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Introduction

The name “K3 surfaces” was coined by A. Weil in 1957 when he formulated a research pro-
gramme for these surfaces and their moduli. For many years the last open question of Weil’s
programme was that of the geometric type of the moduli spaces of polarised K3 surfaces. In
[D4] this problem was solved 50 years after its formulation. This is one of the main results of
the dissertation, summarised in §5. (See also C. Voisin’s talk at the Bourbaki seminar [Vo2]
and our large survey [GHS1] in the first volume of the monograph “Handbook of Moduli”.) In
a very short form, the result can be formulated as follows:

The moduli space F2d of polarized K3 surfaces of degree 2d is of general type for all d > 61.
To prove this statement, a fairly general and efficient method was developed, which is

successfully applied to various modular manifolds of orthogonal type. The proof of the general
type of modular varieties uses algebraic geometry, modular forms with respect to the indefinite
orthogonal group O(2, n), automorphic Borcherds products, combinatorics of root systems,
and arithmetic theory of quadratic forms. This general method is the main result of the
dissertation.

The need to study modular forms on orthogonal groups O(2, n) was first noted by A. Weil
in the late 1950s in his program for the study of K3 surfaces: “One interesting feature here is
the occurrence, in a problem of moduli, of the automorphic functions belonging to the group of
unites of a quadratic form of signature (n, 2) (with n = 19 in the present case).” (See “Final
report on research contract AF 18(603)-57”, [We, p. 390–395].)

Below we present the author’s results in the theory of automorphic forms on orthogonal
groups, which allowed us to solve some classical problems in the theory of moduli spaces of
polarized Abelian surfaces and their corresponding Kummer surfaces, polarized K3 surfaces
and polarized hyper-Kähler manifolds. The texts of the papers [D1]–[D10] are collected in
Appendices A–J of the dissertation. Their exact bibliographic description is given below on
page 3. Let us briefly formulate our main results.

1) We prove irrationality (more exactly, non-negativity of Kodaira dimension) of the moduli
spaces of (1, t)-polarized abelian surfaces (it was a question of Siegel) for all t except twenty
polarizations.

2) The general type of moduli spaces of polarized K3 surfaces of degree 2d for d > 61 is
proved. This was the last open problem of A. Weil’s program on K3 surfaces.

3) In the mid-1980s, multidimensional analogs of K3 surfaces were discovered. They are
irreducible holomorphic symplectic varieties or hyperkähler manifolds. We proved the general
type of moduli spaces of polarized hyper-Kähler manifolds of type K3[2] (moduli of dimension
20) and moduli spaces of polarized 10-dimensional O’Grady manifolds (moduli of dimension
21).
4) It is proved the irrationality of the moduli spaces of Kummer surfaces constructed from
polarized Abelian surfaces. This question has been opened since 1996.

The author’s results in the field of modular forms with respect to orthogonal groups are key
for solving these algebraic-geometric problems. We list the main automorphic results.

5) A method for lifting Jacobi forms to modular forms on paramodular groups and on orthog-
onal groups of signature (2, n). This method allows one to construct canonical differential
forms on modular varieties.
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6) Two automorphic criteria are proved: “Low weight cusp form trick” for general type and
an automorphic criterion for unirouledness of modular varieties. Both criteria are technically
related to reflective modular forms.

7) It is found a new representation of automorphic Borcherds products in one-dimensional
cusps of the modular group in terms of Jacobi forms. This approach allows one to construct
automorphic forms for the both automorphic criteria from point 6). This is the main transcen-
dental part of the proof of the algebraic-geometric results 1)– 4). In addition, this approach
allows one to find the Cartan matrix and the multiplicity of all positive roots of Lorentzian
Kac–Moody algebras.

8) Automorphic products in terms of Jacobi forms in one variable are interpreted in physics
as the secondary quantised elliptic genus of Calabi–Yau manifolds. We have studied the
automorphic properties of the elliptic genus and its secondary quantisation.
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1 Modular varieties and modular forms

First, we define a class of varieties, the modular varieties of orthogonal type, which is impor-
tant in algebraic geometry.

Let L be a integral quadratic lattice, more exactly, a free Z-module of finite rank with
a non-degenerate symmetric bilinear intergal form ( · , · ) : L × L → Z of signature (2, n). It
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means that (l, l) ∈ 2Z for any l ∈ L and sign(L⊗ R) = (2, n). We define the associated with
L n-dimensional classical Hermitian domain of type IV

D(L) = {[Z] ∈ P(L⊗ C) | (Z,Z) = 0, (Z,Z) > 0}+,

where the superscript + denotes a choice of one of the two connected components. We denote
by O+(L) the index 2 subgroup of the integral orthogonal group O(L) preserving D(L).

We let Γ be a subgroup of finite index in O+(L). Any such Γ acts properly discontinuously
on D(L) as a discrete group of automorphisms. We define the factor space

ML(Γ) = Γ\D(L),

which is called modular variety of orthogonal type.
For geometric applications, the most important arithmetic groups are stable orthogonal

group and its special subgroup

Õ
+

(L) = {g ∈ O+(L) | g|L∨/L = id}, S̃O
+

(L) = SO(L) ∩ Õ
+

(L), (1)

where L∨ is the dual lattice and L∨/L is finite discriminant group of order |det (L)|.
Many classical modular spaces are orthogonal modular varieties. Below are some important

examples of such varieties that we study in the dissertation.

