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Introduction

One of the most astonishing quality characterising integrable systems is their non-

trivial interconnections with each other. In particular, there is a connection between

integrable spin chains, integrable hierarchies of nonlinear partial equations and clas-

sical many-bodies models.

In this thesis we study poles dynamics of singular solutions of integrable hierar-

chies of KP type and show that it is isomorphic to dynamics of particles in many-

body integrable systems on the level of hierarchies. Such connection between two

different types of integrable systems has been a long known conjecture. The connec-

tion between nonlinear integrable equations and many-body systems was first study

in seminal paper (Airault et al. [1977]). After that in the works such as (Krichever

[1978],Krichever [1980], Krichever and Zabrodin [1995]) it was established that for

the first nontrivial times dynamics of poles correspond to the motion of particles in

systems of Calogero-Moser type with standard Hamiltonians. After that in papers

(Shiota [1994], Haine [2007], Zabrodin [2020]) such connection was extended to the

level of whole hierarchies, however it was done only for rational or trigonometric

solutions which are just a limits of the most general elliptic solutions.

In a series of the articles presented in this thesis authors extend a connection

between integrable hierarchies and many-body systems of Calogero type for three

different hierarchies such as KP, 2D Toda lattice and matrix KP up to the most

general elliptic solutions. The main results of these paper is that authors establish a

connection between spectral curves of elliptic many-body systems and Hamiltonians

responsible for dynamics of poles in higher times of corresponding hierarchy. Besides

that methods developed in these articles could be used to discover poles dynamics

for singular solutions of other hierarchies.
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Introduction

My thesis presents the results of five articles in which I am one of co-authors.

In these articles a connection between integrable hierarchies of nonlinear differential

equations and integrable many-body systems was studied. These works contain most

general results for KP 2d-Toda and matrix KP hierarchies.
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Chapter 1

Historical remarks

1.1 Nonlinear differential hierarchies

One of the first discovered integrable equations is a famous Korteveg-de Vris equation

(1.1). It was written by (Boussinesq [1877]) and rediscovered in (Korteveg, D.J. and

de Vries, G. [1895]) as an attempt to find a mathematical description of solitary

waves observed by Russel and described by him in (Russel [1844]).

4𝑢𝑡 − 12𝑢𝑢𝑥 − 𝑢𝑥𝑥𝑥 = 0 (1.1)

However, the fact that this equation contains infinitely many conserved quantities

𝐼𝑖 =
∞∫︀

−∞
𝑄𝑖(𝑥, 𝑡)d𝑥 was proven only almost a century after in (Miura et al. [1968]). In

this paper authors presented a general formula for 𝑄2𝑚+1’s as a graded polynomials

of 𝑢, 𝑢′, 𝑢′′, etc., where 𝑢′ ≡ 𝑢𝑥 ≡ 𝜕𝑢 :

𝑄−1[𝑢] = 𝑢, 𝑄1[𝑢] =
𝑢2

2
,

𝑄3[𝑢] =
𝑢3

3
− 𝑢2𝑥

12
, 𝑄5[𝑢] =

𝑢4

4
− 𝑢𝑢2𝑥

4
+
𝑢2𝑥𝑥
360

,

.......... ........

The same year in (Lax [1968]) it was discovered that (1.1) can be rewritten

through two differential operators as

4



Chapter 1. Historical remarks 1.1. Nonlinear differential hierarchies

𝐿𝑡 = [𝐴3, 𝐿] = 𝐴3𝐿− 𝐿𝐴3. (1.2)

This form of equations now referred as Lax form.

In (1.2) 𝐿 and 𝐴3 are:

𝐿 = 𝜕2𝑥 + 𝑢 (1.3)

𝐴3 = 𝜕3𝑥 +
3

2
𝑢𝜕𝑥 +

3

4
𝑢𝑥 = 𝜕3 +

3

4
𝑢𝜕𝑥 +

3

4
𝜕𝑥𝑢 (1.4)

where in the last formula operator written in a skew-symmetric form for the standard

scalar product (𝑓, 𝑔) =
∞∫︀

−∞
𝑓(𝑥)𝑔(𝑥)d𝑥.

Equation (1.2) indicates that 𝐿(𝑡) = 𝑈(𝑡)𝐿(0)𝑈−1(𝑡) where 𝑈(𝑡) is an unitary

operator. It becomes clear, that 𝐴3 = 𝑈 †𝑈𝑡 = −𝑈 †
𝑡 𝑈 is skew-symmetric.

Lax also considered a case of higher KdV equations as a generalization of such

construction. He introduced general skew-symmetric operators

𝐴2𝑛+1 = 𝜕2𝑛+1
𝑥 +

𝑛∑︁
𝑖=1

(𝑏𝑖𝜕
2𝑖−1
𝑥 + 𝜕2𝑖−1

𝑥 𝑏𝑖) (1.5)

and put them instead of 𝐴3 into equation (1.2). The fact that 𝐿𝑡2𝑛+1 = [𝐴2𝑛+1, 𝐿] is

a function not differential operator imposes 𝑛 conditions which uniquely determine

𝑛 coefficients 𝑏𝑖’s and equality itself determines a higher order KdV equation.

𝑢𝑡2𝑛+1 = 𝐾2𝑛+1(𝑢). (1.6)

Such set of infinite equations is called hierarchy.

