duration) determines the effectiveness of performing a motor task. In accordance with the

results obtained, it can be concluded that the beginning and end of entering the target state are

specifically significant events, the reinforcement of the reproduction of which can lead to a more

specific training in the NFB paradigm. Given that the characteristic length of alpha activity

bursts is in the range of 200-300 ms, we can suggest the importance of time specificity as one

of the factors influencing the effectiveness of the implementation of the NFB paradigm. The

software and signal processing methodology developed in this paper allowed us to conduct the

world’s first systematic study [14], which confirmed the exceptional importance of the feedback

delay on the effectiveness of training in the NFB paradigm.

1.5 The author’s contribution to the study

The author of this study is the main developer of the NFBLab [23] platform. A family of low-

latency algorithms was formulated and investigated by the author of [24]. In the experimental

study [14], the author provided methodological and technical support for the NFB system, and

also took an active part in processing the results of the experiment. The results of this work

are described in three articles published in the international Q1 (WoS core collection) journals.

In two papers the author is the first author, in the third article his contribution is equal to the

contribution of the first author.
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2 Content of the work

2.1 NFBLab - a platform for conducting closed loop experiments

This section provides a summary of the published work [24], which gives a detailed descrip-

tion of the developed NFBLab software. At the early stages of developing this software, the

main task was to support experiments in the neurofeedback paradigm, taking into account the

reproducibility and flexibility of the signal processing pipeline and the experimental design.

However, as the development progressed, this platform turned into a full-fledged software that

allows us to implement a wide range of closed-loop paradigms.

Purpose and properties of the platform To implement closed-loop paradigms in practice,

various software solutions are used that implement connection to an EEG / MEG device,

processing of the received multi-channel data in order to suppress artifacts and isolate the target

signal, followed by presenting the feedback signal via one of the human sensory modalities, or

using such a signal to control external devices. One of such solutions is the NFBLab software

developed by the authors, which is briefly described in this part of the thesis. NFBLab can

be described as a software for conducting experiments in closed-loop paradigms based on the

standard and original low-latency algorithms for processing multichannel bioelectric signals.

The key features of this software are:

• support for low-latency connection to the majority of currently common EEG / MEG

devices via a protocol based on the Lab Streaming Layer socket technology [25]; item

the presence of an internal pseudo-language that allows us to implement flexible config-

uration of the experiment script using xml-pseudo-code, which provides reproducibility

and automatic documentation of the experiments performed, and allows us to automate

the experimental procedure.

• the ability to change the experiment scenario by editing xml pseudocode or using a graph-

ical interface, as well as graphical programming interface; item the presence of an in-

terface for conducting the experiment, including an interactive module for forming a

signal processing pipeline based on the functional samples and a range of spatiotemporal

decomposition methods commonly used in the field;

• the ability to play back the completed experiment; item the ability to visualize the

extracted target signals, as well as the presence of a software interface for connecting

third-party programs to the extracted signals for presenting the feedback, controlling

external devices, and games; item the ability to flexibly configure the experimental

design as a sequence of experimental blocks, a mechanism for randomizing the sequence
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of experimental blocks and generating a mock feedback signal for conducting scientific

experiments using control groups

• availability of implemented new proprietary algorithms for low-latency estimation of the

instantaneous power of narrow-band signals [19]

• open source in Python, cross-platform interface

NFBLab Analogs The most popular projects for real-time EEG experiments that are cur-

rently being developed and supported are OpenVIBE [26] and BCI2000 [27]. The scope of these

platforms is experiments with the use of various paradigms for processing and visualizing bio-

signals in real time. Unlike OpenVIBE and BCI2000, NFBLab not only allows us to configure

target signal extraction paths of limited complexity, but also contains a module for controlling

the entire experiment and switches, repeats, and randomizes experimental blocks automatic-

ally. Also, in contrast to the listed platforms, the NFBLab project uses an individualized and

most spatially specific approach - the method of functional sample decomposition - as the main

method for designing spatial filters. Also, NFBLab has implemented methods that increase

the temporal specificity of the data processing pipeline. In addition, NFBLab is distributed as

open source software written in Python [18], which allows advanced users to implement new

protocols and signal processing modules as well as involves further development of the project

by the efforts of the global community.

Architecture NFBLab consists of three main modules. The first module “Experiment pro-

tocol editor” allows us to create an experiment scenario. The resulting design includes a descrip-

tion of the signal processing pipelines, virtual leads, target signals, as well as the parameters

for calculating the feedback signal for each of the experimental blocks and the sequence of these

blocks, including the randomization scheme and the parameters of the normalization statist-

ics. The design of the experiment is represented in the pseudocode form and is stored in an

.xml file that can be loaded for further reuse and conducting a stereotyped experiment. The

second module "Experiment module" is launched at the start of the experiment, processes and

displays raw and target signals in real time, calculated in accordance according to the signal

processing pielines described in the xml pseudocode, controls the sequence of blocks, and also

presents various kinds of stimuli. The third module, the "Data-driven filter designer", is an

interactive module for editing the properties of the signal processing pipeline and constructing

spatiotemporal filters based on the analysis of recorded data. To do so the module exploits

recorded data frequency analysis and spatial decomposition by various methods (see sections

4.1 and 6.3 in [24]).As a rule, this module is executed directly during the experiment, suspends

the work of the previous module, and serves to create individualized signal processing pipeline
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and update the xml pseudocode of the experiment. Data is received from the EEG / MEG

device using the Lab streaming layer (LSL) or FieldTripBuffer (FTB) technologies (see Section

3.1 in [24]). The recorded experimental data, including all target signals calculated based on

the signal processing paths described in the xml pseudocode, is saved to an hdf5 file (see sec-

tion 6.2 in [24]). Also, the target signals calculated in real time are sent to the LSL Outlet for

communication with external programs/devices (see Section 3.1 of the in [24]). The module

communication scheme is shown in Figure 2A. For a more detailed description of the modules,

see the article [24].