Moduli spaces.

(1) The moduli space At of (1, t)-polarized abelian or Kummer surfaces. They are the
following Siegel modular varieties of dimension 3

Lt = U ⊕ U ⊕ 〈−2t〉, sign(Lt) = (2, 3), (2)

At = S̃O
+

(Lt) \ D(Lt), Kt = O+(Lt) \ D(Lt), dimAt = dimKt = 3, (3)

where U ∼= ( 0 1
1 0 ) is the hyperbolic plane, 〈−2t〉 is the lattice of rang 1 with Gramm

matrix (−2t).

(2) The moduli space of polarized K3-surfaces of degree 2d

L2d = 2U ⊕ 2E8(−1)⊕ 〈−2d〉, sign(Lt) = (2, 19), (4)

M2d = Õ
+

(L2d) \ D(L2d), (5)

where 2E8(−1) denotes two orthogonal copies of E8(−1).

(3) The moduli space of polarized irreducible holomorphic symplectic varieties of type K3[2]

with split polarization of Beauville–Bogomolov degrees 2d. See [Be], [Bo], [D5], [GHS1].

L2,2d = 2U ⊕ 2E8(−1)⊕ 〈−2〉 ⊕ 〈−2d〉, sign(L2,2d) = (2, 20), (6)

Msplit

K3[2],2d
= Õ

+
(L2,2d) \ D(L2,2d). (7)

(4) The moduli space of polarized 10-dimensional O’Grady varieties with a split polarization
of the Bogomolov–Beauville degree 2d

LA2,2d = 2U ⊕ 2E8(−1)⊕ 〈A2(−1)〉 ⊕ 〈−2d〉, sign(LA2,2d) = (2, 21), (8)

Msplit
O′G10,2d

= Õ
+

(LA2,2d) \ D(L2,2d). (9)
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By its construction modular variety of orthogonal type is a complex analytic space. Its com-
pactification of Satake’s type, more exactly the Baily–Borel compactification, was constructed
in [BB]. The boundary of the compactification D∗ decomposes as a disjoint union of compo-
nents FP , which are themselves symmetric spaces associated with certain rational parabolic
subgroups of the orthogonal group of signature (2, n), which are the the stabiliser of totally
isotropic subspaces in L⊗Q. Since sign(L) = (2, n), the isotropic subspaces may have dimen-
sion 1 or 2. The following result is true (see [BB]): the Baily–Borel compactificationML(Γ)∗

is an irreducible normal projective variety over C and it is decomposed as a disjoint union of
the components

ML(Γ)∗ =ML(Γ)q
∐
P
XP q

∐
`

Q`, (10)

where ` and P runs through representatives of Γ-orbits of isotropic lines and planes in L⊗Q.
The components XP and Q` are usually called 1- and 0-dimensional boundary components
of the modular variety or its one-dimensional and zero-dimensional cusps.

The theory of modular forms is one of the main tools to study the geometry of modular
manifolds of orthogonal type. For example, the Baily—Borel compactification ML(Γ)∗ can
be defined as Proj

(⊕
k

Mk(Γ)
)
, whereMk(Γ) denotes the finite dimensional spaces of modular

forms of weight k with trivial character.

Definition 1.1. Consider a lattice L has signature (2, n) with n > 3 and the affine cone

D(L)• = {y ∈ L⊗ C | x = C∗y ∈ D(L)}

over D(L). Let k ∈ Z and let χ : Γ → C∗ be a character of a subgroup Γ < O+(L) of
finite index. A holomorphic function F : D(L)• → C is called modular form of weight k and
character χ for the group Γ, if

F (tZ) = t−kF (Z) ∀ t ∈ C∗, F (gZ) = χ(g)F (Z) ∀ g ∈ Γ.

A modular form is called parabolic or cusp form if if it vanishes at every cusp, i. e. at every
boundary components of the Baily–Borel compactification of the modular variety Γ\D(L).

By Mk(Γ, χ) (respectively, by Sk(Γ, χ)) we denote the linear spaces of modular (respec-
tively, cusp) forms of weight k and character χ. These spaces are finite dimensional.

Differential forms on ML(Γ) can be interpreted as modular forms with respect to the
group Γ. We select a holomorphic volume element dZ on D(L). Then, if F is a modular
form of weight kn and character detk for group Γ, then F (dZ)k is a Γ-invariant section of the
pluricanonical bundle Ω(D(L))⊗k. Therefore the arithmetic information on modular forms
can be used in order to obtain a geometric information of the modular variety of orthogonal
typeML(Γ).

The weight k = n is called canonical because by a lemma of Freitag (see [Fr, Proposition 2.1
in Ch. 3]):

Sn(Γ,det) ∼= H0
(
M̃L(Γ),Ω(M̃L(Γ))

)
,

where M̃L(Γ) is a smooth compact model of the modular variety ML(Γ) and Ω(M̃L(Γ)) is
the sheaf of canonical differential forms. Therefore we have the following important formula
for the geometric genus of the modular variety of orthogonal type:

pg(M̃L(Γ)) = hn,0(M̃L(Γ)) = dimSn(Γ,det). (11)
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Main problem: How to construct at least one parabolic form of canonical weight for modular
groups from the moduli theory algebraic varieties?

