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An energy function for dynamical systems is a natural generalization of an energy func-

tion for dissipative physical systems. In the case of discrete dynamical systems, in contrast

to continuous ones, such a function does not always exist, even for systems with regular

dynamics. The dissertation is devoted to the study of the existence and construction (in the

case of existence) of an energy function for Ω-stable di�eomorphisms with chaotic behavior

due to the presence of non-trivial (other than a periodic orbit) basic sets.

For any dynamical system (�ow or cascade) given on a metric space, one can introduce

the concept of a chain-recurrent set associated with the concepts of a ε-trajectory or a

pseudo-orbit. Since the dissertation deals with discrete dynamical systems on compact

manifolds, we will only give the corresponding de�nitions; for �ows, one can introduce

similar ones. LetM be a smooth compact orientable n-manifold and f be a di�eomorphism

on M . A ε-chain of length n connecting the point x ∈ M with the point y ∈ M for the

cascade f is a sequence of points x = x0, . . . , xn = y from M such that d(f(xi), xi+1) < ε

for 1 ⩽ i ⩽ n − 1 (see �gure 1). A point x ∈ M is called chain-recurrent if for any ε > 0

there is a number n and a ε-chain of length n connecting x with itself. The set of all

chain-recurrent points of the cascade f is called chain-recurrent set of f and is denoted by

Rf . An equivalence relation can be introduced on the set Rf by the following rule: x ∼ y,

x, y ∈ Rf , if for any ε > 0 there are ε-chains connecting x with y and y with x. Then

the chain-recurrent set is divided into equivalence classes called chain components of the

system.
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Figure 1: ε-chain

A Lyapunov function of a dynamical system (�ow or cascade) given onM is a continuous

function φ : M → R, which is constant on each chain component of the system and

decreases along its orbits outside the chain recurrent set. By virtue of the results of C.

Conley [6], such a function exists for any dynamical system, and the fact of its existence

is called the �Fundamental Theorem of Dynamical Systems�. It should be noted that C.

Conley additionally demanded that the image of the chain recurrent set by virtue of φ is
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nowhere dense on the real number line, and the values of the function φ on di�erent chain

components of the chain recurrent set are di�erent, and call such a function a complete

Lyapunov function. The numbers belonging to the image of the chain recurrent set were

called by C. Conley critical values of the function φ.

However, for a smooth function, its critical value is usually called the image of a critical

point (a point at which the gradient of the function becomes 0), which do not belong to the

chain recurrent set in general. Therefore the concept of an energy function is used, that is a

Lyapunov function, whose set of critical points coincides with the chain recurrent set of the

system. Note that in the continuous category it is also possible to introduce the concept

of a critical point and de�ne the energy function without requiring the smoothness of the

Lyapunov function.

Dynamical systems with a hyperbolic chain-recurrent set are natural objects to study

for the existence of an energy function. Recall that for a di�eomorphism f : M → M a

compact f -invariant set Λ ⊂M is called hyperbolic if there exists a continuous Df -invariant

decomposition of the tangent subbundle TΛM into the direct sum Es
Λ ⊕ Eu

Λ, x ∈ Λ such

that

||Dfk(v)|| ⩽ cλk||v||, v ∈ Es
Λ, k > 0,

||Df−k(v)|| ⩽ cλk||v||, v ∈ Eu
Λ, k > 0

for some �xed c > 0 and 0 < λ < 1. The presence of a hyperbolic structure on a chain-

recurrent set is equivalent to the Ω-stability of the system, that is, such di�eomorphisms

preserve the structure of a non-wandering set with small perturbations. In this case, the

chain-recurrent set coincides with the non-wandering set of the system and the periodic

orbits are dense in Rf . Thus, if a chain-recurrent setRf of a di�eomorphism f is hyperbolic,

then f is an A-di�eomorphism 1 and Smale Spectral Decomposition Theorem holds, namely:

Rf has only a �nite number of chain components, each of which is compact, invariant,

and topologically transitive. In this case, they are called basic sets of the di�eomorphism

f . If a basic set is a periodic orbit, then it is called trivial, otherwise is nontrivial. In a

neighborhood of a hyperbolic isolated point of a chain-recurrent set, it is natural to construct

the energy function in the form of a hypersurface of the second order; therefore, for classes

with a �nite chain-recurrent set, the problem of the existence of an energy function is

usually solved in the class of Morse functions � C2-smooth functions, all critical points of

which are non-degenerate.

