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Introduction

Following the proof of existence of a projective moduli scheme parametriz-

ing S-equivalence classes of semistable sheaves on a projective variety by

Maruyama [12], the study of the geometry of such moduli spaces has been a

central topic of research within algebraic geometry. Although a lot is known

for curves and surfaces, general results for three dimensional varieties are

still lacking. In fact, moduli spaces of sheaves on 3-folds turn out to be

quite complicated spaces (as it is illustrated by Vakil’s Murphy’s law [7]),

particularly with several irreducible components of various dimensions.

The goal of this thesis is to advance on the study of the moduli space of

semistable rank 2 sheaves on P3 with fixed Chern classes c1 = 0, c2 = k, c3 = 0,

which we will denote by M(k). Questions on the geometry of such spaces,

such as the number of irreducible components, seem to be less explored if

compared to the study of the geometry of the Hilbert schemes of curves in

the projective 3-space for instance.

The summary is organized as follows. In Section 1 we introduce different

notions of stability of sheaves on projective smooth varieties and provide

some properties of semistable sheaves. In Section 2 we remind the basic GIT

construction of the moduli space of semistable sheaves. Sections 1 and 2

mainly follow the content of the book [8]. In Section 3 we define reflexive

sheaves and discuss their properties. In Section 4 we describe all known

irreducible components of the moduli schemesM(k), k ≥ 3. Finally, Section

5 contains the main results of the present thesis, namely, the description of

new irreducible components of M(k), k ≥ 3.

1 Stability of sheaves

Historically, the notion of stability for coherent sheaves first appeared in the

context of vector bundles on curves [14]: let X be a smooth projective curve

over an algebraically closed field k, and let E be a locally free sheaf of rank

r and degree deg(E). Define the slope of E as µ(E) = deg(E)
r

. Then E is said
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to be (semi)stable, if for all subsheaves F ⊂ E with 0 < rk(F ) < rk(E) one

has µ(F )(≤)µ(E).

If we pass from sheaves on curves to higher dimensional varieties the

notion of stability can be generalized as follows. Let (X,O(1)) be a polarized

smooth projective variety of dimension d over an algebraically closed field

k. Recall that the Euler characteristic of a coherent sheaf E is χ(E) =

Σ(−1)ihi(X,E), where hi(X,E) = dimkH
i(X,E). The Hilbert polynomial

P (E) is given by m 7→ χ(E ⊗O(m)).

Definition 1 The support of E is the closed set Supp(E) = {x ∈ X | Ex 6= 0}.
Its dimension is called the dimension of the sheaf E and is denoted by

dim(E).

Definition 2 E is pure of dimension d if dim(F ) = d for all non-trivial

coherent subsheaves F ⊂ E.

Definition 3 For any sheaf E over X there exists an open dense subset

U ⊂ X such that E|U is locally free. Then the rank of the vector bundle E|U
is called the rank rk(E) of E.

Definition 4 The reduced Hilbert polynomial p(E) of a coherent sheaf E of

dimension d is defined by

p(E,m) :=
P (E,m)

rk(E)
.

Recall that there is a natural ordering of polynomials given by the lexico-

graphic order of their coefficients. Explicitly, f ≤ g if and only if f(m) ≤ g(m)

for m � 0. Analogously, f < g if and only if f(m) < g(m) for m � 0. We

are now prepared for the definition of stability.

Definition 5 A coherent sheaf E of dimension d is semistable if E is pure

and for any proper subsheaf F ⊂ E one has p(F ) ≤ p(E). E is called stable

if E is semistable and the inequality is strict, i.e. p(F ) < p(E) for any proper

subsheaf F ⊂ E.
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Proposition 1 (see [8, Cor. 1. 2. 8]) Any stable sheaf E over X is sim-

ple, i. e. End(E) ' k.