Later in (Zakharov and Fadeev [1971]) it was shown that KdV equation have a

Hamiltonian form:

𝑢𝑡 =
d

d𝑥

𝛿𝐼3[𝑢]

𝛿𝑢(𝑥)
. (1.7)

Here skew-symmetrical operator
d

d𝑥
is infinite dimensional analogue of

⎛⎝ 0 1

−1 0

⎞⎠
in the theory of classical Hamiltonian systems.
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Chapter 1. Historical remarks 1.1. Nonlinear differential hierarchies

Moreover higher order KdV equations can be written also as

𝑢𝑡𝑛 =
d

d𝑥

𝛿𝐼𝑛[𝑢]

𝛿𝑢(𝑥)
. (1.8)

It proves that KdV equation can be viewed as an infinite dimensional analogue

of classical integrable system from Hamiltonian mechanics.

After these observations it becomes ambiguous to somehow connect KdV equa-

tion with some known or unknown finite-dimensional integrable system. In seminal

paper (Airault et al. [1977]) connection between class of elliptic solutions of KdV

and so-called Calogero-Moser system was shown. Calogero-Moser system (1.17)

describes dynamics of non-relativistic particles on complex line with pairwise inter-

action between every particle with each other (Calogero [1971],Calogero [1975]).

However dynamics of poles was described by special locus and it appears that

more natural connection arise between 3-d generalization of KdV hierarchy – Kadomt-

sev–Petviashvili (or simply KP) hierarchy and Calogero Moser system. KP hierar-

chy like KdV hierarchy is generalization of nonlinear differential equation called KP

equation.

3𝑢𝑦𝑦 = (4𝑢𝑡 − 12𝑢𝑢𝑥 − 𝑢𝑥𝑥𝑥)𝑥 (1.9)

Kadomtsev-Petviashvili equation originates from (Kadomtsev and Petviashvili

[1970]) in which authors derived the equation as a model to study the evolution of

long ion-acoustic waves of small amplitude propagating in plasmas under the effect of

long transverse perturbations. In the absence of transverse dynamics, this problem

is described by the KdV equation. The KP equation was soon widely accepted as a

natural extension of the classical KdV equation to two spatial dimensions.

In a paper (Dryoma [1974]) Lax representation of KP equation was found:

𝐿𝑡 = [𝐴,𝐿] (1.10)

with 𝐿 = 𝜕𝑦 + 𝜕2𝑥 + 2𝑢 and 𝐴 = 𝜕3𝑥 + 3𝑢𝜕𝑥 +
𝑥∫︀
𝑢𝑦d𝑥.

However more natural way to describe KP equation was suggested in (Sato
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Chapter 1. Historical remarks 1.1. Nonlinear differential hierarchies

[1983]), where author wrote down the whole hierarchy.

The main idea was to consider a pseudo-differential operator

ℒ = 𝜕 +
∞∑︁

𝑚=1

𝑢𝑚𝜕
−𝑚 (1.11)

where 𝜕 is ordinary differential operator acting on 𝑥 with following standard commu-

tation relation with function 𝜕𝑓 = 𝑓 ′+𝑓𝜕. Multiplying both sides of this equality by

𝜕−1 from left and from right gives 𝜕−1𝑓 = 𝑓𝜕−1−𝜕−1𝑓 ′𝜕−1. The multiple application

of this rule yields:

𝜕−𝑛𝑓 =
∑︁
𝑘≥0

(−1)𝑘

⎛⎝ 𝑘 + 𝑛− 1

𝑘

⎞⎠ 𝑓 (𝑘)𝜕−𝑛−𝑘 (1.12)

which is similar to the rule for usual derivative

𝜕𝑛𝑓 =
𝑛∑︁

𝑘=0

⎛⎝ 𝑛

𝑘

⎞⎠ 𝑓 (𝑘)𝜕𝑛−𝑘. (1.13)

Equations of KP hierarchy are equivalent to compatibility condition of a system

of Lax equations

𝜕𝑡𝑛ℒ = [𝒜𝑛,ℒ]. (1.14)

Where 𝒜𝑛 is monic differential operators of order 𝑛. It is clear, that the only

way equation (1.14) make sense if r.h.s is pseudo-differential operator with zero

coefficients at positive powers of 𝜕. The easiest way to impose this condition is to

take 𝒜𝑛 as purely differential part of ℒ𝑛. It can be written using standard notation

𝒜𝑛 = (ℒ𝑛)+. Indeed, since [ℒ𝑛,ℒ] = 0 [𝒜𝑛,ℒ] = −[ℒ𝑛 −𝒜𝑛,ℒ] and since ℒ𝑛 −𝒜𝑛

has zero differential part it is clear that [𝒜𝑛,ℒ] is also have zero differential part.
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Chapter 1. Historical remarks 1.1. Nonlinear differential hierarchies

Following chain of equalities aims to show, that 𝜕𝑡𝑛𝜕𝑡𝑚ℒ − 𝜕𝑡𝑚𝜕𝑡𝑛ℒ = 0.

𝜕𝑡𝑛𝜕𝑡𝑚ℒ − 𝜕𝑡𝑚𝜕𝑡𝑛ℒ = 𝜕𝑡𝑛 [(ℒ𝑚)+,ℒ]− 𝜕𝑡𝑚 [(ℒ𝑛)+,ℒ] =

[(ℒ𝑛)+,ℒ𝑚]+ℒ+ (ℒ𝑚)+[(ℒ𝑛)+,ℒ]− ℒ[(ℒ𝑛)+,ℒ𝑚]+ − [(ℒ𝑛)+,ℒ](ℒ𝑚)+ − (𝑛↔ 𝑚) =

(ℒ𝑛)+(ℒ𝑚)+ℒ+ [(ℒ𝑛)+, (ℒ𝑚)−]+ℒ+ ℒ(ℒ𝑚)+(ℒ𝑛)+ − ℒ[(ℒ𝑛)+, (ℒ𝑚)−]+ − (𝑛↔ 𝑚)

= [(ℒ𝑛,ℒ𝑚]+ℒ − ℒ[ℒ𝑛,ℒ𝑚]+ = 0.

