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Introduction

The scientific problem, based on the solution of which the dissertation

research is directed, based on the almost complete absence of informative

neuroimaging biomarkers of the brain (both neurodegenerative and psychiatric),

which would make it possible to identify the pathological process precisely,

build a predictive trajectory of the course of diseases and evaluate the

effectiveness of treatment, including pharmacological effects. Such biomarkers

are necessary for solving personalized diagnostics, effective treatment, and

prevention of disease development. The use of non-invasive neuroimaging data

when searching for such biomarkers looks quite natural [1]. The task, however,

is complicated by the systemic nature of brain diseases, primarily psychiatric,

when in most cases it is impossible to localize the pathological substrate clearly

and unambiguously link the changes with the course of the disease. For this

reason, modern research tends to analyze pathological patterns at the level of

network structures of the brain, representing not only individual regions of the

brain but also their structural-functional connections [14]. At this level, the

construction of biomarkers of brain diseases requires work at the junction of

image processing (analysis of neuroimaging data), modern predictive modeling,

and analysis of graphs and network structures. In the dissertation research,

algorithms were developed to analyze brain networks' modular structure [10],

acting as biomarkers of pathological processes. In the future predictive models

based on the developed algorithms will allow for a personalized forecast of the

development of brain diseases with automated analysis of non-invasive

neuroimaging data.



The relevance and importance of the research

The relevance of this study is due to the importance of the early prediction

of neurodegenerative diseases such as Alzheimer's disease and Parkinson's

disease. According to a meta-analysis conducted by the international

organization Alzheimer's Disease International (ADI), as of 2015, people living

with Alzheimer's disease reach 46.8 million. Every 20 years, this number

doubles; thus, it is expected that by 2050 it will reach 131.5 million people [35].

According to the same report, global costs associated with dementia reach $ 818

billion (US) in 2015 alone; in 2018, these costs amounted to $ 1 trillion (US)

[36]. Recently, it is believed that the use of various biomarkers obtained from

neuroimaging data, such as MRI and PET (positron emission tomography),

should play an essential role in the diagnosis of dementia in general and

Alzheimer's disease in particular [25]. For example, it has been shown that the

use of such a simple biomarker as brain atrophy, measured by structural MRI,

serves as a very accurate predictor for the early diagnosis of Alzheimer's disease

[29]. For example, many works set themselves the following task: to predict

whether the transition from an earlier stage of the disease to a later one will

occur at a particular time interval. This formulation allows using modern

machine learning methods and solving the so-called classification problem (if

the time interval is fixed) [24], [40], or regression (if not). It is necessary to

have a sufficient amount of labeled longitudinal data to solve this task. The

markup should contain accurate information about the stage of the disease for

each time observation. Note that this formulation differs from the simple task of

classifying pathology from the norm (for example, Alzheimer's versus not

Alzheimer's) in that the prediction is made about the patient's condition in the

future and not at the moment. Thus, the solution to this problem may be

advisable not only from a scientific but also from a clinical point of view. The



study of the development (disease progression) of neurodegenerative diseases

plays a critical role in early diagnosis and treatment strategies [15], [32].

The purpose and objectives of the study

The task of the dissertation research is to develop algorithms for the data

mining of non-invasive neuroimaging of various modalities, allowing, based on

the reconstruction of anatomical and functional network structures of the brain

[41], to assess their hierarchical modular organization [3] and build predictive

models in the field of diagnostics and prognosis of the course of

neurodegenerative and psychiatric diseases ... From a practical point of view, we

are talking about the construction of clinically informative biomarkers to solve

the problems of personalized diagnostics, plan therapy, and prevent brain

diseases. From a scientific point of view, new results have been obtained that

develop the most promising approaches to predictive modeling based on

multimodal neuroimaging data. Following the generally accepted definition, by

a biomarker, we mean an objectively measurable characteristic that can be

considered as an indicator of normal biological processes, pathogenetic

processes (in this case, brain diseases), or pharmacological responses to

therapeutic interventions [31]. The attention of this work to the network

structures of the brain is due to the systemic nature of disorders in the structure

and functioning of the brain, which is characteristic of many pathologies,

primarily in psychiatry.