Another way to define stable sheaves on the higher dimensional varieties is

the straightforward generalization of the notion of the slope. More precisely,

let E be a coherent sheaf of dimension d = dim(X) and H be an ample divisor

associated with O(1). The degree of E can be defined in the following way

deg(E) := c1(E).Hn−1

and its slope

µ(E) :=
deg(E)

rk(E)
.

Definition 6 A coherent sheaf E of dimension d = dim(X) is µ-(semi)stable

if E is pure and µ(F )(≤)µ(E) for all subsheaves F ⊂ E with 0 < rk(F ) <

rk(E).

Proposition 2 (see [8, Lemma 1. 2. 13]) If E is a pure coherent sheaf

of dimension d = dim(X), then one has the following chain of implications

E is µ-stable⇒ E is stable⇒ E is semistable ⇒ E is µ-semistable.

Further a (µ-)semistable sheaf which is not (µ-)stable we will call properly

(µ-)semistable sheaf (the notation strictly semistable sheaf also appears in

the literature).

Let E be a non-trivial pure sheaf of dimension d. A Harder-Narasimhan

filtration for E is an increasing filtration

0 = NH0(E) ⊂ NH1(E) ⊂ ... ⊂ NHl(E) = E

such that the factors grNH
i = NHi(E)/NHi+1(E) for i = 1, ..., l, are semistable

sheaves of dimension d with reduced Hilbert polynomials pi = p(grNH
i ) satis-

fying

pmax(E) := p1 > ... > pl =: pmin(E).
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Assume now that E is semistable. A Jordan-Hölder filtration of E is a

filtration

0 = E0 ⊂ E1 ⊂ ... ⊂ El = E,

such that the factors gri(E) = Ei/Ei−1 are stable with reduced Hilbert poly-

nomial p(E).

Proposition 3 (see [8, Th. 1.3.4]) Every pure sheaf E has a unique Harder-

Narasimhan filtration.

Proposition 4 (see [8, Prop. 1.5.2]) Every semistable sheaf E has a Jordan-

Hölder filtration. The graded object gr(E) =
⊕
i

gri(E) does not depend on

the choice of the Jordan-Hölder filtration.

Definition 7 Two semistable sheaves E1 and E2 with the same reduced Hilbert

polynomial are called S-equivalent if gr(E1) ' gr(E2).

2 The construction of moduli scheme

For a fixed polynomial P ∈ Q[z] define a functor

M′ : (Sch/k)o → (Sets)

as follows. If S ∈ Ob(Sch/k), let M′(S) be the set of isomorphism classes of

S-flat families of semistable sheaves on X with Hilbert polynomial P . And

if f : S ′ → S is a morphism in (Sch/k), let M′(f) be the map obtained by

pulling-back sheaves via fX = f × idX :

M′(f) : M′(S) −→M′(S ′), [E]→ [f ∗XE].

If E ∈M′(S) is an S-flat family of semistable sheaves on X, and if L is an

arbitrary line bundle on S, then E ⊗ p∗(L) is also an S-flat family, where

p : X ×S → S is the natural projection, and the fibres Es and (E⊗ p∗L)s =

Es ⊗k(s) L(s) are isomorphic for each point s ∈ S. It is therefore reasonable
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to consider the quotient functor M = M′/ ∼, where ∼ is the equivalence

relation:

E ∼ E ′ for E, E ′ ∈M′(S) if and only if E ' E ′⊗ p∗L for some L ∈ Pic(S).

If we take families of stable sheaves only, we get open subfunctors (M′)s ⊂M′

and Ms ⊂M. A schemeM is called a moduli space of semistable sheaves if

it corepresents the functor M.

Proposition 5 (see [8, Lemma 4.1.2]) SupposeM corepresents M. Then

S-equivalent sheaves correspond to identical closed points in M. In particu-

lar, if there is an indecomposable properly semistable sheaf E then M cannot

be represented.