For the manifold At this problem was solved by the author in [D1], and for the variety Kp
with a prime p the first non- trivial results obtained in [D9]–[D10].

2 Arithmetic lifting of Jacobi forms and module spaces Abelian
surfaces (Siegel problem)

In this dissertation, we consider lattices containing two hyperbolic planes U ,

L = U ⊕ L1 = U ⊕ (U1 ⊕ L0(−1)), U ∼= U1
∼= ( 0 1

1 0 ) , (12)

where L0 is an even integer positive definite lattice of rank n0 > 0, L1 is of signature (1, n0+1),
and L of signature (2, n0+2). The first decomposition of the lattice L in (12) gives a cylindrical
model (the so-called tube of future) of the homogeneous domain:

H(L1) ∼= H(L0) = {Z = ωe1 + z + τf1 ∈ L1 ⊗ C |
τ, ω ∈ H1, z ∈ L0 ⊗ C, 2 Im τ · Imω − (Im z, Im z)L0 > 0}. (13)

Any modular form F ∈ Mk(S̃O
+

(L)) is periodic, i.e. F (Z + l) = F (Z) for any l ∈ L1. This
defines the Fourier expansion in the variable Z ∈ H(L1) at the zero-dimensional cusp

F (Z) =
∑

l∈L∨1 , (l,l)≥0

f(l) exp (2πi (l, Z)). (14)

Condition on the hyperbolic norm of indices of nonzero Fourier coefficients (l, l)L1 ≥ 0 follows
from the holomorphism of the modular form. (See the description of the Fourier expansion
in an arbitrary cusp in [GN2, §2.3] and [GHS1, §8.2–8.3].) The Fourier–Jacobi decomposition
is a one-dimensional cusp decomposition. More precisely, this is the Fourier expansion in the
variable ω from (13)

F (τ, z, ω) =
∑
m≥0

ϕm(τ, z) exp (2πimω). (15)

The coefficients ϕm(τ, z) are called Fourier–Jacobi coefficients at 1-dimensional cusp.
We define Jacobi forms of weight k and index m with respect to the lattice L0 as automor-

phic forms of the type ϕ(τ, z) exp (2πimω) relative a parabolic subgroup preserving a given
one-dimensional cusp. This can be expressed with functional equations of two types given
below.

Definition 2.1. (See [D2, Definition 2.2], [G2] and [CG2].) Holomorphic function ϕ : H ×
(L0 ⊗ C)→ C is called nearly holomorphic Jacobi form of weight k ∈ Z, index t ∈ N
for lattice L0, if it satisfies the functional equations

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k eiπt

c(z,z)
cτ+d ϕ(τ, z), ∀

(
a b
c d

)
∈ SL2(Z),

ϕ(τ, z + xτ + y) = e−iπt((x,x)τ+2(x,z)) ϕ(τ, z), ∀x, y ∈ L0,

ant it has the following Fourier expansion

ϕ(τ, z) =
∑
n≥c0

∑
`∈L∨0

f(n, `)qnζ`, (16)
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where c0 ∈ Z, q = e2πiτ and ζ` = e2πi(`,z). If ϕ satisfies

f(n, `) 6= 0 =⇒ 2n− (`, `) ≥ 0,

then ϕ is called holomorphic Jacobi form. If ϕ satisfies a stronger condition (f(n, `) 6=
0 =⇒ 2n− (`, `) > 0) then ϕ is called parabolic. We denote by J !

K,L0,t
(respectively, Jk,L0,t,

and Jcusp
k,L0,t

) the vector space of weakly holomorphic (respectively, holomorphic or parabolic)
Jacobi forms of weight k and index t with respect to the lattice L.

Theorem 2.2. (See [D2, Theorem 3.1] and [G2].) The lifting of a Jacobi form ϕk(τ, z) ∈
Jk,1(L0) (with f(0, 0) = 0) of weight k was defined as an action of a formal Hecke L-function
of SL2(Z) by the formula

Lift(ϕk)(τ, z, ω) =
∑
m≥1

mk−1
(
ϕk(τ, z)e

2πimω
)
|k T−(m)

=
∑
m≥1

m−1
∑
ad=m

b mod d

akϕk
(aτ + b

d
, az

)
e2πimω. (17)

On can write its Fourier expansion

Lift(ϕk)(Z) =
∑

n,m>0, `∈L∨0
2nm−(`,`)≥0

∑
d|(n,`,m)

dk−1f(
nm

d2
,
`

d
) e(nτ + (`, z) +mω)

where d|(n, `,m) denotes a positive integral divisor of the vector in U ⊕ L∨0 (−1). The lifting
is a modular form with respect to stable special orthogonal group S̃O

+
(L) (see (1)?)

Lift(ϕk) ∈Mk(S̃O
+

(L)).

Lift(ϕk) is a cusp form if ϕk is a Jacobi cusp form.

Jacobi modular forms of weight k and index 1 corresponding to a lattice in 〈2t〉 are the
usual modular Jacobi forms of weight k and index t in the sense of Eichler–Zagier. For any
parabolic Jacobi form of weight 3 and index t, the lifting construction gives a nonzero parabolic
form of weight 3 with respect to the paramodular group Γt. According Freitag’s criterion, we
obtain a nonzero canonical differential form on any compactification of the modular manifold
At. This gives the following theorem.