For this reason, in modern research, the connectomic approach [5] is of

increasing interest, within which the human brain is analyzed as an integral

network with a specific structure. A connectome is a graph in which the vertices

correspond to brain regions, and connections indicate either the presence of

anatomical tracts between the corresponding zones or their tendency to be



jointly activated in the process of functioning. Fig. 1 shows an example of a

human connectome.

Figure 1. Graph of a human brain connectome. The regions of the Desikan atlas

are used as vertices. Vertex colors correspond to communities obtained using

Louvain modularity algorithm.

It is expected that the application of modern predictive modeling methods to

this kind of data reconstructed based on neuroimaging will improve the

accuracy of diagnostic and prognostic models of diseases associated with brain



pathologies. From a mathematical point of view, the problem of predictive

modeling on the network structures of the brain is as follows. We consider a

data sample a set of pairs consisting of an input graph representing the brain

network reconstructed from neuroimaging data and a categorical output variable

that takes a small number of different values. For example, the target variable

can take values   from 0 to 2, encoding three states: the subject is healthy (0), the

prodromal phase of schizophrenia (1), and schizophrenia itself (2). The task is

reduced to classification, that is, building a mathematical model, which for each

new example of the input graph will produce the most probable value of the

target variable. Standard quality metrics suitable for a specific application can

be used to assess the quality of the model. Note that the specificity of the

subject area determines the number of key features of the analyzed input graphs.

We are talking about relatively small (about a hundred vertices) undirected

graphs with a single connected component. Each vertex in such a graph is

labeled uniquely according to the specific area of   the brain that it represents,

and the set of such labels is the same for all graphs within the applied problem

being solved. Vertices have a set of attributes that specify their coordinates in

three-dimensional space and the physical parameters of the corresponding zones

(thickness and surface area). The graph is weighted, and in the case of

multimodal data for the network structure of one brain, there can be two sets of

weights, one of which includes assessments of the connectivity of brain regions

through anatomical tracts, and the other indicates the intensity of joint activation

of zones according to functional diagnostics data. Thus, the standard

classification methods cannot be used to solve the problem in view due to the

specifics of the input data having the described structure. When constructing

predictive models based on such data, it is crucial to most fully preserve

information about the key features of the structure of brain networks, of which

the most important for us is their modular organization [26]. Modular

networking means that its vertices tend to cluster into modules, or communities,



with very dense intragroup and sparse intergroup connections. Authors of [2],

show for the first time that it is the modular organization of brain networks that

changes in the case of systemic psychiatric diseases (topological features of

functional networks in patients with a diagnosis of early childhood

schizophrenia were analyzed). The results obtained within the framework of the

work suggest that such an approach to the construction of predictive models

based on neuroimaging data can be productive in solving the problem of

classifying psychiatric diseases (in particular, autism spectrum disorders [20])

and neurodegenerative diseases (disease risk groups Alzheimer's [21]). This

suggests that it is the structure of the communities of brain regions in the

connectome that fully reflects the topological organization of the initial network

and, thus, contains enough information to build predictive models to distinguish

clinically significant diagnostic groups. Each connectome can be represented by

a vector of length equal to the number of brain regions (graph vertices), in

which each value encodes the belonging of the corresponding brain region to

one of the communities in the optimal partition of the initial network into

disjoint communities. Such a representation allows one to estimate the distances

between the original graphs as the distances between the corresponding

partitions and, at the next step, to construct algorithms for the classification of

normal and pathological network structures using nuclear methods that take as

input a matrix of such pairwise distances between the original objects.

Within the framework of the dissertation research, the following tasks were set

and solved:

1. Methods for the classification of connectome graphs were proposed,

allowing to take into account the overlapping structure of communities

and their hierarchical organization.

2. A method was proposed for constructing a brain atlas based on diffusion

MRI data using a continuous connectome model. The atlas was obtained

on the basis of a data-driven approach and not on the basis of the



anatomical or functional structure of the brain. However, it successfully

identifies anatomical structures as regions and, at the same time, can be

adjusted to work with a specific data set.

3. A model of disease progression based on multimodal neuroimaging data

was proposed. The proposed probabilistic model considers both

morphometric characteristics (such as the thickness of the brain's gray

matter) and structural (connections between different regions).

It is important to emphasize that the algorithms developed in the framework of

the dissertation research were evaluated and compared in terms of their

informativeness and usefulness in the predictive modeling of diseases associated

with brain pathology. The modular organization of network structures

reconstructed based on neuroimaging data was considered a potential

biomarker, informative from the point of view of early diagnosis of the disease

and personalized prognosis of its course.