For example in case of 𝑛 = 1 one have 𝒜1 = 𝜕 which means that 𝜕𝑡1 = 𝜕𝑥 = 𝜕

and dependence on 𝑥 can be restored 𝑢(𝑥, 𝑡1, 𝑡2, ...) = 𝑢(𝑡1 + 𝑥, 𝑡2, ...).

KP equation is a compatibility condition for system with 𝑛 = 2, 3 and it can be

written in zero curvature form:

𝜕𝑡3𝒜2 − 𝜕𝑡2𝒜3 + [𝒜2,𝒜3] = 0 (1.15)

here 𝑡2 identifies with 𝑦.

Higher KP equations are the same for two arbitrary higher times.

𝜕𝑡𝑛𝒜𝑚 − 𝜕𝑡𝑚𝒜𝑛 + [𝒜𝑚,𝒜𝑛] = 0. (1.16)

In series of works (Krichever [1978], Krichever [1980]) author showed that func-

tion 𝑢 = 𝑐+2
𝑛∑︀

𝑗=1

℘(𝑥− 𝑥𝑗(𝑦, 𝑡)) is solution of equation (1.9) if and only if dynamics

of 𝑥𝑖 with respect to 𝑦 coincide with dynamics of elliptic Calogero-Moser system:

𝐻 =
1

2

𝑛∑︁
𝑖=1

𝑝2𝑖 − 2
∑︁
𝑖 ̸=𝑗

℘(𝑥𝑖 − 𝑥𝑗) (1.17)

The dynamics of 𝑥𝑖 with respect to 𝑡 = 𝑡3 coincide with Hamiltonian flow of the

same system govern by Hamiltonian which is cubic in momenta.

In (1.17) ℘(𝑥) is Weierstrass p-function which can be viewed as averaging of 𝑥−2

on lattice:

℘(𝑥;𝜔1, 𝜔2) =
1

𝑥2
+

∑︁
(𝑚,𝑛)̸=(0,0)

(︂
1

(𝑥+ 2𝜔1𝑚+ 2𝜔2𝑛)2
− 1

(2𝜔1𝑚+ 2𝜔2𝑛)2

)︂
. (1.18)

It is well known fact, that Weierstrass p-function degenerates into elementary
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Chapter 1. Historical remarks 1.2. Many body systems

functions when one or both 𝜔’s goes to infinity. In last case it is clear, that ℘(𝑥)

becomes just 𝑥−2. In case when just 𝜔1 goes to infinity, we put 𝜔2 =
𝜋𝑖

𝛾
and

℘(𝑥;𝜔1, 𝜔2) →
𝛾2

sinh2(𝛾𝑥)
+

1

3
𝛾2. (1.19)

These limits called rational and trigonometric (hyperbolic) limits of elliptic func-

tions.

1.2 Many body systems

The other objects of study in this thesis is a classical many body systems integrable

according to Liouville i.e. containing maximal number of independent integrals of

motion. The first integrable many-body system was discovered by Toda in (Toda

[1967a],Toda [1967b]). Having arbitrary number of particles on the line this model

consider only interaction between neighbours. With Hamiltonian

𝐻 =
𝑛∑︁

𝑖=1

𝑝2𝑖
2

+
𝑛−1∑︁
𝑖=1

𝑒𝑥𝑖−𝑥𝑖+1 (1.20)

and equations of motion

𝑥̈1 = 𝑒𝑥1−𝑥2 (1.21)

𝑥̈𝑖 = 𝑒𝑥𝑖−𝑥𝑖+1 − 𝑒𝑥𝑖−1−𝑥𝑖 for 1 < 𝑖 < 𝑛 (1.22)

𝑥̈𝑛 = −𝑒𝑥𝑛−1−𝑥𝑛 . (1.23)

After that in (Calogero [1971]) a system with interaction between every particles

with each other was found. However author consider only quantum integrability of

what will be refereed as Calogero system or rational limit of Calogero-Moser system.

𝐻 =
1

2

𝑛∑︁
𝑖=1

𝑝2𝑖 − 2
∑︁
𝑖 ̸=𝑗

1

(
(𝑥𝑖 − 𝑥𝑗)

2) (1.24)

Later in (Sutherland [1972]) more general system with potential sin−2(𝑥𝑖 − 𝑥𝑗)

9



Chapter 1. Historical remarks 1.2. Many body systems

was studied but still for quantum case.