The family of semistable sheaves on X with Hilbert polynomial equal

to P is bounded (see [8, Th. 3.3.7]). In particular, it means that there is

an integer m such that E(m) is globally generated and h0(E(m)) = P (m).

Thus if we let V := k⊕P (m) and K := V ⊗OX(−m), then there is a surjection

ρ : K� E obtained by composing the canonical evaluation map H0(E(m))⊗
OX(−m) −→ E with an isomorphism V −→ H0(E(m)). This defines a

closed point [ρ : K � E] ∈ Quot(K, P ) of the corresponding Quot-scheme

parameterising quotient sheaves of the sheaf K with the Hilbert polynomial

P . In fact, this point is contained in the open subset R ⊂ Quot(K, P ) of all

those quotients [K� E], where E is semistable and the induced map

V = H0(K(m)) −→ H0(E(m))

is an isomorphism. Let Rs ⊂ R denote the open subscheme of those points

which parametrize stable sheaves E.

Theorem 1 (see [8, Th. 4.3.4]) There is a projective scheme MO(1)(P )

that universally corepresents the functor MO(1)(P ). Closed points inMO(1)(P )

are in bijection with S-equivalence classes of semistable sheaves with Hilbert
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polynomial P . Moreover, there is an open subset Ms
O(1)(P ) that universally

corepresents the functor Ms
O(1)(P ).

Theorem 2 (see [8, Cor. 4.3.5]) The morphism π : Rs −→Ms is a prin-

cipal PGL(V )-bundle.

One also needs to consider relative moduli spaces, i.e. moduli spaces of

semistable sheaves on the fibres of a projective morphism X → S. Consider

for a given polynomial P the functor MX/S : (Sch/S)o −→ (Sets), which by

definition associates to an S-scheme T of finite type the set of isomorphism

classes of T -flat families of semistable sheaves on the fibres of the morphism

XT := T ×S X → T with Hilbert polynomial P . If we take families of stable

sheaves only, we get open subfunctor Ms
X/S(P ) ⊂MX/S(P ).

Theorem 3 (see [8, Th. 4.3.7]) Let f : X → S be a projective morphism

of k-schemes of finite type with geometrically connected fibres, and let O(1)

be a line bundle on X very ample relative to S. There is a projective mor-

phism MX/S(P ) → S which universally corepresents the functor MX/S(P ).

In particular, for any closed point s ∈ S one has MX/S(P )s ' MXs(P ).

Moreover, there is an open subscheme Ms
X/S(P ) ⊂ MX/S(P ) that univer-

sally corepresents the subfunctor Ms
X/S(P ) ⊂MX/S(P ).

Further we will be concentrated on the Gieseker-Maruyama moduli scheme

of semistable rank-2 sheaves with Chern classes c1 = 0, c2 = k, c3 = 2n on

the projective space P3 which we will denote by M(0, k, 2n). Also denote

M(k) = M(0, k, 0). In addition, we define B(k) to be the open subset of

M(k) consisting of stable locally free sheaves. For simplicity we will not make

a distinction between a stable sheaf E and corresponding isomorphism class

[E] as a point of moduli scheme. Also by a general point of an irreducible

scheme we understand a closed point belonging to some Zariski open dense

subset of this scheme.
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3 Reflexive sheaves

A sheaf F is called reflexive if the natural map F → F∨∨ is an isomorphism.

The singularity set Sing(F ) of a reflexive sheaf F on X is of codimension

≥ 3. In particular, a reflexive sheaf on P3 has zero-dimensional singularities.

Moreover, any reflexive rank 1 sheaf is invertible.

Theorem 4 (see [4, Th. 4.1]) Fix an integer c1. Then there is a one-to-

one correspondence between

(i) pairs (F, s) where F is a rank 2 reflexive sheaf on P3 with c1(F ) = c1,

and s ∈ H0(F ) is a global section whose zero-set has codimension 2,

and

(ii) pairs (Y, ξ), where Y is a Cohen-Macaulay curve in P3, generically

locally complete intersection, and ξ ∈ H0(ωY (4− c1)) is a global section

which generates the sheaf ωY (4− c1) except at finitely many points.