Novelty and main results
Chapter 1 outlines the mathematical model of the structural connectome and

details of the reconstruction of such graphs based on magnetic resonance

imaging (MRI) data. Chapter 2 describes a list of methods used to find vertex

communities, compare individual clusterings, and average them. Chapter 3

outlines existing ones and suggests some new ways to build kernels based on

various characteristics of graphs. We demonstrate the effectiveness of the

described kernels for solving the problems of binary classification of various

phenotypes, pathologies, and norms. Chapter 4 outlines an extension of the

EBM model that allows you to use connectivity data (connectomes) to generate

a priori distribution for the degeneration order of brain regions. Finally, Chapter

5 explores the hierarchical organization of connectome graphs. It is shown that



groups of vertices of connectome graphs that form dense communities are often

anatomically close. Finally, Chapter 6 proposes a method for constructing an

anatomical atlas based on the structural (physical, through axonal connections)

connectivity of regions, which surpasses existing anatomical atlases in several

ways. The thesis consists of an introduction, six chapters, a conclusion,

bibliography, illustrations, and tables. The total volume of the thesis is 177

pages.

The main results of the research and the provisions for the defense.

As part of the dissertation research, it was demonstrated and/or proposed:

1. A method for solving the problem of classifying objects represented in

graphs defined on one set of vertices (with a different set of edges) is

proposed. The method is based on comparing intersecting and

non-intersecting cluster structures of such graphs, which makes it

possible to reduce their feature description effectively.

2. A model of disease progression based on multimodal neuroimaging data

is proposed. The proposed probabilistic model considers both

morphometric characteristics (such as the thickness of the brain's gray

matter) and structural (connections between different regions).

3. A method for constructing an anatomical atlas of the cerebral cortex

based on structural connectivity data using a continuous connectome

model is proposed.

4. Hierarchical properties of connectome graphs derived from data are

studied and described. It has been demonstrated that vertex communities

in connectome graphs often form anatomically close regions.
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The organization of the thesis
Task: "Classification of norm and pathology based on the cluster structure of

human brain graphs."

It is assumed that within connectomes, it is possible to identify in an

informative way the communities of vertices that represent regions of the brain.

Informativeness means for us the ability to determine, based on the resulting

partitions, the distances between the graphs in such a way that expectedly

similar graphs are close - for example, those belonging to people with a specific

neurodegenerative disease.

Figure 2. Different types of clustering. From left to right: non-overlapping

clusters, overlapping clusters, fuzzy clusters.

Based on this idea, several problems were solved to distinguish between

patients with various diseases, such as autism spectrum disorders, Parkinson's

disease, and Alzheimer's disease, and people without pathology based on graphs

of structural connections of the brain (connectomes). For this, various models

have been proposed using information about the differences in the partitions of

graphs into subgraphs, typical for connectomes of groups of norm and

pathology. The proposed approaches differ in whether a vertex can

simultaneously belong to several communities and whether a different degree of

such membership is possible. If the partitioning of connectome graphs into

disjoint communities is considered, this information can be encoded by a vector

of length equal to the number of graph vertices. Each element of such a vector is



an indicator of the vertex's belonging to the community. Otherwise, if the

partition of graphs into intersecting communities is considered [37], it will be

encoded not by a vector but by a matrix. The membership matrix contains

values that correspond to the probability of a brain region belonging to one of

the communities or by a set of matrices if we are talking about different

hierarchical levels of analysis. Fig. 2 shows a schematic representation of the

division of the graph's vertices into communities, overlapping clusters, andfuzzy

clusters. In this case, the problem arises of correctly estimating the distances

between such objects to construct predictive modeling algorithms on them.