The classical analogues of these systems were proven to be integrable in a works

(Calogero and Marchioro [1974], Moser, J. [1974]). In last paper author showed,

that equations of motion can be rewritten in Lax form i.e. system (1.24) can be

rewritten as:

𝐿̇ = [𝑀,𝐿] (1.25)

where 𝐿 and 𝑀 are 𝑛× 𝑛 matrices with following entries

𝐿𝑖𝑗 = 𝛿𝑖𝑗𝑝𝑖 +
(1− 𝛿𝑖𝑗)

𝑥𝑖 − 𝑥𝑗
(1.26)

𝑀𝑖𝑗 = −2𝛿𝑖𝑗
∑︁
𝑘 ̸=𝑖

1

(𝑥𝑖 − 𝑥𝑘)2
+

2(1− 𝛿𝑖𝑗)

(𝑥𝑖 − 𝑥𝑗)2
(1.27)

in rational and

𝐿𝑖𝑗 = 𝛿𝑖𝑗𝑝𝑖 + (1− 𝛿𝑖𝑗) coth(𝛾(𝑥𝑖 − 𝑥𝑗)) (1.28)

𝑀𝑖𝑗 = 2𝛿𝑖𝑗
∑︁
𝑘 ̸=𝑖

1

sinh2(𝛾(𝑥𝑖 − 𝑥𝑘))
− 2(1− 𝛿𝑖𝑗)

sinh2(𝛾(𝑥𝑖 − 𝑥𝑗))
(1.29)

in trigonometric (or rather hyperbolic) case.

Lax matrix 𝐿 becomes an important object in studies of classical integrable

systems. Equation (1.25) appears almost in every known integrable system with

some important exception such as double elliptic system (Braden et al. [2000]), and

system, which can be obtain from BKP hierarchies (Rudneva and Zabrodin [2020]).

It was shown that not only 𝐼𝑚 = tr𝐿𝑚 are conserved quantities, which is obvious

from equation (1.25), but they also commute with each other, which makes first 𝑛

of them integrals of motion.

Eventually elliptic generalization (1.17) was obtained in the work (Calogero

[1975]). For elliptic case Lax representation remains true but both 𝐿 and 𝑀 ma-

trices now depend on additional parameter 𝜆 which is not included in equations of

motion.

𝐿𝑖𝑗 = 𝛿𝑖𝑗𝑝𝑖 + (1− 𝛿𝑖𝑗)Φ(𝑥𝑖 − 𝑥𝑗, 𝜆) (1.30)
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Chapter 1. Historical remarks 1.2. Many body systems

𝑀𝑖𝑗 = −2𝛿𝑖𝑗
∑︁
𝑘 ̸=𝑖

℘(𝑥𝑖 − 𝑥𝑘)− 2(1− 𝛿𝑖𝑗)Φ
′(𝑥𝑖 − 𝑥𝑗, 𝜆) (1.31)

here Φ(𝑥, 𝜆) is Lame function and Φ′(𝑥, 𝜆) = 𝜕𝑥Φ(𝑥, 𝜆)

Φ(𝑥, 𝜆) =
𝜎(𝑥)𝜎(𝜆)

𝜎(𝜆+ 𝑥)
𝑒−𝑥𝜁(𝜆) (1.32)

𝜎(𝑥) = 𝜎(𝑥;𝜔1, 𝜔2) = 𝑥
∏︁
𝑠 ̸=0

(︁
1− 𝑥

𝑠

)︁
𝑒

𝑥

𝑠
+
𝑥2

2𝑠2 , 𝑠 = 2𝑚𝜔1 + 2𝑛𝜔2 (1.33)

with integers 𝑚,𝑛. 𝜁(𝑥) = 𝜕𝑥 log(𝜎(𝑥)) and ℘(𝑥) = −𝜁 ′(𝑥).

𝜆-dependence of Lax matrix in elliptic case becomes important for investigation

of correspondence between many body systems and nonlinear differential hierarchy.

In trigonometric and rational limits such dependence can be easily factorized

𝐿𝑡𝑟(𝑟𝑎𝑡) = 𝐿𝑒𝑙𝑙(𝜆)

⃒⃒⃒⃒
𝑒𝑙𝑙→𝑡𝑟(𝑟𝑎𝑡)

+ (𝐸 − 𝐼)𝑓 𝑡𝑟(𝑟𝑎𝑡)(𝜆) (1.34)

with 𝑓 𝑡𝑟(𝜆) = 𝛾(coth(𝛾𝜆)− 1) and 𝑓 𝑟𝑎𝑡(𝜆) =
1

𝜆
.

Here 𝐸 is a matrix consists of only unities and 𝐼 is an identity matrix.

Since tr𝐿𝑚(𝜆) in elliptic case depends on 𝜆 it cannot be integral of motion.

However in (d’Hoker and Phong [1998]) authors found out following expression for

spectral curve:

det(𝑧 + 𝜁(𝜆)− 𝐿(𝜆)) =
𝜎(𝜆− 𝜕𝑧)

𝜎(𝜆)
𝐼(𝑧) (1.35)

here 𝐼(𝑧) is a polynomial of degree 𝑛 with some integrals of motion as coefficients.

𝐼(𝑘) =
𝑛∑︁

𝑚=0

𝐼𝑛𝑧
𝑛−𝑚 (1.36)

𝐼𝑚 = 𝑒𝑚(𝑝) +

[𝑚/2]∑︁
𝑙=1

∑︁
|𝑆𝑖∩𝑆𝑗 |=2𝛿𝑖𝑗

1≤𝑖,𝑗≤𝑙

𝑒𝑚−2𝑙(𝑝(∪𝑙
𝑖=1𝑆𝑖)𝑐

)
𝑙∏︁

𝑖=1

℘(𝑆𝑖) (1.37)

We are using following notation: 𝑒𝑟(𝑝) is elementary symmetric polynomial in vari-

ables {𝑝𝑖|1 ≤ 𝑖 ≤ 𝑛}, 𝑒𝑟(𝑝𝑆) is elementary symmetric polynomial in variables

11



Chapter 1. Historical remarks 1.2. Many body systems

{𝑝𝑖|𝑖 ∈ 𝑆}, 𝑆𝑐 is a complementary of set 𝑆. ℘(𝑆) where 𝑆 = {𝑖, 𝑗} is set of power

two is just ℘(𝑥𝑖 − 𝑥𝑗). First few examples:

𝐼0 = 1

𝐼1 =
∑︁

𝑝𝑖

𝐼2 =

′∑︁(︂
1

2!
𝑝𝑖𝑝𝑗 +

1

2!
℘(𝑥𝑖 − 𝑥𝑗)

)︂
𝐼3 =

′∑︁(︂
1

3!
𝑝𝑖𝑝𝑗𝑝𝑘 +

1

2!
𝑝𝑖℘(𝑥𝑗 − 𝑥𝑘)

)︂
𝐼4 =

′∑︁(︂
1

4!
𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙 +

1

2! · 2!
𝑝𝑖𝑝𝑗℘(𝑥𝑘 − 𝑥𝑙) +

1

2 · (2!)2
℘(𝑥𝑖 − 𝑥𝑗)℘(𝑥𝑘 − 𝑥𝑙)

)︂

where
′∑︀

is sum for all non-repeating indices. Coefficients are chosen the way that

every unique term will have coefficient 1.

In (Shiota [1994]) it was shown, that in order for function 𝑢(𝑥, 𝑡) = 2
𝑛∑︀

𝑖=1

(𝑥 −

𝑥𝑖(𝑡))
−2 to be a solution of the whole KP hierarchy (1.14), the dynamics of poles 𝑥𝑖

with respect to 𝑡𝑚 must be the same as a dynamics of particles in rational Calogero-

Moser system w.r.t. Hamiltonian 𝐼𝑚 = tr𝐿𝑚. Later in papers (Haine [2007],

Zabrodin [2020]) this result was generalize to trigonometric case in which Hamilto-

nians responsible to higher times are 𝐻𝑚 = 1
2(𝑚+1)𝛾

tr ((𝐿+ 𝛾𝐼)𝑚+1 − (𝐿− 𝛾𝐼)𝑚+1).

Result for elliptic case was obtain in (Prokofev and Zabrodin [2021b]) and in this

case 𝐻𝑚 = res
𝑧=0

(𝑧𝑚𝜆(𝑧)) where 𝜆(𝑧) is defined from equation det(𝑧+𝜁(𝜆)−𝐿(𝜆)) = 0

12



Chapter 2

Tau function and bilinear equation

In paper (Prokofev and Zabrodin [2021b]) one of the crucial elements of the proof

is to consider an integral bilinear form of KP hierarchy. In order to make this thesis

more self-contained it can be useful to proof equivalents of two forms: integral form

of KP hierarchy and a standard one as an infinite set of Lax equations. This section

is devoted to proving that statement. Here we also introduce an important objects

such as Baker-Akhiezer function and tau function.

The content of this section follows Chapters 5 and 6 of (Dickey [2003])

2.1 Baker-Akhiezer function

We will consider pseudo-differential operator for KP hierarchy:

ℒ = 𝜕 +
∞∑︁

𝑚=0

𝑢𝑚𝜕
−𝑚. (2.1)

It can be viewed in a dressing form:

ℒ = 𝒲𝜕𝒲−1, (2.2)

where 𝒲 =
∞∑︀
𝑖=0

𝑤𝑖𝜕
−𝑖 and 𝑤0 = 1. It is clear, that all coefficients 𝑢𝑛 can be expressed

in terms of 𝑤𝑛.

13



Chapter 2. Tau function and bilinear equation 2.1. Baker-Akhiezer function

Equations of hierarchy (1.14) can be extended to 𝒲

𝜕𝑡𝑚𝒲 = −(ℒ𝑚)−𝒲 . (2.3)

Here 𝒜+ is a purely differential part of operator 𝒜 and 𝒜− = 𝒜−𝒜+.

Action of pseudo-differential operators is not defined on functions, however we

will define their action on a function 𝜉(𝑡, 𝑧) =
∞∑︀
𝑘=1

𝑡𝑘𝑧
𝑘 following way: 𝜕𝑚𝜉(𝑡, 𝑧) =

𝜕𝑚𝑡1 𝜉(𝑡, 𝑧) = 𝑧𝑚 and 𝜕𝑚 exp 𝜉(𝑡, 𝑧) = 𝑧𝑚 exp 𝜉(𝑡, 𝑧) for both positive and negative 𝑚.

Define Baker-Akhiezer function:

𝜓(𝑡, 𝑧) = 𝒲𝑒𝜉(𝑡,𝑧) = 𝑒𝜉(𝑡,𝑧)𝑤(𝑡, 𝑧) (2.4)

with 𝑤(𝑡, 𝑧) =
∞∑︀
𝑖=0

𝑤𝑖(𝑡)𝑧
−𝑖.

Introducing conjugation: (𝑓𝜕)† = −𝜕 · 𝑓 = −(𝜕𝑓)− 𝑓𝜕 and let 𝒲† be a formal

adjoint to 𝒲 define adjoint Baker-Akhiezer function

𝜓*(𝑡, 𝑧) = (𝒲−1)†𝑒−𝜉(𝑡,𝑧) = 𝑒−𝜉(𝑡,𝑧)𝑤*(𝑡, 𝑧). (2.5)

These functions satisfy systems:

⎧⎨⎩ ℒ𝜓 = 𝑧𝜓

𝒜𝑛𝜓 = 𝜕𝑛𝜓

⎧⎨⎩ ℒ𝜓* = 𝑧𝜓*

𝒜𝑛𝜓
* = −𝜕𝑛𝜓*

(2.6)

here and further we put 𝜕𝑛 = 𝜕𝑡𝑛 .