Furthermore under this correspondence

c2 = d, c3 = 2pa − 2 + d(4− c1),

where c2, c3 are the Chern classes of F , and d, pa are the degree and arith-

metic genus of Y .

The moduli scheme R(0,m, 2n) parameterizing stable reflexive rank-2

sheaves on P3 with Chern classes c1 = 0, c2 = m, c3 = 2n can be considered

as an open subset of the Gieseker-Maruyama moduli scheme M(0,m, 2n),

so it is a quasi-projective scheme (see [4]). It is known that for (m,n) = (2, 1),

(2, 2), (3, 4) this scheme is smooth, irreducible and rational; for (m,n) = (3, 2)

it is irreducible and reduced at general point; for (m,n) = (3, 1), (3, 3) the

corresponding reduced scheme is irreducible (see [3]). Moreover, the scheme

R(0,m,m2 −m+ 2) is irreducible and smooth for each m ≥ 2 (see [22]).
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Theorem 5 (see [10, Th. 8]) For each triple (a, b, c) of positive integers

such that 3a+ 2b+ c is nonzero and even, the rank 2 reflexive sheaves given

by

0 −→ G(a,b,c)
α−→ (a+ b+ c+ 2) · OP3 −→ F (k) −→ 0,

G(a,b,c) := a · OP3(−3)⊕ b · OP3(−2)⊕ c · OP3(−1),

fill out an irreducible, nonsingular, component S(a, b, c) of R(0,m, 2n) of

expected dimension 8m− 3, where m and n are given by the expressions:

m =
1

4
(3a+ 2b+ c)2 +

3

2
(3a+ 2b+ c)− (b+ c),

2n = 27

(
a+ 2

3

)
+ 8

(
b+ 2

3

)
+

(
c+ 2

3

)
+ 3(3a+ 2b+ 5)ab+

+
3

2
(3a+ c+ 4)ac+ (2b+ 3c+ 3)bc+ 6abc.

More precisely, let S̃(a, b, c) ⊂ Hom(G(a,b,c), (a+ b+ c+ 2) · OP3) be the open

subset consisting of monomorphisms with 0-dimensional degeneracy loci; then

S(a, b, c) = S̃(a, b, c)/

((
Aut(G(a,b,c))×GL(a+ b+ c+ 2)

)
/C∗

)
.

Also we can construct a scheme V(0,m, 2n) parameterizing some set of

reflexive properly µ-semistable rank-2 sheaves with the corresponding Chern

classes in the following way. Consider the Hilbert scheme Hilbm,g(P3) of

smooth space curves of degree m and genus g; let n = g + 2m − 1. Now

denote by Z ↪→ Hilbm,g(P3) × P3 the corresponding universal curve and

pr : Hilbm,g(P3) × P3 −→ Hilbm,g(P3) the projection onto the first factor.

We define the scheme V(0,m, 2n) as an open subset of P((pr∗ωZ(4))∨) the

points (Y, Pξ) ∈ P((pr∗ωZ(4))∨) of which satisfy the following property

ξ ∈ H0(ωY (4)) generates ωY (4) except at finitely many points.
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By the construction we have the formula for the dimension of this scheme

dim V(0,m, 2n) = dim Hilbm,g(P3) + dim P(H0(ωY (4))) = (1)

= h0(NY/P3) + h0(ωY (4))− 1,

where Y is an arbitrary curve from Hilbm,g(P3). Next, note that due to

the isomorphism H0(ωY (4)) ' Ext1(IY ,OP3) any point (Y,Pξ) ∈ V(0,m, 2n)

uniquely defines the sheaf F which fits in the exact triple

0 −→ OP3 −→ F −→ IY −→ 0. (2)

One can show that F is a reflexive properly µ-semistable rank-2 sheaf with

Chern classes c1 = 0, c2 = m, c3 = 2n. Therefore, there exists one-to-one

correspondence between points of V(0,m, 2n) and some family of reflexive

properly µ-semistable rank-2 sheaves with Chern classes c1 = 0, c2 = m,

c3 = 2n (for more details, see [4, Thm. 4.1, Prop. 4.2]).