The �rst results on the construction of an energy function belong to S. Smale [33], who

in 1961 proved the existence of a Morse energy function for an arbitrary gradient-like �ow

(structurally stable �ows the chain-recurrent set of which consists of a �nite number of

�xed hyperbolic points). K. Meyer [27] in 1968 generalized this result by construction of a

1A di�eomorphism f : M → M given on a compact manifold M , is called an A-di�eomorphism if it
satis�es Axiom A (C. Smale), that is, its non-wandering set NW (f) is hyperbolic and periodic points are
dense in NW (f).
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Morse-Bott energy function2 for an arbitrary structurally stable �ow, the chain-recurrent

set of which consists of a �nite number of �xed points and a �nite number of periodic orbits.

As noted in 1985 by J. Franks [7], the application of the results of W. Wilson [36] to the

construction of C. Conley gives the existence of a smooth energy function for any smooth

�ow with a hyperbolic chain-recurrent set. Then, using the suspension, one can construct

a smooth Lyapunov function for any di�eomorphism with a hyperbolic chain recurrent set.

But a function constructed in this way may have critical points that are not chain-recurrent

and, therefore, the Lyapunov function is not energy. A natural question arises: what

discrete dynamical systems admit energy functions? The �rst results in this direction were

obtained by D. Pixton in 1977, in his work [30] he proved the existence of a Morse energy

function for any Morse-Smale di�eomorphism on a surface. Pixton's result was generalized

on Ω-stable 2-di�eomorphisms with a �nite non-wandering set, the Morse energy function

for such di�eomorphisms was constructed by T. Mitryakova, O. Pochinka, A. Shishenkova

[28]. In the same paper [30] D. Pixton constructed a Morse-Smale di�eomorphism on a

three-dimensional sphere, which does not possess a Morse energy function. In the works of

V. Grines, F. Laudenbach, O. Pochinka [12], [13] and the book [15], necessary and su�cient

conditions for the existence of a Morse energy function for three-dimensional Morse-Smale

di�eomorphisms were obtained. There are also examples of Morse-Smale di�eomorphisms

in dimension n > 3 which do not possess an Morse energy function (see, for example, [25]).

It follows from the results above that not all di�eomorphisms, even with regular dy-

namics, have an energy function. All the more surprising is the fact that some discrete

dynamical systems with chaotic behavior have an energy function. In this paper, an energy

function is constructed for some classes of Ω-stable 2- and 3-di�eomorphisms with non-

trivial basic sets. Technically, the construction of such a function is based on the dynamic

properties of basic sets and the smoothing procedure for a continuous map.

The work consists of eight chapters.

Chapter 1 is an overview of the results available on this topic.

In Chapter 2 main results of the dissertation are formulated.

In Chapter 3 a technical theorem about smoothing of a continuous function is proved,

which is further used to construct smooth energy functions for the considered classes of

di�eomorphisms.

Theorem 1 ([19]∗3, Lemma 2.1, [4]∗, Lemma 5). Let Mn be a smooth compact

n-manifold, K ⊂Mn be a closed subset of M and U be some closed neighborhood of the set

K such that K ⊂ int U . Let a continuous surjective function φ : U → [0; 1] be C1-smooth

on U \ K and φ−1(0) = K. Then for any δ ∈ (0; 1) there exists a C1-smooth function

g : [0; 1] → [0; 1] satisfying the following properties:

2A C2-smooth function is called a Morse-Bott function if the Hessian at each critical point is non-
degenerate in the direction normal to the critical level set.

3Here and below, a star marks works in which one of the co-authors is a dissertation candidate and the
results of which are presented in this dissertation
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� g′(0) = 0 and g′(c) > 0, ∀c ∈ (0; 1];

� g(c) = c, ∀c ∈ [δ; 1];

� ψ = g ◦ φ is C1-smooth on the whole set U .