Equations (1.14) can be viewed as compatibility conditions of these systems.

It is typical for both finite and infinite dimensional integrable systems to be just

a compatibility conditions of overdetermined systems such as (2.6). It is often useful

to study Baker-Akhiezer function instead of infinite set of {𝑢𝑛} or {𝑤𝑛} since it is

just one function and it is a solution of infinitely many linear problems.

For an infinite formal series 𝑃 (𝑧) =
∞∑︀
−∞

𝑝𝑘𝑧
𝑘 and an infinite series of pseudo-

differential operators 𝒫 =
∞∑︀
−∞

𝑝𝑘𝜕
𝑘 define operations.

Definition 1. res
𝑧
(𝑃 (𝑧)) = 𝑝−1

14



Chapter 2. Tau function and bilinear equation 2.1. Baker-Akhiezer function

Definition 2. res
𝜕
(𝒫(𝑧)) = 𝑝−1

These two operations connected with useful Lemma

Lemma 1. res
𝑧
[(𝒫𝑒𝑥𝑧) · (𝒬𝑒−𝑥𝑧)] = res

𝜕
(𝒫𝒬†)

It can be proven by simple calculation.

With this lemma it becomes easy to proof following theorem

Theorem 1. The identity

res
𝑧
[(𝜕𝑖11 ...𝜕

𝑖𝑚
𝑚 𝜓)𝜓*] = 0

holds for any (𝑖1, ..., 𝑖𝑚) with arbitrary 𝑚 if and only if 𝜓 and 𝜓* of the form (1 +∑︀
𝑘>0

𝑎𝑘𝑧
−𝑘)𝑒±𝜉 are solutions of (2.6).

Before we will proof this theorem let us show that there is an another way to

rewrite it. Indeed instead of res
𝑧
[(𝜕𝑖11 ...𝜕

𝑖𝑚
𝑚 𝜓(𝑡))𝜓*(𝑡)] for any (𝑖1, 𝑖2, ..., 𝑖𝑚) we can

write res
𝑧
[𝜓(𝑡′)𝜓*(𝑡)] for any 𝑡, 𝑡′ where 𝑓(𝑡′) should be understood as a formal

expansion:

𝑓(𝑡′) =
∑︁ 1

𝑖1!...𝑖𝑚!
(𝑡′1 − 𝑡1)

𝑖1 ....(𝑡′𝑚 − 𝑡𝑚)
𝑖𝑚𝜕𝑖11 ...𝜕

𝑖𝑚
𝑚 𝑓(𝑡).

This identity can be rewritten in integral form.

∮︁
∞

𝑒𝜉(𝑡−𝑡′,𝑧)𝑤(𝑡′, 𝑧)𝑤*(𝑡, 𝑧)d𝑧 = 0. (2.7)

The integration contour is a big circle around infinity separating the singularities

coming from the exponential factor from those coming from the functions 𝑤 and 𝑤*

Proof. First we will prove that if 𝜓 and 𝜓* are solutions of (2.6), then

res
𝑧
[(𝜕𝑖11 ...𝜕

𝑖𝑚
𝑚 𝜓)𝜓*] = 0.

15



Chapter 2. Tau function and bilinear equation 2.1. Baker-Akhiezer function

Since 𝜕𝑠𝜓 = 𝒜𝑠𝜓 we need a proof only for 𝑚 = 1.

res
𝑧
[(𝜕𝑖𝜓)𝜓*] = res

𝑧
[(𝜕𝑖𝒲𝑒𝑥𝑧)(𝒲†)−1𝑒−𝑥𝑧] =

= res
𝜕
[(𝜕𝑖𝒲)𝒲−1] = res

𝜕
(𝜕𝑖) = 0.

It completes the first half of the proof.

To prove the converse statement we will consider res
𝑧
[(𝜕𝑖𝑤(𝑡, 𝑧)𝑤*(𝑡, 𝑧)] = 0 with

𝜓(𝑧) = 𝑒𝜉(𝑡,𝑧)
∞∑︀
𝑖=0

𝑤𝑖𝑧
−𝑖 and 𝜓*(𝑧) = 𝑒−𝜉(𝑡,𝑧)

∞∑︀
𝑖=0

𝑤*
𝑖 𝑧

−𝑖. Define 𝒲 =
∞∑︀
𝑖=0

𝑤𝑖𝜕
−𝑖 and

𝒲* =
∞∑︀
𝑖=0

(−1)𝑖𝑤*
𝑖 𝜕

−𝑖.

Using assumption one can show, that

0 = res
𝑧
[(𝜕𝑖𝜓)𝜓*] = res

𝑧
[(𝜕𝑖𝒲𝑒𝜉)𝒲*𝑒−𝜉] = res

𝜕
[(𝜕𝑖𝒲)(𝒲*)†] = res

𝜕
[𝜕𝑖𝒲(𝒲*)†].

It is true for every 𝑖, so if we define purely negative pseudo-different operator

𝒳 = 𝒳− as 𝒲(𝒲*)† = 1+𝒳 , proven equations mean, that 𝒳 = 0 and 𝒲* = (𝒲†)−1.

Define ℒ = 𝒲𝜕𝒲−1 for which we have

(𝜕𝑚𝒲 + (ℒ𝑚)−𝒲)𝑒𝜉 = (𝜕𝑚 · 𝒲 −𝒲𝜕𝑚 + (ℒ𝑚)−𝒲)𝑒𝜉 =

= (𝜕𝑚 · 𝒲 − ℒ𝑚𝒲 + (ℒ𝑚)−𝒲)𝑒𝜉 = (𝜕𝑚 − (ℒ𝑚)+)𝒲𝑒𝜉.