Figure 2: The communication scheme of the main modules in NFBLab (A) and the signal

processing stages (B)

Signal processing in NFBLab NFBLab implements the ability to process raw encephalo-

graphic signals in real time, calculate virtual leads, filter them in a given frequency range, and

then evaluate the instantaneous power of brain rhythms (target signals) and arbitrary func-

tions of target signals specified by a mathematical expression (composite signals). Figure 2B

schematically shows the main stages of target/composite signal extraction.

The virtual lead formed using a vector of linear combination coefficients can be trivial

and consist of all zeros except for one position in which the unit coefficient is located. In

this case, the virtual lead matches the actual real lead from the electrode with the number
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corresponding to the position of the unit coefficient of the weight vector. Calculating the linear

combination with the weights obtained from, for example, solution the inverse problem and

corresponding to a certain row of the inverse operator will give a virtual lead that reflects

activity of the corresponding cortical region. An alternative method for finding weights for

forming a virtual lead can be the use of functional samples in combination with mathematical

methods of multidimensional signal processing to isolate projections of maximum contrast or

maximum power. In any case, when calculating the virtual lead, weight coefficients are used for

spatial selection of the component by anatomical or functional feature. Often, components that

are distinguished by a functional feature also have spatial specificity. Therefore, the calculation

of the virtual lead in terms of filtering can be called spatial filtering.

More formally, spatial filtering is expressed by the following relation: 𝑦[𝑡] = w𝑇x[𝑡], where

x[𝑡] is a vector column of multichannel measurements at time 𝑡, 𝑦[𝑡] is the value of the signal

on the virtual lead at time 𝑡, w is a vector column of spatial filter coefficients, the number

of elements of which is equal to the number of recording channels. The spatial filter can be

represented as the product of two components w = Ru. The rejection matrix R is usually an

projection matrix and is used to detach from some pattern of physiological activity (for example,

to exclude eye artifacts). The column vector u acts in the opposite way to R and serves to

highlight the required activity, forming a virtual lead signal. A range of spatial decomposition

methods is used to find the rejection matrices and spatial filters in NFBLab:

1. The ICA (Independent Component Analysis) method is used to decompose the signal

into independent components and to isolate and remove various kinds of artifacts [28].

2. The CSP (Common Spatial Pattern) method allows us to select components with the

maximum signal power ratio for two windows (for example, the first window may corres-

pond to the first half of the recording, in which the subjects eyes are closed, the second -

with open eyes). The key part of the algorithm is the solution of the generalized eigenvalue

problem [29].

3. In the SSD (Spacio-Spectral Decomposition) method, the decomposition also obtained by

solving a generalized eigenvalue problem. This method allows us to isolate components

with the maximum signal power ratio for two different frequency bands (the central band

and two flankers), which allows us to isolate narrow-band oscillator components [30]

As a rule, the researcher is interested in tracking the dynamics of brain’s rhythmic activity,

which is reflected in the EEG in the form of a narrow-band random process. Brain rhythms have

characteristic frequencies and the next element of the signal processing pipeline is the digital

frequency filter, whose coefficients are calculated based on the user-specified frequency band and
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the filter order. The rhythmic activity of the brain is non-stationary, and can be characterized as

a sequence of bursts [31]. The instantaneous power of such activity is described by the envelope

of a narrow-band process, calculated, for example, using the Hilbert transform. Thus, the next

element of the signal processing path is the estimation of the signal envelope. In addition to

the classical approaches, NFBLab implements a new method for estimating the envelope of a

narrow-band process, published in [19] and described in the next section of this document. The

new envelope estimation method reduces the latency of the feedback signal presentation while

maintaining the envelope estimation accuracy. As a result of the described actions, the target

signal is obtained, which is a sequence of values that reflects the instantaneous signal power in

the virtual lead in a given frequency band.

Such signals will be called Derived signals and is supported by a certain structure in the

XML file. The properties of the signal filters used can be determined in the Experiment Design

module before the experiment starts, or they can be changed based on the recorded functional

samples in the interactive module “Data-driven filter designer” during the experiment. In

addition, for advanced users, it is possible to easily edit the text of the XML file.