If curve Y from the previous construction is rational then we have n = 2m− 1.

Denote the corresponding parameter space V(0,m, 4m− 2) by just Vm.

4 Irreducible decomposition of M(k), k ≥ 1

It is not difficult to check thatM(1) is irreducible. The key point is to show

that every semistable rank 2 sheaf E on P3 with c1(E) = 0, c2(E) = 1 and

c3(E) = 0 is a nullcorrelation sheaf in the sense of [1], that is, given by an

exact sequence of the form

0 −→ OP3(−1) −→ Ω1
P3(1) −→ E −→ 0.

It follows that E is uniquely determined by the section σ ∈ H0(Ω1
P3(2)) up

to scalar multiples, so that M(1) ' PH0(Ω1
P3(2)) ' P5.

For k ≥ 2 the moduli schemesM(k) become reducible. However, some in-

finite series of components ofM(k) have been constructed. We will describe
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them in this section.

First of all, for any k ≥ 1 there exists so called the moduli space of

instanton bundles I(k) which can be considered as a subscheme of the moduli

scheme of stable bundles B(k) ⊂M(k). An instanton bundle of charge k is

a rank-2 bundle E satisfying the following properties

c1(E) = 0, c2(E) = k, h0(E(−1)) = h1(E(−2)) = 0.

It is known that the moduli space I(k) is irreducible (see [19, 20]), non-

singular (see [21]) and affine (see [18]). The closure I(k) within M(k) is

the irreducible component of M(k) of the dimension 8k − 3. In particu-

lar, M(1) ' I(1), M(1) \ I(1) ' Gr(2, 4) ⊂ P3, and I(1) parameterizes

nullcorrelation bundles.

For k = 1, 2 we have that B(k) = I(k). However, for k ≥ 3 this is no

longer the case and the scheme B(k) also becomes reducible. Further we

describe the series of components of B(k) which do not coincide with I(k).

More precisely, for any three integers c > b ≥ a ≥ 0 consider the monad

0 −→ OP3(−c) α−→ OP3(−b)⊕OP3(−a)⊕OP3(a)⊕OP3(b)
β−→ OP3(c) −→ 0,

(3)

with morphisms given by

α =


σ4

σ3

−σ2
−σ1


and β = (σ1, σ2, σ3, σ4), where

σ1 ∈ H0(OP3(c+ b)), σ2 ∈ H0(OP3(c+ a)),

σ3 ∈ H0(OP3(c− a)), σ4 ∈ H0(OP3(c− b))

do not vanish simultaneously.
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Theorem 6 (see [2, Prop. 1.2(a)]) For c > a + b there exists an irre-

ducible component N (a, b, c) of B(c2−b2−a2) whose points correspond to lo-

cally free sheaves given as the cohomologies of monads as in (3). The closure

N (a, b, c) is an irreducible component of the moduli scheme M(c2− b2− a2).

These components are called Ein components.

The next theorem describes the series of components ofM(k) whose gen-

eral sheaves have 0-dimensional singularities. These components are con-

structed by using components of the moduli schemes parameterizing stable

reflexive sheaves. For example, we can use the series S(a, b, c) from Theorem

5.

Theorem 7 (see [10, Th. 7]) For every nonsingular irreducible component

F of R(0, k, 2s) of expected dimension 8k−3, there exists an irreducible com-

ponent T (k, s) of dimension 8k − 3 + 4s in M(k) whose generic point [E]

fits into the exact triple

0 −→ E −→ F −→ Q −→ 0,

where [F ] ∈ F and Q is a zero-dimensional sheaf of the length s.

