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The problem of the existence of an arc with no more than a countable (�nite) number

of bifurcations connecting structurally stable systems (Morse-Smale systems) on manifolds

is on the list of �fty Palis-Pugh problems [26] under number 33.

In 1976, S. Newhouse, J. Palis, F. Takens [16] introduced the concept of a stable arc

connecting two structurally stable systems on a manifold. Following [16], a smooth arc ϕt

is called stable if it is an inner point of the equivalence class with respect to the following

relation: two arcs ϕt, ϕ
′
t are called conjugate if there are homeomorphisms h : [0, 1] →

[0, 1], Ht : M →M such that Htϕt = ϕ′h(t)Ht, t ∈ [0, 1] è Ht continuously depend on t.

Denote by Q the set of smooth arcs {ϕt}, that start and end in Morse-Smale

di�eomorphisms and any di�eomorphism ϕt has a �nite limit set. In [15] also established

that the arc {ϕt} ∈ Q consisting of di�eomorphisms with a �nite limit set, is stable i� all

its points are structurally stable di�eomorphisms with the exception of a �nite number of

bifurcation points, ϕbi , i = 1, . . . , q such that:

1) the limit set of the di�eomorphism ϕbi contains a unique nonhyperbolic periodic

orbit, which is a saddle-node or a �ip;

2) the di�eomorphism ϕbi has no cycles;

3) the invariant manifolds of all periodic points of the di�eomorphismϕbi intersect

transversally;

4) the transition through ϕbi is a generically unfolded saddle-node or period doubling

bifurcation, wherein the saddle-node point is non-critical.

In 1976, S. Newhouse and M. Peixoto [17] proved the existence of a simple arc between

any two Morse-Smale �ows. Simplicity means that the entire arc consists of Morse-Smale

systems, with the exception of a �nite set of points at which the vector �eld in a certain

sense deviates least from the Morse-Smale system, namely, either contains a single non-

hyperbolic saddle-node point, or a single trajectory non-transversal intersection of invariant

saddle manifolds (heteroclinic tangency).

However, the results of S. Newhouse and M. Peixoto cannot be directly used to construct

stable arcs between Morse-Smale di�eomorphisms. There are several reasons for this. First,

generic Morse-Smale di�eomorphisms are not included in Morse-Smale �ows (see, for

example, [3], [5] and the review [4]). Second, the discretization of an arc with heteroclinic

tangency is not a stable arc. The second problem can be avoided by virtue of the result

obtained by J. Flaytas, namely, she showed that a simple arc constructed by Newhouse and

Peixoto can always be replaced by a stable one. In this case, the discretization of such an

arc is a stable arc connecting the one-time shift of the original gradient-like �ows.

For Morse-Smale di�eomorphisms de�ned on manifolds of any dimension, examples of

systems are known that cannot be connected by a stable arc.

Obstructions to the existence of a stable arc appear already for orientation-preserving

di�eomorphisms of the circle S1. The Morse-Smale di�eomorphisms on the circle were

studied in detail by A.G. Mayer [13]. He showed that these di�eomorphisms exhaust the

class of rough transformations of the circle and are characterized by a �nite set of periodic
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points and a rational rotation number. Moreover, there exist Morse-Smale di�eomorphisms

with any rational rotation number. Since the rotation number changes continuously as the

homeomorphism changes continuously (see, for example, [11]), any arc connecting Morse-

Smale di�eomorphisms with di�erent rotation numbers on the circle contains a continuum

of bifurcations and, therefore, is not stable.

In dimension two, additional obstructions appear to the existence of stable arcs between

isotopic di�eomorphisms.

D. Pixton [27] established the existence of the Morse energy function Φf : M2 → R for

any Morse-Smale di�eomorphism f on the surface M2. Using the level sets of this function,

P. Blanchard [1] constructed a special partition of the supporting surface by the level lines

of the function Φf , connected with the notion of oddness of a periodic orbit and proved that

the consistency of such partitions for di�erent di�eomorphisms is a necessary condition for

the existence of a stable arc between them. Su�cient conditions for the existence of such

an arc were not considered in the paper [1].

The presence of heteroclinic intersections can also serve as an obstruction. In the paper

[14] S. Matsumoto showed that the two-dimensional torus T2 admits isotopic Morse-Smale

di�eomorphisms that cannot be connected by a stable arc. This result is based on the

following concept.