Often, the feedback signal is formed as the ratio of narrow-band components power of a

pair of real or virtual leads. NFBLab implements the Composite signal class, which is defined

as an arbitrary mathematical function of two target signals. The type of function is set by

the experimenter. For example, to build a training protocol that determines the ratio of the

frontal beta rhythm to the occipital alpha rhythm, you need to create two Derived signals

corresponding to the frontal beta rhythm and the occipital alpha rhythm, and then create a

Composite signal that combines two Derived signals using the division function. In addition

to calculating an arbitrary mathematical functions, the mechanism of composite signals allows

us to calculate in real time estimates of the functional relationship of the cerebral cortex areas

corresponding to a pair of virtual leads.

The experiment scenario usually consists of several blocks. In accordance with the NFBLab

ideology, the signal and stimulus settings remain unchanged throughout the block. At the end

of each block, the recorded data is added to the HDF5 file with the results and, as a rule,

one or more events from the following list are triggered and processed: updating the z-score

statistics of the signal ( using mean and standard deviation or maximum and minimum value),

which are then used to standardize or normalize the feedback signal; launching an interactive

Data-driven filter designer to change or create filters for target signals based on previously

recorded functional samples; pausing the experiment by sending an audio signal signaling the

end of the block.

The experiment blocks differ in the type of visualization. This section describes the main

blocks - Baseline and Feedback. The Baseline block consists of presenting a text message with

18



instructions for the subject. Such blocks are usually needed to record the states of the subject,

for example, to record the background state, the state with closed eyes, motor states, as well

as to collect data used further by the filter design module or to update the z-score statistics

of target signals. In the Feedback block, the NFB stimulus is visualized and presented. In

addition to presenting a real NFB signal, this block has the ability to generate a mock signal

from previously recorded data during the current experiment or from other experiments. The

main use of this feature is to conduct experiments in the control group. If necessary, the

visualization types can be extended using the LSL interface to connect external visualization

programs to the extracted target signals in real time. At the same time, however, it is necessary

to take into account the additional delay of the order of tens milliseconds introduced by the

LSL interface.

The experiment scenario is formed from a set of customized blocks in the form of a sequence

(see the example in Figure 7 in [24]). A subset of blocks (or all blocks) can be added to Blocks

group, within which it is possible to repeat and shuffle blocks. At the end of each block, it is

possible to implement one or more of the events described in the previous section. Examples

of experiments and XML scripts can be found in section 8 in [24].

Experiment protocol The experiment scenario usually consists of several blocks. In accord-

ance with the NFBLab ideology, the signal and stimulus settings remain unchanged throughout

the block. At the end of each block, the recorded data is added to the HDF5 experiment results

file, as a rule, one or more events from the list are triggered and processed: updating the z-score

statistics of the signal (mean and standard deviation or maximum and minimum value), which

are then used to standardize or normalize the feedback signal; launching an interactive module

for data-driven filter design to change or create filters for target signals based on previously

recorded functional samples; pausing the experiment by sending an audio signal signaling the

end of the block.

The blocks of the experiment differ in the type of visualization. This section describes

the main types of blocks - Baseline and Feedback. The Baseline block consists of presenting a

text message with instructions for the subject. Such blocks are usually needed to record the

subject states, for example, to record the background rest state, the state with eyes closed,

motor states, as well as to collect data used further by the filter setup module or to update the

z-score statistics of target signals. In the Feedback block, the NFB stimulus is visualized and

presented. In addition to presenting a real NFB signal, this block has the ability to generate

a mock signal from previously recorded data during the current experiment or from other

experiments. The main use of this feature is to conduct experiments in the control group. If

necessary, the visualization types can be extended using the LSL interface to connect external
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visualization programs to the extracted target signals in real-time. At the same time, however,

it is necessary to take into account the additional delay of the order of tens of milliseconds

introduced by the LSL interface.

The experiment scenario is formed from a set of configured blocks in the form of a sequence

(see the example in Figure 7 in [24]). A subset of blocks (or all blocks) can be added to the

Blocks group, within which it is possible to repeat and shuffle blocks. At the end of each of the

blocks, it is possible to implement one or more of the events described in the previous section.

Examples of experiments and XML scripts can be found in section 8 in [24].

2.2 Digital filters for low-latency quantification of brain rhythms in

real time

Problem statement An important characteristic of real-time signal processing methods is

the temporal resolution and the delay of the processing pipeline. As described in the intro-

duction, low temporal specificity can be the reason for the low efficiency of the closed-loop

paradigms implementation and low efficiency of neurofeedback therapy in particular. The

present work is aimed at solving the problem of temporal specificity. Modern software solu-

tions that implement a feedback loop and are used both in the clinic (BrainMaster, NeuroRT

Training, Cygnet, etc.) and for research (OpenVibe, BCI2000) allow us to evaluate the power

of oscillatory brain activities with a delay exceeding 500 ms. This delay is measured from the

moment the EEG data is received to the moment the signal is transmitted to the NFB stimulus

visualization module. An additional delay of about 100 ms occurs due to technical reasons,

namely, due to the process of transmission between the EEG-device and PC and due to the time

spent on generating a stimulus with an executive device, such as a monitor. Thus, the total

latency of the operating system usually exceeds 600 ms. Due to the presence of such a delay,

stimulation in closed-loop paradigms can occur at times when the target activity pattern has

already passed. For example, such a pattern of activity as a short burst in the alpha range (8-14

Hz) lasts about 200-300 ms. To detect this type of activity, it is necessary to reduce the delay

of the closed-loop system to at least 100-200 ms. This research, conducted as the part of the

thesis, is devoted to the development of methods for estimating the instantaneous amplitude

and phase of narrow-band signals from real-time recorded EEG/MEG. Detailed results of the

work are published in [19] and are given in the appendix ??.