Theorem 2.3. (See [D1, Theorem 1.1].) The moduli space of (1, t)-polarized abelian surfaces
At (see (2)–(3)) has positive geometric genus for all t except twenty exceptional polarizations
t = 1, 2, . . . , 12, 14, 15, 16, 18, 20, 24, 30, 36. In particular, H3(Γt,C) is not trivial for all non-
exclusive polarizations.

The rationality or unirationality of the corresponding moduli space is known only for
exceptional t ≤ 20 (see [GP]).
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3 Reflective automorphic forms: two automorphic criteria in
geometry of modular varieties

Differential forms on FL(Γ) may be interpreted as modular forms for Γ: see Section ?? for more
details. Therefore arithmetic information (modular forms) may be used to obtain geometric
information about FL(Γ). In particular we can use modular forms to decide whether FL(Γ)
is of general type, or more generally to try to determine its Kodaira dimension.

If Y is a connected smooth projective variety of dimension n, the Kodaira dimension κ(Y )
of Y is defined by

κ(Y ) = Tr.deg
(⊕
k≥0

H0(Y, kKY )
)
− 1,

or −∞ if H0(Y, kKY ) = 0 for all k > 0. Thus h0(Y, kKY ) ∼ kκ(Y ) for k sufficiently divisible.
The possible values of κ(Y ) are −∞, 0, 1, . . . , n = dimY , and Y is said to be of general type
if κ(Y ). The Kodaira dimension is a bimeromorphic invariant so it makes sense to extend the
definition to arbitrary irreducible quasi-projective varieties X by putting κ(X) = κ(X̃) for X̃
a desingularisation of a compactification of X.

The branch divisor of the modular projection πΓ : D(L)→ Γ\DL) which is one major
obstacle to continue pluricanonic differential forms with an open subdomain FL(Γ)o on a
smooth compactification of this quasi-projective variety.

Theorem 3.1. (See [D4, Corollary 2.13].) The branch divisor R.div(πΓ) of the modular
projection πΓ : D(L)→ Γ\D(L) is induced by all g ∈ Γ such that g or −g is a reflection with
respect to a vector in L

R.div(πΓ) =
⋃

r∈L/±1

r primitive
σr∈Γ or −σr∈Γ

Dr(L). (18)

Definition 3.2. A modular form F ∈Mk(Γ, χ) is called reflective if

supp(divF ) ⊂ R.div(πΓ),

where R.div(πΓ) is the divisor of modular projection from Theorem 3.1. F is called strongly
reflective if , if the multiplicity of all of irreducible components of divF is equal to 1.

Modular forms with a small or large divisor. According to the definition given
above, the modular form F ∈ Mk(Γ, χ) is strictly reflective if and only if divF ≤ R.div(πΓ),
i.e. the divisor of a strictly reflective form if small. We say that the divisor of the modular
form F ∈Mk(Γ, χ) is large if divF ≥ R.div(πΓ).

Modular forms of canonical weight. Small and big weights. Let sign(L) = (2, n).
Arbitrary modular divisor a modular form of canonical weight F ∈Mn(Γ,det) always contains
ramification divisor R.div(πΓ).

Canonical weight is borderline in geometric applications. We say that the weight k of the
modular form F ∈ Mk(Γ, χ) is small if k < n, and large if k > n. Below we give the first
automorphic criterion.

Theorem 3.3. (Low weight cusp form trick, see [D4,Theorem 1.1].) Let be sign(L) =
(2, n) and n > 9. The modular varity ML(Γ) is of general type if there exists a cusp form
F ∈ Sk(Γ, detε) (ε = 0, 1) of low weight k < n such that div(F ) > R.div(πΓ).
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The second criterion is in some sense the opposite of the first. We will prove that the
Kodaira dimension of the modular variety ML(Γ) is equal to −∞ if there exists a modular
form of large weight with small divisor.

Theorem 3.4. (See [D2, Theorem 5.8].) Let sign(L) = (2, n), and let n > 3. Let Fk ∈
Mk(Γ, χ) be a strongly reflective modular form of weight k and character χ, where Γ < O+(L)
is of finite index. Denote by κ(X) the Kodaira dimension of X.

1) If k > n, then κ(Γ\D(L)) = −∞.
2) Let k = n. Assume that Γ has at least one cusp, i. e. Γ\D(L) is not compact. If

the form F is not cusp, then κ(Γ\D(L)) = −∞. If F is a cusp form (with multiplicity of
zeroes at least 1 along the boundary), then for the subgroup Γχ = ker(χ · det) < Γ we obtain
κ(Γχ\D(L)) = 0.

Note that there is the following its algebraic-geometric refinement. Remind that the man-
ifold X is called uniruled if there is a dominant rational map Y × P1 99K X, where Y is a
manifold with dimY = dimX − 1. If X is uniruled then κ(X) = −∞. It is hypothetically
assumed that the reciprocal is also true, however, this is proved only for dimX = 3.

Theorem 3.5. (See [D7, Theorem 2.1].) Let k > n like in the conditions of Theorem 3.4.
Then the modular variety Γ\D(L) is at least uniruled.