The idea of prof of Theorem 1 is based on the construction of the desired function g

by the method of partitioning unity with the ful�llment of the conditions necessary for the

di�erentiability of the composition g ◦ φ.
In Chapter 4, the properties of non-trivial basic sets necessary for construction of

energy functions are given. In addition, the class S(M2) of Ω-stable di�eomorphisms de�ned

on a closed orientable surface M2, all of whose non-trivial basic sets are attractors or

repellers, is considered. The main result of the chapter is the following theorem.

Theorem 2 ([17]∗, Theorem 1). For any di�eomorphism f ∈ S(M2), there exists a

smooth energy function that is a Morse function outside non-trivial basic sets.

The proof of Theorem 2 essentially relies on the existence of a canonical support for one-

dimensional basic sets of Ω-stable di�eomorphisms on surfaces. The ideas of construction

such a support form the basis of the fundamental theory of surface basic sets, constructed

in the works of V.Z. Grines [9, 10], A.Yu. Zhirov [37, 38, 39], R.V. Plykin [31]. This makes

it possible to distinguish a trapping neighborhood for non-trivial basic sets in the form

of a surface with a boundary, and each component of the boundary is a circle. Then the

wandering part of the basin of each non-trivial attractor is foliated into circles, which makes

it possible to make them the level lines of the future energy function inside some trapping

neighborhood. Outside the trapping neighborhoods of the hyperbolic attractors and re-

pellers, the di�eomorphism has a �nite hyperbolic chain recurrent set. The construction of

an energy function for regular components of a di�eomorphism is based on the existence of

a Morse energy function for Morse-Smale di�eomorphisms on surfaces, proved by D. Pixton.

The resulting energy function is a constant on one-dimensional attractors and repellers and

is a Morse function on their complement. The smoothness of such a function is ensured by

the technical Theorem 1.

If at least one zero-dimensional basic set appears among non-trivial basic sets of an

Ω-stable di�eomorphism given on a closed orientable surface, then there is still no unam-

biguous answer to the question of the existence of an energy function.

In Chapter 5 a subclass of such di�eomorphisms is considered, namely, Ω-stable di�eo-

morphisms de�ned on a closed orientable surface M2, whose non-wandering set contains at

least one non-trivial zero-dimensional basic set without pairs of conjugated points (points

x, y from some basic set Λ is called a pair of conjugated points if W s
x = W s

y , W
u
x = W u

y

and open arcs of stable and unstable manifolds, bounded by points x and y do not contain

points of the basic set Λ, the �gure 2 shows a pair of conjugated points: at least one of

the arcs (red or green) contains points of the basic set). As follows from the main results

of this chapter presented below, the presence of such a basic set is an obstruction to the

existence of an energy function for a di�eomorphism.
4



x

yW

W

y

x

u

s

Figure 2: x, y is a pair of conjugated points

Theorem 3 ([1]∗, Theorem 1). Every Ω-stable di�eomorphism f : M2 → M2 given

on a closed orientable surface M2, whose non-wandering set contains a zero-dimensional

non-trivial basic set without pairs of conjugated points, does not possess an energy function.

The proof of Theorem 3 is based on properties of zero-dimensional non-trivial basic

sets without pairs of conjugated points. The idea of studying such sets using a universal

covering by the Lobachevsky plane was developed in the works of V.Z. Grines and C. Kalai

[9, 11, 23]. The absence of pairs of conjugated points in a zero-dimensional basic set allows

one to single out disks whose interior consists of wandering points of the di�eomorphism,

such that any Lyapunov function (even a non-smooth one) has critical points inside these

disks, that is, it is not an energy function.

If a di�eomorphism f :M →M is an Ω-stable, then on the set of its basic sets one can

introduce the S. Smale partial order relation as follows: Λ1 ≺ Λ2, if W
s
Λ1

∩W u
Λ2

̸= ∅.
In Chapter 6 we obtain a partial solution to the Smale problem concerning the de-

scription of diagrams of (A,B)-di�eomorphisms (satisfying axioms A and B), constructed

from S. Smale's partial order on the set of its basic sets. A Smale diagram is a special

case of a Hasse diagram of a partially ordered set (X,≺) and is a graph whose vertices are

elements of the set X, and the pair (x, y) forms an edge if x ≺ y and ∄z : x ≺ z, z ≺ y.