In the following theorem the series of components ofM(k) parameterising

semistable sheaves with 1-dimensional singularities is presented.

Theorem 8 (see [10, Th. 17]) For any positive integers 0 < d1 ≤ d2 and

non-negative integer c ≥ 0 there exists the irreducible component C(d1, d2, c)
of M(d1d2 + c) whose general sheaf [E] fits in the following exact triple

0 −→ E −→ F −→ L(2) −→ 0,

where [F ] ∈ I(c) and L is a line bundle over smooth complete intersection

curve C of bidegree (d1, d2) and genus g = 1 + 1
2
d1d2(d1 + d2 − 4) such that

deg L = g − 1, h0(L) = h1(L) = 0, L⊗2 6' ωC .
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Next, we recall the description of M(2) given by Hartshorne [5] and Le

Potier [6]. Firstly, the moduli scheme M(2) contains the instanton com-

ponent I(2). Moreover, all locally free sheaves from M(2) are instanton

bundles. Next, according to [6, Thm. 7.12], M(2) contains two additional

irreducible components, which are given by the closures of the subschemes

P(2)s = {[E] ∈M(2) | dim Ext2(E,OP3) = s}, s = 1, 2

within M(2); furthermore, dim P(2)s = 13 + 4s. Le Potier calls these the

Trautmann components.

Note that these actually coincides with the components T (2, s) described

above. Indeed, note that if [E] ∈ T (2, s), then

dim Ext2(E,OP3) = h0(Ext2(E,OP3)) = h0(Ext3(QE,OP3)) = h0(QE).

However, the length of QE is half of c3(E
∨∨), which means that [E] ∈ P(2)s,

thus T (2, s) ⊂ P(2)s.

From the previous section we know that, for each s = 1, 2, R(0, 2, 2s) is

irreducible, nonsingular of dimension 13. It follows from Theorem 7 that,

for each s = 1, 2, T (2, s) is an irreducible component of M(2) of dimension

13 + 4s; therefore, we must have that T (2, s) = P(2)s.

Consequently, Le Potier’s result can be restated in the following form:

M(2) = I(2) ∪ T (2, 1) ∪ T (2, 2).

Ellingsrud and Stromme showed in [13] that B(3) has precisely two irre-

ducible components, both nonsingular, rational and of the expected dimen-

sion 21; these can be described as follows:

� the instanton component I(3), whose points are the cohomology of mon-

ads of the form

0 −→ 3OP3(−1) −→ 8OP3 −→ 3OP3 −→ 0;
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� the Ein component N (0, 1, 2) whose points are the cohomology of mon-

ads of the form

0 −→ OP3(−2) −→ OP3(−1)⊕ 2OP3 ⊕OP3(1) −→ OP3(2) −→ 0.

As it was mentioned in the previous section, R(0, 3, 2s) is irreducible and

of expected dimension 21 for each s = 1, ..., 4. Therefore, we can apply

Theorem 7 to show that there are four irreducible components T (3, s) of

dimensions 21 + 4s for each s = 1, ..., 4 within M(3).

Furthermore, Theorem 8 provides one additional irreducible component

whose generic point corresponds to sheaves with 1-dimensional singularities,

labeled C(1, 3, 0).

We therefore conclude that M(3) has at least seven irreducible compo-

nents, divided into 3 types, as below:

1. I(3) and N (0, 1, 2), both of dimension 21, and whose generic points

correspond to locally free sheaves;

2. C(1, 3, 0), of dimension 21; whose generic point corresponds to a sheaf

which is singular along smooth plane cubic;

3. T (3, s) for s = 1, 2, 3, 4, of dimension 21 + 4s; whose generic point

corresponds to a sheaf which is singular along 3s distinct points.