Periodic points p, q of a di�eomorphism f : Mn →Mn are called it trivially connected

if there exists a curve c ⊂Mn such that ∂c = {q} − {p} and for some integer N such that

fN(p) = p and fN(q) = q, the closed curve fN(c) − c is trivial. Otherwise, the points p, q
are called non-trivially connected. If all periodic points of a di�eomorphism f are trivially

connected, then f is called trivial, otherwise is non-trivial.

Sh. Matsumoto constructed two Morse-Smale di�eomorphisms isotopic to the identity

f0, f1 : T2 → T2. One of them, f0, is the one-time shift of the gradient �ow of a generic Morse

function. Another f1 is a superposition of f0 with two oppositely directed Dehn rotations.

It is easy to see that the di�eomorphism f0 is trivial, and f1 is non-trivial. Matsumoto's

result is that the di�eomorphisms f0, f1 of the two-dimensional torus T2 are not connected

by a stable arc.

Generalizing Matsumoto's result, in the paper [9] trivial f0 and non-trivial f1 isotopic

Morse-Smale di�eomorphisms on the manifold Sn−1 × S1, n ≥ 3 were constructed. As

in Matsumoto's example, the di�eomorphism f0 is the Cartesian product of source-sink

di�eomorphisms on the sphere Sn−1 and on the circle S1. The di�eomorphism f1 is obtained

from f0 by taking its composition with the multidimensional Dehn rotation around cl(W u
σ1

),

which is di�eotopic to the identity map. The resulting di�eomorphisms f0, f1 of the manifold

Sn−1 × S1, n ≥ 3 are not connected by a stable arc.

In dimension n ≥ 3, there are other obstructions to the existence of a stable arc between

isotopic Morse-Smale di�eomorphisms associated with such e�ects of multidimensional

dynamics as the wild embedding of saddle separatrices (see the papers [7], [2]), the existence

of several smooth structures on the manifold (see the paper [2]).
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In connection with the presence of obstructions to the existence of stable arcs between

isotopic Morse-Smale di�eomorphisms, a natural problem of describing the components of

a stable isotopic connection arises. The present work presents a classi�cation of certain

classes of di�eomorphisms on surfaces up to a stable isotopic connection.

The presentation of the material is divided into seven chapters. Chapter 1 introduces

necessary concepts and facts. Chapter 2 provides an overview of the results available on

this topic. Other chapters contain a detailed presentation of results on the classi�cation of

gradient-like di�eomorphisms of surfaces up to a stable isotopic connection.

The dynamics of such di�eomorphisms is closely related to periodic transformations of

surfaces classi�ed by J. Nielsen [18] for surfaces of genus greater than zero and B. Kerekjarto

[12] for the sphere. It follows from the results of B. Kerekyarto that the classi�cation

of periodic transformations of a two-dimensional sphere is based on the properties of

homeomorphisms of a circle with a rational rotation number, which include the Morse-

Smale di�eomorphisms on the circle.

In Chapter 3 a classi�cation of Morse-Smale di�eomorphisms on a circle with respect

to the relation of stable isotopic connection is obtained. From the results of A.G. Mayer

[13] it follows that these di�eomorphisms (we denote their set by G1) exhaust the class of

rough transformations of the circle and have simple dynamics, the classi�cation of which

up to topological conjugacy is described as follows.

We divide the set G1 into two subclasses G1
+ and G1

−, which consist of orientation-

preserving and orientation-reversing di�eomorphisms, respectively. Then:

1. For every di�eomorphism f ∈ G1
+ the set of periodic points Per(f) consists of

2n, n ∈ N periodic orbits, each of which has period m and rotation number k
m
,

where k = 0 for m = 1, or k ∈ {1, . . . ,m − 1} for m > 1 and the numbers

(m, k) are coprime. Di�eomorphisms f ; f ′ ∈ G1
+ with parameters n,m, k;n′,m′, k′

are topologically conjugate if and only if n = n′,m = m′ and one of the following is

true:

• k = k′,

• k = m′ − k′.

2. For every di�eomorphism f ∈ G1
− the set of periodic points Per(f) consists of 2q, q ∈

N periodic points, two of which are �xed, while others have period 2. Assuming that

ν = −1; ν = 0; ν = +1, if its �xed points are sources; sink and source; sinks,

respectively. Di�eomorphisms f ; f ′ ∈ G1
− with parameters q, ν; q′, ν ′ are topologically

conjugate if and only if q = q′ and ν = ν ′.

The main result of Chapter 3 is the following theorem.