4 Automorphic Borcherds products in terms of Jacobi modular
forms of weight 0, Lorentzian Kac–Moody algebras, elliptic
genus of Calabi–Yau varieties

In the previous section, we described the role of automorphic forms with special divisors. The
main task is to construct automorphic forms that satisfy the conditions of the first or second
automorphic criteria.
4.1. Automorphic product at a one-dimensional cusp.

Consider the η-Dedekind function

η(τ) = q1/24
∏
n≥1

(1− qn) ∈ S1/2(SL2(Z), vη), (19)

which is a cusp form of weight 1/2 with a system of multipliers vη : SL2(Z)→ U24 of order 24.
The basic object in our construction is an odd Jacobi theta function (ϑ(τ,−z) = −ϑ(τ, z))

ϑ(τ, z) = q
1
8 (ζ

1
2 − ζ−

1
2 )
∏
n≥1

(1− qnζ)(1− qnζ−1)(1− qn). (20)

In [GN3] was noted that ϑ(τ, z) ∈ J1/2,1/2(v3
η × vH) happens to be a holomorphic Jacobi form

of weight 1/2 and index 1/2 in terms of definitions from §4.
Let L = 2U ⊕ L0(−1) as above. Õ

+
(L) is a stable orthogonal group. For any v ∈ L ⊗ Q

satisfying (v, v) < 0, define the corresponding rational quadratic divisor For any v ∈ L ⊗ Q
satisfying (v, v) < 0, define the corresponding rational quadratic divisor Dv = {[Z] ∈ D(M) :
(Z, v) = 0}. We fix the affine cylindrical realization H(L0) of the homogeneous domain D(L)
(see (13)).
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Theorem 4.1. (See [D2, Theorem 4.2].) Suppose that for the Jacobi form ϕ ∈ Jnh
0,L0;1 the

condition f(n, `) = f(Q,µ) ∈ Z is satisfied, if Q = 2n − `2 6 0. Then we define the
meromorphic modular form Bϕ(Z) of weight k = f(0, 0)/2 with respect to Õ

+
(L), where

L = 2U ⊕ L0(−1), with character χ

Bϕ(Z) = qAr
~BsC

∏
n,m∈Z, `∈L∨0

(n,`,m)>0

(1− qnr`sm)f(nm,`),

where

Z = (τ, z, ω) ∈ H(L0), q = exp (2πiτ),

r` = exp (2πi(`, z)), s = exp (2πiω),

and (n, `,m) > 0 means that either m > 0, or m = 0 and n > 0, or m = n = 0, and ` < 0,
and

A =
1

24

∑
`∈L∨0

f(0, `), ~B =
1

2

∑
`>0

f(0, `)` ∈ 1

2
L∨0 , C =

1

2 rankL0

∑
`∈L∨0

f(0, `)(`, `).

The poles and zeros of the meromorphic form Bϕ coinside with the Heegner divisors HQ(µ) of
the modular variety and the divisor multiplicity is equal to

multHQ(µ) =
∑
d>1

f(d2Q, dµ).

where v ≡ ` mod 2U⊕L0(−1), ` ∈ L∨0 , n ∈ Z such that (v, v) = 2n−(`, `). In particular, Bϕ
is holomorphic, if all nonzero Fourier coefficients with indices of negative hyperbolic norms
are positive.

Remark. Our version of the Borcherds product is it an exponential variant of the arithmetic
lifting. The Infinite Product of Theorem 4.1 in our version it is written in a different way.
Let ϕ be the original Jacobi form of weight 0 and

ϕ̃(Z) = ϕ̃(τ, z, ω) = ϕ(τ, z) exp(2piiω).

Then
Borch(ϕ)(Z) = ψ̃L;C(Z) exp

(
−
∑
m≥1

m−1ϕ̃|T−(m)(Z)
)
, (21)

where the sum under exponent is arithmetic lifting of the Jacobi form of weight 0 from Theorem
2.2. The first factor, i.e. the first nonzero Fourier–Jacobi coefficient with index C of the form
Borch(ϕ) in a given one- dimensional cusp is a generalized theta block

ψL,C(τ, z) = η(τ)f(0,0)
∏
`>0

(
ϑ(τ, (`, z))

η(τ)

)f(0,`)

. (22)

A special case of Theorem 4.1 for the signature of signature lattices (2, 3) was suggested in
the article by Gritsenko and Nikulin [GN1]–[GN3]. Below, in Sections 4.2–4.5, we give several
applications of Theorem 4.1.
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4.2. Twenty-three new representations of the Borcherds modular form Φ12.

We consider an even unimodular lattice II2,26 of signature (2, 26). The boundary of the
Bailey–Borel compactification O+(II2,26) \ D(II2,26) (this is the so-called moduli space of
bosonic string) consists of one zero-dimensional cusp and 24 one-dimensional cusps corre-
sponding to the classes of twenty-four even unimodular lattices (see [D4, Lemma 4.4]).