It was established in Lemma 6.1 that a Smale diagram of any Ω-stable di�eomorphism is a

connected Hasse diagram. A Smale surgery is used to construct model di�eomorphisms of

a two-dimensional torus. In Lemma 6.6, necessary and su�cient conditions for a topolog-

ical conjugacy of model di�eomorphisms are obtained. Next, we introduce the class H of

Ω-stable di�eomorphisms of surfaces, which are connected sums of model di�eomorphisms.

The main result of this section is the following theorem.

Theorem 4 ([2]∗, Theorem). Any connected Hasse diagram can be realized by some

di�eomorphism from the class H.

A labelled Smale diagram is the Smale diagram in which the topological conjugacy

class of the restriction of the di�eomorphism to the corresponding basic set is additionally

speci�ed near each vertex. For di�eomorphisms f, f ′ ∈ H, the isomorphism of their labelled

Smale diagrams is a necessary and su�cient condition for their Ω-conjugacy. However, in

general the conjugating homeomorphism does not extend from the basic sets to the ambient
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surface. In this paper, a subclass of H∗ ⊂ H di�eomorphisms is distinguished, in which any

two model di�eomorphisms are connected in at most one orbit. For such di�eomorphisms,

the isomorphism class of the labelled Smale diagram is a complete invariant of the ambient

Ω-conjugacy.

Theorem 5 ([3]∗, Theorem). Di�eomorphisms f, f ′ ∈ H∗ are ambient Ω-conjugate

if and only if their labelled diagrams are isomorphic.

In Chapter 7 Ω-stable 3-di�eomorphisms with non-trivial two-dimensional basic sets

are discussed. If the topological dimension of the attractor (repeller) coincides with the di-

mension of the unstable (unstable) manifolds of its points, then it is called expanding (con-

tracting). For the class T (M3) of structurally stable di�eomorphisms with two-dimensional

expanding attractor or contracting repeller from the results of V.Z. Grines, E.V. Zhuzhomy

and V.S. Medvedev [20, 26] knows that all other basic sets of such di�eomorphisms are

trivial, a non-trivial basic set has only branches of degree two, and the ambient manifold is

always homeomorphic to a three-dimensional torus. In addition, a non-trivial basic set is

separated from a set with regular dynamics by a so-called characteristic sphere. This fact

allows us to prove the tame embedding of saddle separatrices and construct a Morse energy

function for the considered di�eomorphism outside the expanding attractor (contracting

repeller), using the results of V.Z. Grines, F. Laudenbach and O.V. Pochinka [13] on the

existence of a Morse energy function for Morse-Smale 3-di�eomorphisms. Theorem 1 allows

us to smoothly extend the constructed function to a non-trivial basic set and, thus, to prove

the following theorem.

Theorem 6 ([18]∗, Theorem 1). For any di�eomorphism f ∈ T (M3), there exists a

smooth energy function that is a Morse function outside the non-trivial basic set.

A similar result is obtained for the class of Q(M3) of Ω-stable 3-di�eomorphisms with

two-dimensional surface basic sets.

Theorem 7 ([19]∗, Theorem 1.1). Any di�eomorphism f ∈ Q(M3) has a smooth

energy function.

The idea of the proof of the Theorem 7 is based on the fact that any basic set of the

di�eomorphism under consideration is a torus tamely embedded intoM3, and the restriction

of the di�eomorphism on each basic set is conjugated to an algebraic automorphism of a 2-

torus. This fact, following from the works of V.Z. Grines, E.V. Zhuzhoma, V.S. Medvedev,

Yu.A. Levchenko and O.V. Pochinka [14, 16, 21], allows to construct a smooth energy

function on the wandering set of such a di�eomorphism. To continue the constructed

function to the chain recurrent set, we use Theorem 1.

Chapter 8 discusses 3-di�eomorphisms with one-dimensional source-sink dynamics. In

this case the attractor (the repeller) is automatically expanding (contracting). R. Williams

[35] shows that the dynamics on such a basic set is conjugate to the shift on the reverse

limit of a branched 1-manifold with respect to an expanding map. A construction of 3-

di�eomorphisms with one-dimensional attractor-repeller dynamics �rstly was suggested by

J. Gibbons [8]. He construct many models on 3-sphere with Smale's solenoid basic sets
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and proves that all examples are not structurally stable. B. Jiang, Y. Ni and S. Wang [22]

proved that a 3-manifold M3 admits a di�eomorphism f whose non-wandering set consists

of Smale's solenoid attractors and repellers if and only if M3 is a lens space L(p, q) with

p ̸= 0. They also shown that such f are not structural stable.