Theorem 1. All rough orientation-reversing di�eomorphisms of the circle lie in the

same component of the stable isotopic connection, whereas the stable isotopic class of the

rough transformation of a circle that preserves orientation is completely determined by the

Poincare rotation number.
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The idea of the proof of the theorem is to construct model di�eomorphisms Φn,m,k, Ψq,ν

in each topological conjugacy class of systems from G1
+, G

1
−, respectively. Next, an arc

without bifurcations which connects an arbitrary di�eomorphism in a given topological

conjugacy class with the corresponding model is constructed. Thus, the problem is reduced

to �nding classes of stable isotopic connection of model di�eomorphisms.

For an orientation-preserving di�eomorphism Φn,m,k, n > 1, the number of periodic

orbits can be reduced by one pair by constructing an arc that unfolds generically through

a non-critical saddle-node bifurcation. Thus the di�eomorphism Φn,m,k is connected by a

stable arc with the di�eomorphism Φ1,m,k, which has the same rotation number. Since the

rotation number is a topological invariant of a circle di�eomorphism that continuously

depends on the arc parameter, any arc connecting orientation-preserving di�eomorphisms

f, f ′ with di�erent rotation numbers is not stable, since it contains a continuum of

bifurcations, which contradicts the de�nition of the stable arc.

For the orientation-reversing di�eomorphism Ψq,0, the number of periodic orbits is even,

which, as in the orientable case, allows us to connect it to the source-sink di�eomorphism

Ψ2,0 by an arc with (q − 2) unfolding generically non-critical saddle-node bifurcations. For

the di�eomorphism Ψq,±1, the number q is odd and q > 2. The technique described above

allows one to connect any such di�eomorphism with the di�eomorphism Ψ3,±1, which in

turn is connected by a stable arc with the source-sink di�eomorphism Ψ2,0 by an arc with

unfolding generically doubling period bifurcation.

The complete summary of the results of this chapter is published in [21].

Chapter 4 gives general dynamical properties of gradient-like di�eomorphisms of

surfaces. The central place in this chapter is occupied by a result on representing the

dynamics of any such di�eomorphism in the form of a global dual attractor-repeller pair

for which the space of wandering orbits is connected.

Namely, consider an orientation-preserving gradient-like di�eomorphism f de�ned on a

smooth orientable closed surface M2.

We denote by Ω0
f , Ω1

f , Ω2
f the set of sinks, saddles and sources of the di�eomorphism f .

For any (possibly empty) f -invariant set Σ ⊂ Ω1
f let

AΣ = Ω0
f ∪W u

Σ, RΣ = Ω2
f ∪W s

Ω1
f\Σ

.

According to [6] they are attractor and repeller, which are called dual. Let

VΣ = M2 \ (AΣ ∪RΣ),

it is called characteristic space. We denote by V̂Σ the orbit space of the action of

the di�eomorphism f on the characteristic space VΣ. According to [8], each connected

component of the manifold V̂Σ is homeomorphic to a two-dimensional torus.

Theorem 2. For every orientation-preserving gradient-like di�eomorphism f : M2 →
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M2 there exists a set Σ, such that the orbit space V̂Σ is connected.

In the framework of the proof, the case is considered separately when the di�eomorphism

contains a unique sink orbit, then the theorem is true for the empty set Σ. When the space

of orbits in sink basins consists of several connected components V̂i, i = 1, . . . , l, namely

l two-dimensional tori, then, up to their renumbering, one can �nd a sequence of saddle

points σ1, . . . , σl−1 such that the unstable separatrices of the saddle point σj belong to

V̂j, V̂j+1.

For any di�eomorphism f and a set Σ, satisfying the conditions of Theorem 2, put

Af = AΣ, Rf = RΣ, Vf = VΣ.

For the class G of gradient-like di�eomorphisms on the two-dimensional sphere S2 the

attractor and repeller Af , Rf can be described in more detail. To do this, note that the

space Vf consists of mf pairwise disjoint cylinders and a set of non-contractible closed

curves, taken one on each component, divides the sphere S2 into two disjoint parts U and

V such that

f(U) ⊂ U, Af =
⋂
j∈N

f j(U); f−1(V ) ⊂ V, Rf =
⋂
j∈N

f−j(V ).

Lemma 4.1 For any di�eomorphism f ∈ G (up to a consideration of the di�eomorphism

f−1) the following is true:

1) the set U consists of mf ∈ N pairwise disjoint disks Df , f(Df ), . . . , f
mf−1(Df ) such

that fmf (cl Df ) ⊂ intDf ;

2) the attractor Af consists of mf connected components A, f(A), . . . , fmf−1(A) such

that A =
⋂
j∈N

f jmf (Df ) and fmf (A) = A;

3) repeller Rf is connected.