5 New components of M(k), k ≥ 3

In the series of papers [15, 16, 17] there were described new irreducible com-

ponents of the moduli schemes M(k), k ≥ 3 starting with construction of

one component ofM(3) and then sequentially generalizing this construction

to description of series of components. New feature of these new components

is that their general sheaves have singularities of mixed dimension, namely,

union of a curve and collection of points in P3.
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The first component of this series was described in [15]. A general sheaf

of this component has singularities along the union of projective line and

two points. Similarly to the construction of the series T (k, s) and C(d1, d2, c)
from Theorems 7 and 8 the construction of this new component is based on

the technique of so called elementary transformations. More precisely, we

consider all sheaves E fitting in the following exact triple

0 −→ E −→ F −→ Ol(2) −→ 0, (4)

where F is a reflexive sheaf from R(0, 2, 2) and l is a projective line such

that l ∩ Sing(F ) = ∅. One can show that E is a stable sheaf with Chern

classes c1 = 0, c2 = 3, c3 = 0. It happens that the dimension of the tangent

space T[E]M(3) of the moduli scheme M(3) at the point [E] is equal to the

dimension of the family of sheaves obtained by the exact triple of the form

(4). We denote this family by X (1, 0). Therefore, we have the following

theorem

Theorem 9 (see [15, Th.]) The closure of the family X (1, 0) withinM(3)

is a new irreducible component of M(3) of dimension 22.

One can see that a general sheaf of this component has singularities along

l t Sing(F ). In fact, it was the first example of a component whose general

sheaf has singularities of mixed dimension.

Further this result was generalized in [16]. There were constructed two

more components of the moduli scheme M(3). The general sheaves E of

these components fit into the exact triple

0 −→ E −→ F −→ Ol(r)⊕OW −→ 0, (5)

where [F ] ∈ R(0, 2, 2n), n = 1, 2, l is a projective line and W = {q1, ..., qs} ∈
Syms(P3)∗ is a set of points in P3 such that l∩W = ∅, (ltW )∩Sing(F ) = ∅.
The condition c1(E) = 0 imposes the following restriction r = n + 1− s, so
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we have the seven families of sheaves X (n, s), where

(n, s) = (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (2, 3).

Four of them lie inside the known components T (3, s).

Theorem 10 (see [16, Th.4]) We have the following proper inclusions:

X (1, 1) ( T (3, 1), X (2, 2) ( T (3, 2),

X (1, 2) ( T (3, 2), X (2, 3) ( T (3, 3).

So their closures do not give new components. The family X (1, 0) was already

discussed previously. However, dimensions of the families X (2, 0) and X (2, 1)

coincide with the corresponding dimensions of the tangent spaces ofM(3), so

their closures constitute irreducible components X (2, 0) and X (2, 1). Due to

the fact that the singularity sets of general sheaves of these two components,

namely, l t Sing(F ) tW, where |Sing(F )| = 4, |W | = 0, 1, do not coincide

with the singularity sets of general sheaves of other components of M(3),

the components X (2, 0) and X (2, 1) are new.

Theorem 11 (see [16, Th. 3]) The closures of the families X (2, 0) and

X (2, 1) are new irreducible components of M(3) of dimensions 24 and 26,

respectively.

The construction from [15, 16] was generalized in the paper [11]. More

precisely, in this paper new irreducible components of the moduli schemes

M(e, n,m), e = −1, 0 whose general sheaves have singularities along the

disjoint union of a projective line and a collection of points in P3 were con-

structed.

These results were further generalized in [17]. Namely, an infinite series

of components of M(k), k ≥ 3 whose general sheaves have singularities of

mixed dimension was constructed. The construction generalizes computa-

tions from [10, 15, 16, 11]. More precisely, let us consider two series of com-

ponents of the Hilbert schemes Hilbd, d ≥ 1, and Hilb(d1,d2), 1 ≤ d1 ≤ d2,
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where Hilbd parameterizes smooth rational curves of degree d and Hilb(d1,d2)

parameterizes smooth complete intersection curves of bidegree (d1, d2) in P3.