From the viewpoint of the computer that receives and processes the EEG, the signal coming

from the electroencephalograph is a multi-channel time series with a given sampling frequency,

for example, equal to 𝑓𝑠 = 500 Hz. The first stage of EEG processing is the conversion of a

multichannel signal to a single-channel form by spatial filtering. Without limiting generality,
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we will assume that the input to the developed algorithm receives a single-channel signal 𝑥[𝑛].

Next, a single-channel signal 𝑥[𝑛] can be represented as the sum of two signals:

𝑥[𝑛] = 𝑠[𝑛] + 𝜂[𝑛]

, where 𝑠[𝑛] is the target narrow-band signal whose power and phase need to be estimated,

and 𝜂[𝑛] is the broadband noise whose influence on the estimate of the power of interest needs to

be minimized. In such a model, it is assumed that all irrelevant narrow-band sources are filtered

out in advance with negligible signal distortion in the target frequency range. For example,

noise sources of 50Hz or 60Hz associated with interference from the electrical network can be

filtered out by notch or comb filters without significant signal distortion in the spectral range

of interest, for example, alpha rhythm. Irrelevant neuronal sources, muscle-related sources, and

general background EEG noise with a spectrum of the 1/𝑓 -shape form the noise broadband

component 𝜂[𝑛] of the signal x[n].

Further, 𝑠[𝑛] can be transformed into a complex-valued analytical signal using the Hilbert

transform. The resulting signal 𝑦[𝑛] is represented as:

𝑦[𝑛] = 𝑎[𝑛]𝑒𝑗𝜑[𝑛]

where 𝑎[𝑛] is the instantaneous signal amplitude (the square root of the instantaneous

power), 𝜑[𝑛] is the instantaneous phase, and 𝑗 is the imaginary unit. The estimate of 𝑎[𝑛] and

𝜑[𝑛] for known values of 𝑦[𝑛] is obtained by calculating the absolute value and angle of the

complex number 𝑦[𝑛], namely:

𝑎[𝑛] = (𝑅𝑒(𝑦[𝑛])2 + 𝐼𝑚(𝑦[𝑛])2)
1
2

𝜑[𝑛] = 𝑎𝑟𝑐𝑡𝑔(𝑦[𝑛]/𝑥[𝑛])

, 𝑅𝑒(𝑦[𝑛]) - the real part of 𝑦[𝑛], 𝐼𝑚(𝑦[𝑛]) - the imaginary part of 𝑦[𝑛].

It should be noted that the operations of calculating the absolute value and argument

of the analytical signal do not introduce an additional fundamental delay in the processing

pipeline, since they are calculated for each moment of time using the signal values only at

current moment of time. However, calculating the Hilbert transform at the point 𝑛‘ ideally

requires an infinite window centered around the point 𝑛‘ on the time axis. Using the classical

approximation of filters with infinite impulse response, it is possible to present the calculation

of the Hilbert transform as a convolution of the signal and the finite impulse response of

the Hilbert filter. However, such an approximation involves non-causal processing, requiring

knowledge of the input values of 𝑠[𝑛] for 𝑛 both from the past with respect to the current time

value (𝑛 < 𝑛‘) and values from the future (𝑛 > 𝑛‘) to evaluate the transformed signal at time
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𝑛‘. This transform cannot be performed in real-time. However, the use of such an algorithm

for a known complete EEG record allows us to extract the envelope 𝑎[𝑛] and the phase 𝜑[𝑛],

which will be called the ideal envelope and the ideal phase, with the exception of the values at

the edges of the corresponding record.

Thus, the problem of this section is formulated as the construction of a causal algorithm

that estimates the amplitude 𝑎[𝑛] and the phase 𝜑[𝑛] in real-time on a single-channel signal

𝑥[𝑛]. In this case, one of the parameters of the developed method should be the explicitly

specified method delay 𝐷. The best method is the one that allows, with a decrease in the

parameter 𝐷, to evaluate 𝑎[𝑛] and 𝜑[𝑛] in real-time with the best possible quality, which will

be defined below.

Existing methods The classical method (hereinafter referred to as rect) for estimating the

instantaneous power is a method based on the amplitude demodulation of the signal and is

similar to the principle of the simplest radio receiver working, which detects the amplitude

modulated signal [9]. This method involves three consecutive steps: narrow-band filtering in

a given range,”rectification" of the narrow-band signal (calculating the absolute value), and

smoothing the signal with a low-pass filter (LPF). The output of this algorithm is an estimate

of the instantaneous amplitude 𝑎[𝑛]. The delay of this algorithm consists of the delays of the

narrow-band filter and the low-pass filter. In the case when symmetric filters with a finite

impulse response (FIR) are used as filters, this delay is half the sum of the filter response

lengths. In this paper, filters with symmetric FIR are used as filters. The length 𝑁1 of the

narrow-band filter response and the delay value 𝐷 are used as parameters. Accordingly, the

length 𝑁2 of the low-pass filter response can be determined from the values of the desired total

delay 𝐷 and length 𝑁1 of the first filter FIR as:

𝑁2 = 2𝐷 −𝑁1

The second method (hereinafter referred to as hilb) is based on the Hilbert window trans-

formation. In this case, the signal is processed locally using the sliding window method of

length 𝑁3. The last sample inside the window corresponds to the last received sample of 𝑥[𝑛].