Denote by G+ the subset of G, consisting of di�eomorphisms all of whose saddle points

have a positive orientation type. Let G− = G \ G+ and denote by G1 the subset of G,

consisting of di�eomorphisms f , for which there exists a �xed pair Af , Rf (mf = 1). Using

the topology of a two-dimensional sphere, we can establish the following facts.

Lemma 4.4 G− ⊂ G1.

Lemma 4.5 For any di�eomorphism f ∈ G+ the number mf is uniquely determined,

that is, it does not depend on the choice of the pair Af , Rf .

Thus, the set G+ \G1 is represented as a union of pairwise disjoint subsets

G+ \G1 = G2 · · · ∪Gm ∪ . . . (∗)

such that mf = m for any di�eomorphism f ∈ Gm, m > 1. This representation plays

a key role in the classi�cation of gradient-like di�eomorphisms up to the stable isotopic

connection obtained in Chapter 6.
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In Chapter 4 also establishes a number of important properties of Palis's

di�eomorphisms. They constitute the class P of orientation-preserving gradient-like

di�eomorphisms de�ned on an orientable surface M2 under the assumption that all

non-wandering points f are �xed and have positive orientation type. This class of

di�eomorphisms was introduced in the work of J. Palis [25] as the class of Morse-Smale

di�eomorphisms on surfaces that are included in a topological �ow. For di�eomorphisms of

the class under consideration, we construct a special energy function.

Let f ∈ P . Let Lp be a frame of saddle separatrices going to the node p, denote kp their

number.

Denote Lk ⊂ R2 a frame of rays l1, . . . , lk, which in polar coordinates (ρ, θ) has a form

li = {(ρ, θ) ∈ R2 : θ = θi}, θi ∈ [0, 2π).

A di�eomorphism f ∈ P is called a canonical if every �xed point p of a di�eomorphism

f has a local chart (Up, ψp) such that p ∈ Up, ψp(p) = O and

1) ψpfψ
−1
p (x, y) =

(
1
2
x, 1

2
y
)
for p ∈ Ω0

f ,

ψpfψ
−1
p (x, y) =

(
1
2
x, 2y

)
for p ∈ Ω1

f ,

ψpfψ
−1
p (x, y) = (2x, 2y) for p ∈ Ω2

f ;

2) ψp(Lp) ⊂ Lkp for any nodal point p.

Denote by P0 ⊂ P a class of all canonical di�eomorphisms.

Lemma 4.7 For any di�eomorphism g ∈ P0 there is an energy function Φ, whose level

lines intersect every saddle separatrices at most one point.

The idea of constructing such a function is based on the existence of local Morse energy

functions in the neighborhood of �xed hyperbolic points and the regular behavior of saddle

separatrices in basins of nodal points.

The complete summary of the results of this chapter is published in [19], [23], [22], [20],

[24].

Chapter 5 is devoted to the construction of arcs without bifurcations within the

same topological conjugacy class of a Morse-Smale di�eomorphism. Let us formulate the

conception of obtained results which is stable isotopic classi�cation fund.

� Lemma 5.1 Any Morse-Smale di�emorphism f : Mn → Mn with global attractor

and repeller A and R is connected by an arc with any di�eomorphism f1, coinciding

with f in some neighborhoods UA ⊃ A, UR ⊃ R and having the projection of

unstable saddle separatrices into the orbit space (UA \ f(UA))/f which is isotopic

to the corresponding projection for the di�eomorphism f .

� Lemma 5.2 Any Morse-Smale di�emorphism f : Mn → Mn is connected with any

di�eomorphism f1, that coincides with f on the non-wandering set and is linear in

some neighborhood of it.

� Lemma 5.3 Any gradient-like di�eomorphism f : M2 → M2, that is linear in some

neighborhood of the non-wandering set is joined to a di�eomorphism f1, that coincides
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with f in this neighborhood and such that the closures of the invariant manifolds of

all its saddle points are smooth submanifolds.

� Lemma 5.4 Any gradient-like di�eomorphism f : M2 → M2 with attractor A,

which is a smooth submanifold, is connected by an arc with any di�eomorphism f1

topologically conjugate to f on attractor A and in some of its neighborhood and

coinciding with f out of some neighborhood of A.

� Lemma 5.5 Any gradient-like di�eomorphism f : M2 →M2, whose union of unstable

saddle manifolds with sinks is a smoothly embedded attractor A, is connected to any

di�eomorphism f1 coinciding with f in some neighborhood of A and in a neighborhood

of sources.