Theorem 4.2. (See [D2, Introduction].) The Borchers form Φ12 ∈ M12(O+(II2,26), det)
vanishes with multiplicity 1 in the zero-dimensional cusp of the group O+(II2,26). On the
one-dimensional cusp corresponding to the Leach lattice, the value of Φ12 is equal to the
Ramanujan form ∆12(τ). In one-dimensional cusps corresponding to Niemeyer lattices N(R)
with a nontrivial root system R(N), Φ12 vanishes with multiplicity h(R), where h(R) the
Coxeter number of irreducible components of the root system R. The first Fourier–Jacobi
coefficient Φ12 in a neighborhood of this one-dimensional component coincides, up to a sign,
with the Kac–Weil denominator function of the corresponding affine algebra ĝ(R)

Φ12(τ, z, ω) = ±η(τ)24
∏
v∈R+

ϑ(τ, (v, z))

η(τ)
e2πih(R)ω + . . . ,

where ϑ(τ, z) is the odd Jacobi theta-series (see (20)), η(τ) is the Dedekind η-function (see
(19)). The product is taken over all positive roots finite root system R. The first theta block in
the formula for Φ12(τ, z, ω) is the same as the denominator Kac–Weyl function of the affine
Lie algebra ĝ(R(N)), where R(N) is a non-empty root system of the Niemeier lattice N (see
[KP]).

4.3. A Frenkel–Feingold’s long-standing question about the simplest hyperbolic
Kac–Moody algebra

In 1983, in the work [FF] of I. Frenkel and A. Feingold [FF] it was posed a question of
possible relationships between affine Lie algebras, the simplest hyperbolic Kac–Moody algebra
and Siegel modular forms of genus 2. Note that the odd Jacobi theta function ϑ(τ, z) is a
the Kac–Weil denominator function of the simplest affine algebra ĝ(A1) of the root system
A1 = 〈2〉.

The result of Theorem 4.2 gives an automorphic answer to the question Frenkel–Feingold
in the case of the Borcherds algebra GFM of hyperbolic rank 26. This is the so-called Fake
Monster Lie Algebra. The last theorem shows that this algebra continues (in the auto-
morphic sense) 23 affine Lie algebras ĝ(R) with the root systems of the Niemeyer lattices:
3E8, E8 ⊕D16, D24, 2D12, 3D8, 4D6, 6D4, A24, 2A12, 3A8, 4A6, 6A4, 8A3, 12A2, 24A1,
E7 ⊕A17, 2E7 ⊕D10, 4E6, E6 ⊕D7 ⊕A11, A15 ⊕D9, 2A9 ⊕D6, 2A7 ⊕D5, 4A5 ⊕D4.

Note that Borcherds gave in [Bor1]–[Bor2] the construction of automorphic products in
the zero-dimensional cusp. More precisely, he found the Fourier decomposition of the form
Φ12 in a single zero-dimensional cusp group O+(II2,26) in terms of the Leech lattice, which
does not contain roots. That is why in Borcherds’ formula for Φ12 did not appear systems of
roots of affine Lie algebras.

4.4. Lorentzian Kac–Moody algebras and uniruled modular manifolds.
The construction of reflective modular forms is an important applied problem in alge-

braic geometry and the theory of Kac–Moody algebras. In [D3], a complete classification of
Lorentzian Kac–Moody algebras with the hyperbolic Weyl group generated by all 2-reflections
of the root lattice is carried out. We will not give definitions of these generalized hyperbolic
(super) Kac–Moody algebras (see details in [D3]), since we concentrated in this dissertation
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on applications to algebraic geometry. The following theorem (we give below its abbreviated
version of the original result) is an application of Theorem 4.2. Application of the construction
of a quasi pull-back (see Theorem 5.3 in §5) gives the following result.

Theorem 4.3. (See [D3, Theorem 3.1] and [D2, Theorem 6.10].) We put L = 2U ⊕ L0(−1),
where L0 is one of the 33 root lattices indicated below. Quasi pull-back (see Theorem 5.3
below) of the Borcherds modular form

Φ12|L0 ∈Mk(Õ
+

(L),det)

is a strictly (−2)-reflective modular form with complete (−2)-divisor of the weight k indicated
in the bottom line,

A1, 2A1, 3A1, 4A1; A2, 2A2, 3A2; A3, 2A3; A4, A5, A6, A7;

k = 35, 34, 33, 32; 45, 42, 39; 54, 48; 62, 69, 75, 80,

D4, 2D4, D5, D6, D7, D8; E6, E7, E8, 2E8; N8;

k = 72, 60, 88, 102, 114, 124, 120, 165, 252, 132, 28;

or of weight k = 12 for

〈4〉, 〈6〉, 〈8〉, D2(2) = 〈4〉 ⊕ 〈4〉, A2(2), A2(3), A3(2), D4(2), E8(2).

Note that the first 24 forms of weight k > 12 are cusp forms. All these reflective modular
forms define the automorphic Lorentzian Kac–Moody algebras of the hyperbolic lattice U ⊕L0.

Theorem 4.4. (See [D2, §6.5].) For all 33 lattices L from Theorem 4.3, the modular variety
Õ

+
(L) \ D(L) is at least uniruled.

4.5. Elliptic genus in two variables of a manifold with c1 = 0. Secondary quanti-
zation of the elliptic genus of Calabi–Yau varieties.