For each new window, the recorded signal is filtered in the narrow-band range with zero phase,

then the narrow-band signal is replaced by its analytical form using the Hilbert transform. The

absolute value of the analytical signal at a point that is 𝐷 samples before from the window end

is an estimate of the instantaneous amplitude with a delay of 𝐷 samples. Thus, the parameters

of the method are the values 𝐷 and 𝑁3. It should be noted that this method is affected by

transients at the window boundaries.

There are also several modifications of the method described above, which are actively used

22



in closed-loop paradigms when there is a need for accurate real-time phase estimation [32, 33].

One of these methods proposed in [15] is the method based on autoregressive correction of

boundary effects. This method, hereinafter referred to as ffiltar, is designed to estimate the

phase with zero delay 𝐷 = 0. In this paper, the estimation of the envelope at time 𝐷 = 0 was

also used for comparison. Methods similar to the ffiltar method are also currently appearing,

but using more complex predictive models. Examples of such methods are [16, 34].

Developed methods family The proposed new algorithm for estimating the parameters

of the brain rhythmic activity of the brain is based on the following idea. Let 𝑓𝑠 denote the

sampling rate of the recording device. The transition from the broadband signal 𝑥[𝑛] to the

analytical narrow-band signal 𝑦[𝑛] with an additional delay of 𝐷 samples is represented as a

linear stationary system with a complex-valued frequency impolse response (cFIR). The cFIR

is determined in the interval from −𝜋 to 𝜋, such that for the frequencies 𝜔 from range 2𝜋𝑓1/𝑓𝑠

to 2𝜋𝑓2/𝑓𝑠 it takes values equal to 𝑒−𝑗𝜔𝐷 and is equal to 0 outside this range, including for the

negative frequency range from −2𝜋𝑓2/𝑓𝑠 to −2𝜋𝑓1/𝑓𝑠. The frequencies 𝑓1 and 𝑓2 are measured

in Hertz (Hz) and determine the width of the narrow-band signal spectrum. This system will

be referred to as the ideal detector of a narrow-band analytical signal with a delay of D.

This system can be approximated by a causal system with the FIR. For this purpose, it

is possible to use the criterion of the minimum sum of squares of the difference between the

frequency response of an ideal narrow-band analytical signal detecor with a delay of 𝐷 and

its causal FIR approximation. The solution of the optimization problem leads to the following

statement: the FIR of the approximating system 𝑏[𝑛] is obtained from the ideal frequency

response using the inverse discrete Fourier transform. The parameters of the method are 𝑁𝑡

- the length of the FIR and 𝑁𝑓 - the number of discrete frequencies in the Fourier transform.

If 𝑁𝑓 > 𝑁𝑡 then 𝑥[𝑛] is padded with zeros. For nonnegative delays 𝐷 , such a solution, with

proper formulation of the hilb method, coincides with the proposed method. Negative delays

make it possible to predict the signal into the future by |𝐷| samples. As a result, the evaluation

of the analytical signal is obtained by convolution 𝑦[𝑛] = 𝑏[𝑛] * 𝑥[𝑛]. The absolute value and

angle of the resulting complex-valued signal is an estimate of the instantaneous amplitude and

phase of the desired narrow-band signal. The resulting envelope (amplitude) and phase detector

is denoted as cfir.

Further, various modifications of the optimization problem can be proposed that increase

the accuracy of the designed narrow-band envelope and phase detector. For example, it is

possible to take into account the spectral features of the individual signal of the subject. Adding

the amplitude spectrum of the signal to the optimization problem as weights allows us to

formulate the objective function in accordance with the criterion of the weighted sum of least
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squares and obtain an individual filter for each subject. This method is designated as the

wcfir method. It is also possible to search for filter coefficients using an optimization problem

formulated in the time domain, which makes it possible to take into account the non-stationarity

of the signal of neuronal activity and use adaptive approaches based on the recursive least

squares (RLS) method. A method with time domain optimization is denoted as tcfir. It should

be noted that the wcfir and tcfir methods require pre-recording a small EEG/MEG segment

to determine the signal spectrum and adjust the filter parameters. The length of the pre-

recording depends on the brain rhythm used. The minimum length is the segment necessary to

accurately determine the central frequency of the rhythm and containing a sufficient number

of bursts of rhythmic activity. For example, based on practice, one or two minutes of recording

is enough to determine the individualized central frequency of the alpha rhythm. A detailed

description of the developed algorithms is given in [19] and in the appendix ??.

Method comparison To check the quality of the developed algorithms and compare them

with existing approaches, the following metrics were used. To assess the quality of the envelope

estimatation for the delay 𝐷, the correlation coefficient was used to compare the estimate ˆ𝑎[𝑛]

and the ideal envelope 𝑎[𝑛] shifted by 𝐷 samples.