From our assumption we know, that

0 = res
𝑧
[(𝜕𝑖(𝜕𝑚 − (ℒ𝑚)+)𝜓)𝜓

*] = res
𝑧
[(𝜕𝑖(𝜕𝑚 − (ℒ𝑚)+)𝒲𝑒𝜉)((𝒲†)−1𝑒−𝜉)] =

res
𝑧
[(𝜕𝑖(𝜕𝑚𝒲 + (ℒ𝑚)−𝒲)𝑒𝜉)((𝒲†)−1𝑒−𝜉)] = res

𝜕
[(𝜕𝑖(𝜕𝑚𝒲 + (ℒ𝑚)−𝒲)(𝒲)−1)]

This yields 𝜕𝑚𝒲 +(ℒ𝑚)−𝒲 = 0 which is nothing but equation of KP hierarchy.
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Chapter 2. Tau function and bilinear equation 2.2. Tau function

2.2 Tau function

In the last section it was shown, that the whole KP hierarchy can be rewritten

as an integral equation (2.7). However it is possible to simplify it by factorizing

𝑧-dependence. In order to do so we will use following easy to prove lemma:

Lemma 2. If 𝑓(𝑧) =
∞∑︀
𝑖=0

𝑎𝑖𝑧
−𝑖 is a formal series where 𝑎0 = 1 then

res
𝑧
𝑓(𝑧)(1− 𝑧/𝜁)−1 = 𝜁(𝑓(𝜁)− 1).

More general if 𝑔(𝑧, 𝜁) =
∞∑︀

𝑖=−∞
𝑏𝑖(𝜁)𝑧

−𝑖 then

res
𝑧
[(1− 𝑧/𝜁)−1]𝑔(𝑧) = 𝜁𝑔−(𝜁, 𝑧)|𝑧=𝜁

where 𝑔−(𝑧, 𝜁) =
∞∑︀
𝑖=1

𝑏𝑖(𝜁)𝑧
−𝑖.

Here (1− 𝑧/𝜁)−1 is understood as series in 𝜁−1.

Let 𝐷(𝜁) be an operator acting on series in 𝑧−1 with coefficients depending on 𝑡

as

𝐷(𝜁)𝑓(𝑡, 𝑧) = 𝑓(𝑡− [𝜁−1], 𝑧). (2.8)

Here [𝜁−1] = (𝜁−1, 𝜁−2/2, 𝜁−3/3, ...).

Lemma 3. Following identities hold:

𝑤−1(𝑡, 𝑧) = 𝐷(𝑧)𝑤*(𝑡, 𝑧)

and

𝜕 log𝑤(𝑡, 𝑧) = (−𝐷(𝑧) + 1)𝑤1(𝑡).

Proof. Equation res
𝑧
[𝜓(𝑡)𝜓*(𝑡′)] = 0 with 𝑡′ = 𝑡− [𝜁]−1 and identity

exp
∞∑︁
𝑘=1

𝑧𝑘

𝑘𝜁𝑘
= (1− 𝑧/𝜁)−1

results in

17



Chapter 2. Tau function and bilinear equation 2.2. Tau function

res
𝑧
[𝑤(𝑡)𝐷(𝜁)𝑤*(𝑡)(1− 𝑧/𝜁)−1] = 0.

First part of the lemma 2 allows one to transform it into

𝜁(𝑤(𝑡, 𝜁)𝐷(𝜁)𝑤*(𝑡, 𝜁)− 1) = 0.

Which immediately gives us first equation.

Similarly

0 = res
𝑧
[𝜕𝜓(𝑧)𝐷(𝜁)𝜓*(𝑧)] = res

𝑧
[(𝜕𝑤(𝑧) + 𝑧𝑤(𝑧))(𝐷(𝜁)𝑤*(𝑧))(1− 𝑧/𝜁)−1].

Second part of lemma 2 implies

0 = [(𝜕𝑤(𝑧) + 𝑧𝑤(𝑥))𝐷(𝜁)𝑤*(𝑧)]−|𝑧=𝜁 = (𝜕𝑤(𝜁) + 𝜁𝑤(𝜁))𝐷(𝜁)𝑤*(𝜁)−

−𝜁 − 𝑤1 +𝐷(𝜁)𝑤1 = (𝜕𝑤(𝜁))𝑤−1(𝜁)− (1−𝐷(𝜁))𝑤1

which results in second equality.

We have shown that derivative of 𝑤(𝑡, 𝑧) with respect to 𝑡1 can be expressed in

terms of one function which is not depending on 𝑧 and the whole 𝑧 dependence can

be hidden inside shift of an arguments. It is remarkable discovery that 𝑤(𝑡, 𝑧) itself

can be expressed that way.

Theorem 2. There is a function 𝜏(𝑡) such that

log𝑤(𝑡, 𝑧) = (𝐷(𝑧)− 1) log 𝜏(𝑡)

or, in more detail

𝑤(𝑡, 𝑧) =
𝜏(𝑡− [𝑧−1])

𝜏(𝑡)
. (2.9)

It is clear, that since solution of (2.6) can be multiplied by any function depend-

ing on 𝑧, 𝜏 -function also determined up to 𝑐 exp
∞∑︀
𝑖=1

𝑐𝑖𝑡𝑖 with 𝑐, 𝑐1, 𝑐2, ... arbitrary

constants.
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Proof. We will consider operator 𝑁(𝑧) = 𝜕𝑧 −
∞∑︀
𝑗=1

𝑧−𝑗−1𝜕𝑗 which annihilates all

functions of the form 𝐷(𝑧)𝑓(𝑡) moreover for functions 𝑓 =
∞∑︀
𝑖=0

𝑓𝑖𝑧
−𝑖−1 𝑁(𝑧)𝑓 = 0

implies 𝑓 = 0.