Task: "Hierarchical structure of connectome graphs"

Human brain communication networks exhibit modular organization: cortical

regions form tightly connected clusters with relatively few intercluster

connections. However, little is known about whether the modular structure of

brain networks is reproducible and, most importantly, to what extent these

vertex clusters are associated with anatomy. To solve these questions, we use

MRI data of the same people, scanned at intervals of several weeks

(longitudinal data), and reconstruct the brain's structural networks on several

scales, divide them into communities, and assess the similarity obtained by

clustering. We check the stability of the modular structure in two ways, firstly,

we compare the cluster structures of graphs obtained from the same person and

different people, and secondly, we compare the resulting graph clusters with

anatomically close regions. Our results show that the modular structure of brain

networks is well reproduced in the framework of repeated experiments

(test-retest reliability). In addition, the results obtained confirm the theoretically

substantiated hypothesis that the regions of the brain adjacent in the anatomical

space also, as a rule, belong to the same network clusters of vertices. For

high-resolution networks, we compared the two approaches to partitioning their

vertices into communities. The first approach is based solely on the structure of

the topological connections of the graph. The second approach is primarily

based on anatomy because the vertices of the high-resolution graph were placed

in communities, based on the fact that they were anatomically adjacent and

belonged to the same region of the cortex in the anatomical atlas (and therefore

to the same parent on the low-resolution network). We have demonstrated that

the modularity of these latter vertex colorings was still very high and only

slightly lower than the modularity estimated with respect to topologically

optimal partitions. In addition, we demonstrated that the similarity between

topologically optimal and anatomical colorings was very high. Topological

modules largely resembled the anatomical grouping of adjacent areas of the



cortex and were hierarchically built into the structure of anatomical

communities. Using multiscale analysis (graphs in different resolutions) and

algorithms for partitioning networks into communities, we found new evidence

to support the theoretically based hypothesis that brain regions adjacent in

anatomical space also tend to belong to the same hierarchically nested

topological modules Fig. 3.

Figure 3. Three ways to demonstrate the hierarchical nesting of clusters

of high-definition networks in communities formed in low-definition networks.

(a) High-resolution network adjacency matrix with eight topological units with 

the best division into communities (light red squares) and four anatomical 

communities (blue, green, purple and pink squares); the first-level communities 

are almost strictly embedded in the second-level messages. (b) A hierarchical 

tree with four levels: I - the entire 1000-vertex connection, II - two hemispheres, 

III - four clusters inherited from the anatomically mapped low-resolution 

network partition, IV-eight clusters obtained by high-resolution Leuven 

partitioning of the network. Cross-tabulation of the co-occurrence of cluster 

labels in a high-resolution network (eight clusters, horizontal) and four 

anatomical partitioning communities (vertical).



Task: "Building an atlas of the human brain based on diffusion MRI data and

graph-theoretical models."

A method was proposed for constructing a brain atlas based on diffusion MRI

data using a continuous connectivity model [27]. Data from the Human

Connectome Project [33] were used for computational experiments. The Atlas

was constructed from 425 HCP participants (167 men, 258 women). The

Louvain Modularity algorithm, igraph implementation [6], was used to restore

individual clusters. A meta-algorithm for averaging individual parcels was

proposed to construct a group atlas. A comparison was made of different

approaches to averaging: using the meta-graph, using the mean graph, greedy

optimization of the coloring of the vertices of the graph in such a way as to

minimize the Karcher means:

,𝐶* = arg
𝐶

min Σ𝑁
𝑖=1

 𝑑(𝐶
𝑖
,  𝐶)2 

where Сi are individual parcellations, obtained via continuous connectome

clustering, C* - optimal ensemble clustering.



Figure 4. Intersection of an optimal connectivity-based parcellation with

anatomical parcellation Desikan. Colors are according to the Dice score.

The results showed that the atlas obtained in this way can effectively

describe the data on the connectivity of the regions of the brain, surpassing the

existing atlases (for example [7], [8], [9]) based on anatomy in a number of

parameters.



Task: "Modeling and predicting neurodegenerative diseases without using

longitudinal data."

There are several approaches to modeling the progression of neurodegenerative

diseases. For example, several studies are based on the hypothesis that the

progression of biomarkers follows a sigmoidal trajectory [17] depending on the

stage of progression. For example, the thickness of the cerebral cortex [11]

decreases, and CDR (Clinical Dementia Rating) the marker is growing. This

group of works is characterized by various methods of selection of sigmoid

parameters based on real data. For example, in [18], a method was proposed for

selecting individual parameters of progression using no more than four time

observations, the authors use a linear model as a model of progression

(depending on time), and the values   of biomarkers (such as the thickness of the

cortex, cognitive indicators, etc.) ) follows a sigmoidal trajectory (depending on

the stage of progression). Another popular approach is the so-called

Event-based modeling (EBM) [12]. This generative model is based on the

following hypothesis: the disease affects different parts of the brain in a specific

order. Some areas are affected first, then others. Changes in areas of the brain

from the end of this list correspond to the later stages of the development of the

disease. If the order of the lesions of the areas can be restored, on its basis, it is

possible to make predictions about the current state of the patient even without

longitudinal data. In addition, in [39], it was demonstrated that to restore this

order, one can do with cross-sectional data (that is, data in which only one

observation corresponds to each patient). Works based on this hypothesis differ

in the way they model the sequence of events.