𝑟𝑎 =

∑︀
𝑛∈𝒩𝑎

(𝑎[𝑛−𝐷]−𝑚𝑎)(�̂�[𝑛]−𝑚�̂�)√︂ ∑︀
𝑛∈𝒩𝑎

(𝑎[𝑛−𝐷]−𝑚𝑎)2
√︂ ∑︀

𝑛∈𝒩𝑎

(�̂�[𝑛]−𝑚�̂�)2
(1)

Similarly, to verify the quality of phase reconstruction, the bias 𝑏𝜑 and the standard devi-

ation 𝜎𝜑 of the phase estimate 𝜑[𝑛] were calculated relative to the ideal phase at time points

𝒩𝜑 = {𝑛 : 𝑛 ∈ 𝒩𝑎, 𝑠𝑖𝑔𝑛(𝜑[𝑛]) > 𝑠𝑖𝑔𝑛(𝜑[𝑛 − 1])} when 𝜑[𝑛] crossed the value 0 (zero phase

detection):

𝑏𝜑 =
1

|𝒩𝜑|
∑︁

𝑛∈𝒩𝜑

𝜑[𝑛−𝐷] (2)

𝜎𝜑 =

⎯⎸⎸⎷ 1

|𝒩𝜑| − 1

∑︁
𝑛∈𝒩𝜑

(𝜑[𝑛−𝐷]− 𝑏𝜑)2 (3)

As the signals on which the algorithm was tested, a sample of EEG recordings was used.

Namely 2 minutes of rest state with open eyes for 10 subjects. The recording was carried

out on 32 channels EEG system of the standard 10-20 montage scheme with referents A1-A2.

Sampling frequency of 500 Hz was used. Measurement was recorded by an electroencephalo-

graph Neurovisor 136 (OOO “Medical Computer Systems”). Only the P4 channel was used for

the analysis. The idial envelope and phase were estimated as the envelope and phase of the

filtered rhythm in the range of 8-12 Hz.
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The quality of the algorithm was evaluated separately for each record, as well as separately

for each delay 𝐷 from a set of values from -100 to 250 ms in increments of 50 ms. Each recording

was divided into two parts of 2 minutes. For each algorithm the first half of the record was

used to search the parameters, at which the maximum metrics values are reached. For the

found optimal parameters, the metrics value was calculated in the second half of the record.

The last value was used as an the quality estimation of the algorithms. This approach allows

us to guarantee for each of the methods that the optimal parameters are selected among the

possible parameters, while it evaluates the quality on an independent test set of data. Table 1

of the appendix ?? shows a grid of parameter values used for optimization.

In the figure 3 the results of the algorithms quality evaluation are presented. For each

value of the delay, a 95% confidence interval is specified, calculated by the bootstrap method

with 1000 iterations according to the statistic "average value for a sample of EEG records".

As expected, the accuracy of the envelope estimation (fig 3A) improves when the delay

parameter 𝐷 is increased. The rect method demonstrates the most rapidly decreasing quality

of the envelope estimation with a decrease in the delay parameter. For delays of less than 150

ms, this method becomes difficult to use due to the poor quality of the envelope estimation.

The family of methods developed in this paper allows us to better preserve quality with reduced

latency, while the wcfir method shows the best result at each point. The envelope estimation

for the ffiltar method is only available for zero delay. The quality of the envelope at this

point is comparable to proposed complex-valued filters. However, it should be noted that this

method requires calculating the parameters of the AR model at each step and setting additional

parameters, the optimal values of which may change throughout the experiment. Thus, this

method is more time-consuming to use, more expensive in terms of the number of calculations,

depends on a large number of parameters and does not allow you to adjust the delay parameter,

which significantly complicates the use of this approach in closed-loop paradigms that require

a quick quantification of the brain rhythmic activity parameters.

The phase estimation accuracy metrics are shown in panels B, C, and D. For non-negative

delays, the bias 𝑏𝜑 and the absolute bias value behave similarly for all methods and do not

exceed 5. As for the standard deviation of the phase, complex-valued filters show a better

value of this metric compared to the ffiltar method.

The effect of the signal-to-noise ratio (SNR) on the accuracy of the envelope and phase

reconstruction was also analyzed (Fig. 4 in [19]). A detailed description of the results can be

found in [19] and in the appendix ??. Here we only note that the estimation quality improves

with the growth of SNR for all methods. At the same time, the new developed methods

demonstrate better robustness to noise.

In addition, the applicability analysis of the developed approaches in discrete paradigms
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Figure 3: Envelope and phase estimation quality metrics for different methods and at different

delays

was performed. The start of brain activity stimulation (for example, using transcranial magnetic

stimulation) is tied to the moments when a certain envelope threshold is exceeded (Fig. 5 in

[19]), for example, 95% percentile. The analysis showed that for zero delay, the developed

methods allow to achieve 75% accuracy of detection of such moments.

2.3 Short-delay neurofeedback facilitates training of the parietal al-

pha rhythm

This part of the thesis describes an experiment in which participants were trained in the NFB

paradigm. The NFB paradigm was implemented using the software platform described in the

first part of the thesis (see section refnfblab), and the signal processing methods developed
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within the second thesis project described in section 2.2. The aim of the experiment was to test

the hypothesis about the effect of the NFB system delay on the effectiveness of participants

training to control target brain activity. A detailed description of the experiment and the

results obtained is described in [14] and in the appendix ??.