All generalizations of Smale's solenoid as the intersections of nested handlebodies are not

surface. Moreover, all known examples of di�eomorphisms with the generalized solenoids

as the attractor and the repeller are not structurally stable.

Note that such a dynamics on a surface is not structurally stable due to the results of R.

Robinson and R. Williams [34]. A natural way to get a surface one-dimensional attractor

for a 3-di�eomorphism f is to take an attractor A of some 2-di�eomorphism and multiply

its trapping neithborhood by a contraction in transversal direction. In such a case A is

called canonically embedded surface attractor.

In the present paper, we construct examples of 3-di�eomorphisms with canonically em-

bedded surface one-dimensional attractor and repeller; namely, the following theorem is

proved.

Theorem 8 ([4]∗, Theorem 1). There are in�nitely many pairwise Ω-non-conjugated

3-di�eomorphisms whose non-wandering sets are pairwise homeomorphic, and each of them

is a union of a canonically embedded one-dimensional surface attractor and repeller.

The surface dynamics of the constructed di�eomorphisms and the result of Theorem 1

allow us to prove the existence of a smooth energy function for them.

Theorem 9 ([4]∗, Theorem 2, [4]∗, Theorem 1). Each Ω-stable di�eomorphism

on a closed orientable 3-manifold M3, whose non-wandering set is a union of a connected

canonically embedded one-dimensional surface attractor and repeller, has an energy func-

tion.

C. Bonatti, N. Guelman [5] and Y. Shi [32] constructed structurally stable examples of

3-di�eomorphisms with one-dimensional attractor-repeller dynamics. But the embedding

of basic sets in the ambient manifold is so non-trivial that it does not allow us to solve the

problem of the existence of an energy function for such di�eomorphisms.

Conclusion. A signi�cant part of this dissertation is devoted to the construction of

energy functions for Ω-stable di�eomorphisms with chaotic dynamics de�ned on 2- and 3-

manifolds. The main result of this work is a constructive proof of the existence of a smooth

energy function for the following classes of di�eomorphisms:

� Ω-stable di�eomorphisms given on surfaces, all non-trivial basic sets of which are

one-dimensional (Theorem 2);

� structurally stable 3-di�eomorphisms with two-dimensional expanding attractor or

contracting repeller (Theorem 6);

� Ω-stable 3-di�eomorphisms with two-dimensional chain recurrent set (Theorem 7);

7



� Ω-stable 3-di�eomorphisms with dynamics one-dimensional canonically embedded

surface attractor-repeller (Theorem 9).

The construction of a smooth energy function is essentially based on the dynamical

properties of the considered di�eomorphisms and the technical

� theorem about smoothing a continuous function (Theorem 1)

In the class of Ω-stable 3-di�eomorphisms with dynamics one-dimensional canonically

embedded surface attractor-repeller was constructed

� in�nitely many pairwise Ω-non-conjugated 3-di�eomorphisms (Theorem 8).

In addition, the dissertation proved

� the fact that there is no energy function (even in a continuous category) for Ω-stable

di�eomorphisms given on surfaces with a zero-dimensional non-trivial basic set with-

out pairs of conjugated points (Theorem 3).

Also in this work the Smale problem is partially solved, concerning the description of

the diagrams of Ω-stable di�eomorphisms constructed on the basis of the partial order of

S. Smale on the set of its basic sets. Model di�eomorphisms on a two-dimensional torus

were constructed with the help of Smale surgery and it was proved that

� any Smale diagram can be realized by an Ω-stable surface di�eomorphism, which is

a connected sum of model di�eomorphisms (Theorem 4);

� a subclass of connected sums of model di�eomorphisms is distinguished for which the

isomorphism class of the labeled Smale diagram is a complete invariant of the ambient

Ω-conjugacy (Theorem 5).
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