Despite its popularity, this model has several disadvantages. For example, it is

assumed that each specific biomarker follows a single trajectory in the process

of disease progression for all patients. In [38], the authors tried to eliminate this



drawback by dividing patients into homogeneous groups, within which the

behavior of biomarkers differs only slightly. Another significant drawback is

that the number of areas considered in the original work was small: a standard

atlas of the brain surface was used, dividing it into 70 regions. In [23], the

authors switched from regional features to features measured at the level of the

vertices of the polygonal grid of the brain surface (about hundreds of thousands

of vertex features).

Moreover, the authors used the assumption of a sigmoidal trajectory of

biomarker progression. Thus their work can be considered an attempt to

overcome another disadvantage of the EBM approach - namely, the determinism

of the sequence of the affected regions. As another drawback, we note that

information about the diagnosis is used in modeling very little or not at all.

Parametric unsupervised learning models are mainly used, such as the Gaussian

Mixture Model (and mixtures of other parametric distributions). Therefore, in

[34], the authors used a combined approach consisting in the sequential

application of the classification model (this stage helps to separate the early

stages from the later ones, based on the data), and then - the generative model

(at this stage, the specific order of the lesions of the brain regions is deduced).

The last significant drawback, which, as far as we know, was not touched upon

in any of the existing works, is the ratio between the number of fit parameters M

and the sample size N. The effectiveness of modern machine learning methods

is mainly due to the increasing size of training samples. The fact is that the

number of parameters of the predictive model usually does not depend on the

sample size, so the M / N ratio tends to 0 with an increase in the training dataset.

In the latest modifications of the EBM model, the selection of individual

parameters is carried out. Thus the value of M grows linearly with the growth of

N, which significantly limits the generalizability of this approach.

Finally, there is the last group of works in which the progression of the disease

is described in terms of propagation through the "networks" of the brain -



connectomes [30], [16]. Such networks can be built on the basis of diffusion or

functional MRI data. The works of this block differ from each other in the

nature (law) of the spread (progression) of the disease along the brain network,

as well as in the assumptions about which groups of vertices (areas) or ribs

(connections between areas) are affected in the first place. For example, in [4], a

model is considered according to which "hubs" are at the greatest risk, that is,

network sections with the larger number of connections ("nodal stress"), the

idea that the disease spreads along with bundles of neurons ("trans neuronal

spread") considered in [19]. According to a recent review [28], the network

approach does not yet allow predictions about the stage of the disease or the rate

of progression. Therefore, it is not applicable from a clinical point of view. As

part of solving this problem, a prognostic model of the progression of

Alzheimer's disease was proposed [22], which takes into account the statistical

parameters of the population and individual factors of development. In this case,

the model can be built without using longitudinal data.



Figure 5. Several selected subjects. Disease stages are calculated using a

progression model with individual connectome prior order on cross-sectional

data. The image shows the stages for observations from the test dataset, each

line corresponds to one patient, red lines correspond to patients with Alzhemer's

disease, pale blue - healthy people, bright blue, healthy people during the first

visit, for whom it is known that in the future they began to manifest themselves

dementia symptoms.

Specifically, we proposed an extension of the Event-based model [13], which

allows us to incorporate individual data on the connectivity of brain regions.

The event-driven disease progression model uses the assumption that the

degeneration of separate areas occurs sequentially (different areas can degrade

at different rates), and its task is to restore this sequence. For this, a Bayesian

model with an uninformative prior distribution is used. In our work, we have

proposed an informative prior distribution based on the anatomical relationship

of individual regions. Computational experiments have shown that the use of



diffusion MRI data (together with biomarkers derived from structural MRI) can

improve prognostic indicators compared to using only structural MRI. Fig. 5

shows an example of predicting progression scores for the test portion of

patients. Alzheimer's patients receive higher progression scores compared to

healthy patients.
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