The complete summary of the results of this chapter is published in [20], [24].

In Chapter 6 presents a complete classi�cation of gradient-like di�eomorphisms of the

2-sphere up to a stable isotopic connection.

Consider S1 as the equator of the sphere S2. Then the structurally stable di�eomorphism

of the circle with exactly two periodic orbits of the period m ∈ N and the rotation number
k
m

can be extended to the di�eomorphism φk,m : S2 → S2, which has two �xed sources at

the north and south poles.

We denote by Ck,m the component of stable connectedness of the di�eomorphism φk,m

and by C−k,m the component of stable connectedness of the di�eomorphism φ−1
k,m. Denote by

C0 the component of stable connectedness of the source-sink di�eomorphism φ0 ∈ G with

a non-wandering set consisting of exactly one source and one sink.

The main result of the chapter is the following theorem.

Theorem 3. Any orientation-preserving gradient-like di�eomorphism of the two-

dimensional sphere S2 belongs to one of the components C0, Ck,m, C
−
k,m, k, m ∈ N, k <

m/2, (k,m) = 1. Wherein:

� components C0, Ck,m, C
−
k,m, k, m ∈ N, k < m/2, (k,m) = 1 are pairwise disjoint;

� Ck,m = Cm−k,m, C
−
k,m = C−m−k,m, C1,2 = C−1,2 = C0,1 = C−0,1 = C0.

Notice that belonging to di�erent classes of stable isotopic connection of di�eomorphisms

φk,m, φk′,m′ for m = 2r · q,m′ = 2r
′ · q′, q 6= q′ for integers r, r′ ≥ 0 and natural numbers

q 6= q′ follows from [1]. However, a complete classi�cation is not given in that work.

The proof of Theorem 3 is based on the decomposition (∗) obtained earlier. Using the

lemmas of Chapter 5 and the connectedness of the attractor Af and the repeller Rf for the

di�eomorphism f ∈ G1, a stable arc connecting it with the di�eomorphism φ0 is constructed.

Also, using the connectedness of the attractor Af of the di�eomorphism f ∈ Gm, m > 1

and the lemmas of Chapter 5, we can trivialize its attractor, that is, connect it by a stable

arc with the di�eomorphism g from the class f ∈ Gm, m > 1 consisting of di�eomorphisms

g for which the attractor Ag consists of one sink orbit of period m.
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Further, it is established that for the di�eomorphism g there exists a saddle orbit

Oσ of period m such that clW u
Oσ is a g-invariant closed curve Cσ and the map g|Cσ

is topologically conjugate to a rough circle transformation with the rotation number
k
m
. Moreover, the rotation numbers for all such circles are the same. This allows us

to connect the di�eomorphism g by a stable arc with a di�eomorphism whose non-

wandering set consists of one saddle orbit Oσ = {σ, f(σ), . . . , fm−1(σ)}, one sink orbit

Oω = {ω, f(ω), . . . , fm−1(ω)} and �xed sources α1, α2. Using the lemmas of Chapter 5, the

constructed di�eomorphism is connected by an arc without bifurcations with the model

di�eomorphism φk,m.

The complete classi�cation of model di�eomorphisms φk,m with respect to the relation

of stable isotopic connection is essentially based on the fact that the saddle-node point is

non-critical.

The complete summary of the results of this chapter is published in [22], [23].

In Chapter 7 the complete classi�cation of Palis di�eomorphisms up to a stable isotopic

connection is obtained. The main result of the chapter is the following fact.

Theorem 4. Any di�eomorphisms f, f ′ ∈ P of the surface M2 are connected by a stable

arc with a �nite number of unfolding generically non-critical saddle-node bifurcations.

The proof of this result is based on the construction of an arc without bifurcations

connecting the di�eomorphism f ∈ P with some canonical di�eomorphism g ∈ P0. By

Lemma 4.7, for the di�eomorphism g ∈ P0, there exists an energy function Φ, whose inverse

gradient vector �eld generates a gradient-like �ow φτf . Using the level lines of this function,

an arc connecting g with φf without bifurcations is constructed. Due to the existence of

a stable arc between Morse-Smale �ows on any manifold, the di�eomorphisms φf , φf ′ are

connected by an arc with a �nite number of saddle-node bifurcations.

To visualize the constructed arc the class Q ⊂ P of polar gradient-like di�eomorphisms

on the two-dimensional torus T2 was considered. Conceptually, this visualization is a discrete

analogue of the method used by G. Fleitas in [10].

The complete summary of the results of this chapter is published in [20], [24].
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