Let M be an (almost) complex compact manifold M of (complex) dimension d, TM is the
holomorphic tangent bundle of the manifold M , T ∗M is its dual. We put q = exp(2πiτ) and
y = exp(2πiz) (τ ∈ H1, z ∈ C). We define a formal power series Eq,y ∈ K(M)[[q, y±1]]

Eq,y =
∞⊗
n=0

∧
−y−1qn

T ∗M ⊗
∞⊗
n=1

∧
−yqn

TM ⊗
∞⊗
n=1

SqnT
∗
M ⊗

∞⊗
n=1

SqnTM ,

where
∧
xE =

∑
k≥0 (∧kE)xk and SxE =

∑
k≥0(SkE)xk. Suppose the first Chern class

c1(TM ) = 0. Holomorphic Euler characteristic Eq,y

EG(Md; τ, z) = yd/2
∫
M

ch(Eq,y)td(TM ) = yd/2
d∑
p=0

(−1)py−pχp(M) + q(. . . ),

is called the elliptic genus of the variety M . Note that in the q0-coefficient of elliptic genus
coincides with Hirzebruch χy-genus ofM where χp(M) = χ(M,∧pT ∗M ) =

∑d
q=0(−1)qhp,q(M).
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Theorem 4.5. (See [D8].) Elliptic genus EG(Md; τ, z) of a complex variety M of dimension
d with c1(M) = 0 is a weak Jacobi form of weight 0 and index d/2 of Eichler–Zagier type with
integral Fourier coefficients

EG(Md; τ, z) ∈ Jweak,Z0,d/2 .

The elliptic genus is uniquely determined by the χy(M) if the dimension of M is less than 12
or equal to 13.

The notion of elliptic genus for N = 2 supersymmetric theories was introduced in string
theory by Witten, Eguchi and others (see [D8] for details). In physics, the elliptic genus of a
Calabi-Yau manifold Md is defined as the genus one partition function of the supersymmetric
sigma model, whose target space isMd. In [D8] we gave a mathematical proof that the elliptic
genus of a Calabi-Yau variety of dimension d is a Jacobi form of weight 0 and index d/2. This
Jacobi form can be used to construct an automorphic product by virtue of Theorem 4.1. The
function Borch−1(EG(Md), Z) defines the second quantized elliptic genus of the Calabi–Yau
manifold Md by results of R. Dijkgraaf, G. Moore, E. Verlinde and H. Verlinde (see [SQ]
and [D8]). In [D8], we study the connection between the second quantized elliptic genus and
Lorentzian Kac–Moody algebras of signature (1, 2), constructed by Gritsenko and Nikulin in
[GN2].

Theorem 4.6. (See [D8, §3]). Let Md be a Calabi–Yau of dimension d = 2, 4, or 6. Then
the second quantized elliptic genus of the manifold Md is expressed as the product of the
denominator functions of Lorentzian Kac–Moody algebras of rank 3 from the Gritsenko -
Nikulin list in [GN1] – [GN4].

5 Basic results on moduli spaces.

In the abstract, we keep the numbering of theorems from the main text of the dissertation.

5.1. Siegel’s question on the geometric type of the moduli space of polarized
Abelian surfaces. The answer to this question is given in Theorem 2.3

5.2. Moduli spaces of polarized K3 surfaces. As noted in the Introduction by the last
open question of the Weyl program there was a question about the geometric type of moduli
spaces of polarized K3 surfaces. A solution was suggested in [D4]. (See the report by C. Voisin
at the Bourbaki seminar [Vo2].) Let us formulate one of the main results of the dissertation.

Theorem 5.1. ([D4, Theorem 1]) The moduli space F2d (see (4)–(5)) of polarized K3 surfaces
of degree 2d is of general type for d = 46, 50, 54, 57, 58, 60 and for all d > 61. Kodaira
dimension of F2d is non-negative if d ≥ 40 and d 6= 41, 44, 45, 47.

Note that the question remains open for polarizations in the range 20 ≤ d < 40, since the
studies of Mukai (1988–2010) give the following result.
Proposition. (See [Mu1]–[Mu5].) The moduli space F2d of polarized K3 surfaces of degree
2d is unirational for 1 ≤ d ≤ 12 and d = 15, 16, 17, 19.

To prove Theorem 5.1, we carried out in [D4] a detailed study of modular varieties. The
following general result is very important.

Theorem 5.2. (See [D4, Theorem 2.1].) Let L be a lattice of signature (2, n) with n ≥ 9,
and let Γ < O+(L) be a subgroup of finite index. Then there exists a projective toroidal
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compactification FL(Γ) of FL(Γ) = Γ\DL such that FL(Γ) has canonical singularities and
there are no branch divisors in the boundary. The branch divisors in FL(Γ) arise from the
fixed divisors of ±reflections. The ramification divisors in FL(Γ) arise from the fixed divisors
of ±-reflections in the group Γ.

The proof of this fundamental theorem consists of three parts We studied elliptic singular-
ities of modular varieties, its ramification divisor, and the boundary of its compactification.

5.3. General type of moduli spaces of polarized hyper-Kähler manifolds. The above
general method gives the following results for moduli of polarized hyper-Kähler manifolds.

Theorem 6.2 (See [D5, Theorem 4.1].) Module space Msplit(K3[2], 2d) (see (6)–(7)) of po-
larized manifolds of type K3[2] with a split polarization of the Beauville–Bogomolov degree 2d
is of general type if d ≥ 12. For d = 9 and d = 11 its Kodaira dimension is non-negative.

For 10-dimensional O’Grady manifolds [OG1], there are split and non-split polarizations.
They are fully described in [D7]. Below is the main result from [D7].