For the Hilbert schemes Hilb(d1,d2) we will assume that 1 ≤ d1 ≤ d2 and

(d1, d2) 6= (1, 1), (1, 2). Denote by H some component from the collection

{Hilbd | d ≥ 1} t {Hilb(d1,d2) | 1 ≤ d1 ≤ d2, (d1, d2) 6= (1, 1), (1, 2)}. Let C

be a curve from H with degree d and genus g. Next, consider the subset

W ⊂ P3 of s disjoint points in P3 satisfying the condition C ∩W = ∅.
Now consider the series of components S(a, b, c) of moduli spaces of stable

reflexive sheaves from Theorem 5 and also consider the series of moduli spaces

Vm for properly µ-semistable reflexive sheaves from Section 3. Denote by

R some component from the collection {S(a, b, c)} t {Vm} such that the

following restrictions are satisfied
s < n, if H = Hilbd for some d,

s ≤ n, if H = Hilb(d1,d2) for some (d1, d2),

m ≤ d, if R = Vm for some m,

(6)

where m is c2 and n is 1
2
c3 of sheaves from R. Suppose F ∈ R and consider

a line bundle L over C of degree g − 1 + 2d+ n− s satisfying the property

Home(F,L⊕OW ) 6= 0, h1(Hom(F,L)) = 0, h0(ωC(4)⊗ L−2) = 0. (7)

Next, similarly to the exact triple (5) we can construct a sheaf E as follows

0 −→ E −→ F −→ L⊕OW −→ 0. (8)

One can show that the sheaf E is stable and belongs toM(m+d). Moreover,

we have the following theorem.

Theorem 12 (see [17, Th.]) The closure of the family C(R,H, s) of sheaves

E obtained by the exact triple (8) is the irreducible component of M(m+ d).

Therefore, varying the moduli space R ∈ {S(a, b, c)} t {Vm}, the Hilbert

schemeH ∈ {Hilbd | d ≥ 1}t{Hilb(d1,d2) | 1 ≤ d1 ≤ d2, (d1, d2) 6= (1, 1), (1, 2)}
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and the number s satisfying (6) we obtain a new infinite series of irreducible

components {C(R,H, s)} of M(k), k ≥ 3. General sheaves of these com-

ponents have singularities of mixed dimension. In particular, it means that

they do not coincide with known components.

The smallest k for whichM(k) contains a new component from this series

is equal to 3. More precisely, we have the corollary

Corollary 1 The closure of the family C(V1,Hilb2, 0) is the irreducible com-

ponent of the moduli scheme M(3) of dimension 21. Therefore, the moduli

scheme M(3) has at least 11 irreducible components.

A general sheaf E of this component satisfies the following triple

0 −→ E −→ F −→ OC(2) −→ 0,

where [F ] ∈ V1 and C is a smooth conic. The properly µ-semistable reflexive

sheaf F fits into the exact triple

0 −→ OP3 −→ F −→ Il −→ 0, l ∈ Gr(2, 4).

The results of the thesis are published in three articles:

1. A.N. Ivanov, A.S. Tikhomirov, The moduli component of the space of

semistable rank-2 sheaves on P3 with singularities of mixed dimension,

Doklady Mathematics, 2017, Vol. 96, No. 2, pp. 506–509.

2. A. N. Ivanov, A. S. Tikhomirov, Semistable rank 2 sheaves with sin-

gularities of mixed dimension on P3, Journal of Geometry and Physics,

Vol. 129, 2018, pp. 90-98.

3. A. N. Ivanov, A new series of moduli components of rank-2 semistable

sheaves on P3 with singularities of mixed dimension, Sbornik: Mathe-

matics, 211:7 (2020), pp. 967-986.
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