EEG recordings were made using an electroencephalograph Neurovisor 136 (LLC "MCS")

with a sampling frequency of 500 Hz, a reference A1-A2 and an AFz ground electrode. The

alpha-rhythm envelope on the P4 channel was used as a feedback signal. The envelope was

estimated using the cfire method described in the appendix ??. The protocol of the experiment

consisted of the following parts:

1. Pre-recording of functional samples and configuring the NFB signal using an interactive

module individual data-driven filter design. For this purpose, the blocks Close – a rest

state with closed eyes lasting 1 minute and Open – a rest state with open eyes lasting 1

minute were recorded. Based on the recorded data, a spatial rejection filter was formed

that removes oculomotor artifacts, and the individual frequency range of the alpha rhythm

of the subject was selected.

2. Recording of the rest state before the training in the NFB paradigm with a duration of

2 minutes

3. Recording of the NFB session – 15 blocks of 2 minutes with breaks of 15 seconds. The

window displayed a reinforcing stimulus in the form of a circle, the roughness of the

border of which was regulated by the NFB signal. The subject task was to make the

boundary of the circle as smooth as possible, which corresponds to the maximum value

of the target signal, which reinforces the state with a high average power of the parietal

alpha oscillation.

4. Recording of the resting state after the training in the NFB paradigm with a duration of

2 minutes

The participants were divided into 4 groups. In the first group (FB0), the extracted

NFB signal was visualized without additional delays. In group 2 (FB 250) and 3 (FB500), an

additional delay of 250ms and 500ms was introduced, respectively. Groups 2 and 3 correspond

to the delay of standard NFB systems, while group 1 corresponds to the low-latency NFB

system developed within the project. Group 4 (FBMock) was a control group that used a mock

feedback signal generated from the recording files of groups 1-3.

The participants of the experiment were trained to control the power of the parietal alpha

rhythm. The average power of the reinforced signal, depending on the NFB session block

number, is shown in Figure 4. As can be seen from the figure, an increase in the reinforced
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feedback signal was observed in each of the groups. At the same time, the learning rate in the

FB0 group was the highest.

Figure 4: Average power of the reinforced signal depending on the NFB session block number

In addition, detailed analysis of changes in characteristics of the alpha-rhythm was per-

formed. Such characteristics are the number of bursts per unit time, the length and amplitude

of alpha-bursts. It was demonstrated that along with the increase in the power of the rhythm

in the groups with real feedback, the number of bursts per unit time increases compared to the

control group. The amplitude and length of the bursts remained unchanged. The increase in

the number of bursts in the F0 group was statistically significantly higher than that recorded

in the FB500 group.

We also analyzed the effect of NFB training on the activity of the alpha-rhythm at rest

state before and after training. For this purpose, the relative increase in power, as well as the

number, duration, and amplitude of bursts at rest after the NFB session, compared to the same

subject’ state before the session, was estimated. This comparison showed that in the group

with minimal delay, there was a significant increase in the power and number of bursts of the

reinforced alpha rhythm. In addition, it was shown that the increase in the number of bursts

of rhythmic activity after the experiment is inversely proportional to the delay with which the

feedback was presented (Fig. The full description of the experimental paradigm and the results

are presented in the article [14].
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Figure 5: The dependence of the gain (OY axis) of the magnitude (A) of the alpha rhythm, as

well as the number (B), amplitude (C), and length (D) of the bursts with the total delay of the

NFB system (OX axis)

3 Conclusion

Closed-loop paradigms are an important tool for studying the central nervous system, allow-

ing you to change the experimental parameters, depending on the current state of neuronal

activity. A distinctive feature of such paradigms is the need to use electrophysiological signal

processing techniques that operate in real-time. At the same time, the developer of systems

that implement one of the closed-loop paradigms is tasked with creating a signal processing

pipeline that provides accurate extraction of target signals.

As follows from the experimental project of the thesis, the delay parameter of the NFB

system has a critical effect on the NFB training efficiency. The development and application

of new low-latency methods, thus, can improve the efficiency of the NFB. Within the frame-

work of the methodological project, a family of methods for low-latency quantification of brain
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rhythms phase and envelope was proposed. The developed methods combine simplicity and

high-performance characteristics compared to the approaches currently used. The low-latency

estimation of the parameters of the brain rhythmic activity, achieved using these methods,

opens up new opportunities for interaction with the brain within the closed-loop paradigms, in

which an artificially formed feedback loop runs at a speed comparable to the processes occur-

ring in the central nervous system. Such a scenario will allow us to launch implicit mechanisms

of brain plasticity, both aimed at normalizing its work, and allowing us to develop a new gen-

eration of devices for interacting with the brain. For example, in devices that implement the

augmented intelligence paradigm, information can be presented at times corresponding to cer-

tain states of the brain, which guarantees more efficient processing, better memorization, and

receptivity to exteroceptive information.

Also, for the design of highly effective closed-loop paradigms, qualitatively new software

is required, compared to that used for conducting in the standard paradigm, which implies a

stereotypical repetition of the stimulus material, independent of the subject neuronal activity.