Theorem 6.3 ([D6, Theorem 4.1].) Let d be a natural number not equal to 2n for n ≥ 0. The
moduli Spaces of polarized ten-dimensional O’Grady varieties Msplit

O′G10,2d
(see (8) - (9)) with

split polarization h of the Beauville–Bogomolov degree h2 = 2d 6= 2n+1 is of general type.

5.4. Quasi pull-back of the Borcherds form. An important automorphic part of our
method is the following theorem, which allows one to find automorphic forms used in the first
and second automorphic criteria.

Theorem 5.3. (See [D4, Theorem 6.2] and a more general variant in [D2, §6].) Let L ↪→ II2,26

be a primitive nondegenerate sublattice of signature (2, n), n ≥ 3, and let DL ↪→ DII2,26 be the
corresponding embedding of the homogeneous domains. The set of (−2)-roots

R−2(L⊥) = {r ∈ II2,26 | r2 = −2, (r, L) = 0}

in the orthogonal complement is finite. We put N(L⊥) = #R−2(L⊥)/2. Then the function

Φ|L =
Φ12(Z)∏

r∈R−2(L⊥)/±1(Z, r)

∣∣∣∣∣
DL

∈M12+N(L⊥)(Õ(L), det), (23)

where in the product over r we fix a finite system of representatives in R−2(L⊥)/±1. The
modular form Φ|L vanishes only on rational quadratic divisors of type Dv(L) where v ∈ L∨ is
the orthogonal projection of a (−2)-root r ∈ II2,26 on L∨.

We say that the modular form Φ|L is a quasi pull-back of Φ12 if the set of roots R−2(L⊥) is
non-empty. We call the modular form Φ|L a quasi pull-back of Φ12, if the set of roots R−2(L⊥)
is not empty.

Theorem 5.4. Let L ↪→ II2,26 be a nondegenerate sublattice of signature (2, n), n ≥ 1. We
assume that the set R−2(L⊥) of (−2)-roots in L⊥ is non-empty. Then the quasi pull-back
Φ|L ∈ S12+N(L⊥)(Õ(L), det) of the Borcherds form Φ12 is a cusp form.

5.5. Vector of polarizations: the arithmetic of root lattices. To construct an auto-
morphic form of a small weight with a large divisor, it is necessary to answer the following
purely arithmetic question.
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Key question for K3: For which 2d > 0 does the vector l ∈ E8 exist such that

l ∈ E8,
2 = 2d, l is orthogonal to at least two and not more than 12 roots? (24)

If such a vector exists, then the quasi pull-back of Φ12 to subdomain D(2U⊕2E8(−1)⊕〈l〉)
in D(II2,26) = D(2U⊕3E8(−1)) will give us a cusp form of a small weight with a large divisor.
According to “the low weight cusp form trick” (Theorem 4.3?), the module space F2d will have
the maximal Kodaira dimension.

Theorem 5.5. (See [D4] and [D5].) A vector l satisfying (24) does exist if the inequality

4NE7(2d) > 28NE6(2d) + 63ND6(2d) (25)

is valid, where NL(2d) denotes the number of representations of 2d by the lattice L.

5.6. Moduli spaces of polarized Kummer surfaces (see (2)–(3)). In fact, we are
talking about factors of finite order of the moduli space polarized Abelian surfaces. The
paramodular group Γt, i.e. the modular group of module space (1, t)-polarized Abelian sur-
faces, and its maximal discrete extension in Sp2(R) have a realization in the form of integral
orthogonal groups signatures (2, 3). This implementation clearly describes the nature of nor-
mal extensions. Γ+

t and Γ∗t (see [GH1]).
Let Lt = 2U ⊕ 〈−2t〉 be an even integer lattice signatures (2, 3). According to [G2] and

[GH1, Proposition 1.2 and Corollary 1.3]) we have the following isomorphisms

Γ+
t /{±E4} ∼= Õ

+
(Lt)/{±E5}, Γ∗t /{±E4} ∼= O+(Lt)/{±E5}.

Coverings Γt \H2 → Γ+
t \H2 and Γt \H2 → Γ∗t \H2 are Galois coverings with a finite abelian

Galois group. According to [GH1, Proposition 1.5], the modular variety A+
t = Γ+

t \ H2 (t is
squarefree) is isomorphic to the moduli space of polarized K3 surfaces with polarization of the
type 〈2t〉 ⊕ 2E8(−1)

According to [GH1, Theorem 1.5], the modular variety Kt = Γ∗t \H2 isomorphic to it the
moduli space of Kummer surfaces corresponding to Abelian surfaces with (1, t)-polarization.
In (3), an orthogonal interpretation of this modular manifold was given.

Theorem 7.2 (See [D9, Corollary 8.1] and [D10, Theorem 6.2].) The moduli space Kp =
Γ∗p \H2 of Kummer surfaces defined by (1, p)-polarized abelian surfaces has positive geometric
genus for for p = 167, 173, 223, 227, 251, 257, 269, 271, 283, 293. In addition, the following
inequalities hold

h3,0(Γ∗p,C) ≥ 2, t = 227, 257, 269, 283, and h3,0(Γ∗293,C) ≥ 4.

This theorem was proven using theta-block theory of Gritsenko–Skoruppa–Zagir [GSZ] and
the methods of the method of author’s paper [GPY].
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