Such software, on the one hand, should be sufficiently flexible and allow for easy changes in

experimental paradigms, and on the other hand, it should have the necessary functionality that

implements the main components of EEG/MEG signal processing.

An example of such software is the NFBLab platform developed within the framework

of the thesis, which allows us to design and conduct experiments in a closed-loop paradigm.

The platform, on the one hand, contains a number of necessary components that allow you to

minimize the care about the details of receiving and processing EEG data. On the other hand,

the software is distributed with open source and users interested in implementing specific signal

processing techniques have the opportunity to independently implement them in accordance

with the required NFBLab interface. We hope that the low-latency methods developed in

this paper and the NFBLab platform, with its broad compatibility and flexibility in setting

experimental parameters, can become the basis for closed-loop paradigms.

3.1 List of results submitted to the defense

We will list the main results obtained, which are achieved in this thesis and are submitted for

defense:

1. The NFBLab software platform has been developed for implementing a wide range of ex-

periments in the closed-loop paradigm. The NFBLab [24] software allows us to: configure

the data processing pipeline, set the design of the experiment, conduct the experiment in a

closed-loop paradigm, providing connection, acquisition, recording and processing of mul-

tichannel electrophysiological data, as well as generating stimuli. The platform includes
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both classical and newly developed methods of data processing and estimation of brain

rhythms parameters. The program was tested in real experiments with BCI and NFB

paradigms. This result has practical significance in the research of closed-loop paradigms

and is constantly used in the projects of the HSE Center for Bioelectric Interfaces. A

detailed description of NFBLab can be found in [24], the software code is available in the

[18] project repository.

2. A family of low-latency methods for estimating the instantaneous amplitude and phase

of rhythmic brain activity in real time has been developed. This family is based on the

approximation of a non-causal ideal system for evaluating a narrow-band analytical signal

using a causal complex-valued filter with a finite impulse response. Three filters from

the proposed family are investigated: (1) a method with optimization in the frequency

domain, (2) in the frequency domain with the use of individualized spectral weights, (3)

in the time domain, including the possibility of using adaptive algorithms based on the

principle of recursive least squares (RLS). The family of methods allows us to estimate

the parameters of rhythms with minimal delay while maintaining the maximum quality

of estimates. In comparison with the currently available methods, the developed family

allows us to reduce the delay of the envelope and phase estimation while maintaining the

quality of the estimation. The paper is published in [19].

3. An experimental study of the visual feedback delay on the effectiveness of learning in

the NFB paradigm was conducted. As a result, a significant effect of the delay in the

presentation of the feedback signal was revealed both on the learning rate in the neuro-

feedback paradigm and on the increase in the number of bursts of rhythmic activity

observed in post-experimental data. A significant negative correlation was found between

the delay value and the increase in the number of alpha bursts. The work is published in

[14].

In general, the conducted research represents a complete cycle of works that form the

instrumental and phenomenological basis of a new direction of low-latency neurofeedback. The

results clearly demonstrate the importance of taking into account the delay in the presentation

of the feedback signal, as one of the key factors affecting the intensity of plastic changes and

determining the effectiveness of interaction with the brain. The developed new algorithmic

solutions provide access to the area of low delays in the formation of a feedback loop based on

the brain rhytms parameters, which for the first time opens up the possibility of direct non-

invasive interaction with the brain at the natural speed of neuronal processes. The developed

software platform is an ergonomic tool for prototyping high-performance implementations of

closed-loop paradigms and can be applied in both research and clinical applications.
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3.2 Further research

The developed family of methods described in the section refcfir assumes that the spectrum of

the noise component in the frequency range of a narrow-band signal has a negligible amplitude.

However, in real problems with a large signal-to-noise ratio, such an assumption may give

an inaccurate result of estimating the envelope and phase. Thus, it is necessary to develop

approaches that are able to separate the noise and the useful signal in the target frequency

band. One possible solution to this problem is to take into account the dynamic characteristics

of brain rhythms and apply appropriate models of target oscillatory activity. For example, a

dynamic model of an oscillator in discrete time can be used at the prediction step of Kalman

and Bayesian filters. The oscillatory time series obtained in this way will allow us to reconstruct

the directly unobservable target signal, its envelope, and phase. In the near future, it is planned

to conduct a systematic study of these methods in application to the problem of low-latency

filtering. Preliminary results, which are not included in this thesis, demonstrate an increase in

the performance characteristics of ideomotor interfaces constructed using the brain rhythmic

activity, evaluated using explicit dynamic filtering based on the rhythm model as a frequency-

modulated signal.

The developed algorithms, together with the NFBLab platform, are an ergonomic envir-

onment for conducting reproducible experiments on the study of closed-loop paradigms with

low latency. At the moment, together with colleagues from the Center for Bioelectric Interfaces

of the Higher School of Economics, further experimental studies of low-latency NFB are being

conducted . In addition, it is planned to conduct a number of clinical studies, including on

a population of patients with pharmacoresistant epilepsy, in order to develop a tool for redu-

cing the frequency of epileptic seizures using high-performance training in the neuro-feedback

paradigm, aimed at increasing the average power of the sensorimotor rhythm.
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