Applying 𝑁(𝑧) to log𝑤(𝑡, 𝑧) = (𝐷(𝑧)− 1) log 𝜏(𝑡) we obtain series of equalities:

𝑎𝑖 = 𝜕𝑖 log 𝜏 = res
𝑧
𝑧𝑖

(︃
−

∞∑︁
𝑗=1

𝑧−𝑗−1𝜕𝑗 + 𝜕𝑧

)︃
log𝑤.

In order for this system to be compatible and agreed with last equation from

lemma 3 we need 𝜕𝑎𝑖 = −𝜕𝑖𝑤1 and 𝜕𝑗𝑎𝑖 = 𝜕𝑖𝑎𝑗.

First part can be verified by simple calculation. It results in 𝜕(𝜕𝑗𝑎𝑖 − 𝜕𝑖𝑎𝑗) = 0

however (𝜕𝑗𝑎𝑖−𝜕𝑖𝑎𝑗) itself should be differential polynomial of 𝑤𝑖 which are indepen-

dent functions. The only way it derivative can be zero is for him be only a constant

term. But simple calculation, for all 𝑤𝑖 = 0 shows that constant term is absent.

Equality (2.9) together with first part of lemma 3 gives us following representa-

tion of 𝑤*(𝑡, 𝑧) :

𝑤*(𝑡, 𝑧) =
𝜏(𝑡+ [𝑧−1])

𝜏(𝑡)
(2.10)

Eventually we can rewrite (2.7) as integral equation on function 𝜏(𝑡) in the form

also known as bilinear relation for tau-function.

∮︁
∞

𝑒𝜉(𝑡−𝑡′,𝑧)𝜏(𝑡− [𝑧−1])𝜏(𝑡+ [𝑧−1])d𝑧 = 0 (2.11)

19



Chapter 3

Further Generalizations

In this section there will be shown ways to generalize KP hierarchy to 2d Toda

hierarchy and matrix KP for both these cases pole dynamics of singular solutions

was obtained in Appendices ?? and ?? for trigonometric solutions and in Appendices

?? and ?? these results are generalized to elliptic case.

3.1 Modified KP

Content of this section follows Chapter 13 of (Dickey [2003]).

We start with ℒ pseudo-differential operator of KP hierarchy, then add infinitely

many functions 𝑣𝑖 for 𝑖 ∈ Z and determine

ℒ𝑖 = (𝜕 + 𝑣𝑖−1)...(𝜕 + 𝑣0)ℒ(𝜕 + 𝑣0)
−1...(𝜕 + 𝑣𝑖−1)

−1 for 𝑖 > 0 (3.1)

ℒ−𝑖 = (𝜕 + 𝑣−𝑖)
−1...(𝜕 + 𝑣−1)

−1ℒ(𝜕 + 𝑣−1)...(𝜕 + 𝑣−𝑖) for 𝑖 > 0 (3.2)

ℒ0 = ℒ. (3.3)

This way we have evident recursion:

ℒ𝑖+1(𝜕 + 𝑣𝑖) = (𝜕 + 𝑣𝑖)ℒ𝑖. (3.4)

20



Chapter 3. Further Generalizations 3.1. Modified KP

Determine dynamics of 𝑣𝑖 with respect to 𝑡𝑘 following way.

𝜕𝑘𝑣𝑖 = (ℒ𝑘
𝑖+1)+(𝜕 + 𝑣𝑖)− (𝜕 + 𝑣𝑖)(ℒ𝑘

𝑖 )+. (3.5)

In this case it is easy to show, that

𝜕𝑘ℒ𝑖 = [(ℒ𝑘
𝑖 )+,ℒ𝑖]. (3.6)

One can introduce dressing operators for each ℒ𝑖

𝒲𝑖ℒ𝑖𝒲−1
𝑖 = 𝜕 (3.7)

where 𝒲𝑖 =
∞∑︀
𝛼=0

𝑤𝑖𝛼𝜕
−𝛼, with 𝑤𝑖0 = 1. It is clear that

(𝜕 + 𝑣𝑖)𝒲𝑖 = 𝒲𝑖+1 · 𝜕. (3.8)

Taking similar approach as in section 2.1 we introduce Baker-Akhiezer functions

𝜓𝑖(𝑡, 𝑧) = 𝒲𝑖𝑒
𝜉

ℒ𝑖𝜓𝑖 = 𝑧𝜓𝑖, (𝜕 + 𝑣𝑖)𝜓𝑖 = 𝑧𝜓𝑖+1

and adjoint Baker-Akhiezer functions

𝜓*
𝑖 (𝑡, 𝑧) = (𝒲†

𝑖 )
−1𝑒−𝜉

ℒ†
𝑖𝜓

*
𝑖 = 𝑧𝜓*

𝑖 , (𝜕 − 𝑣𝑖)𝜓
*
𝑖+1 = −𝑧𝜓*

𝑖 .

Analogically to Lemma 3 we have

Lemma 4. For two formal series

𝜓𝑖 =
∑︁
𝛼

𝑤𝑖𝛼𝑧
−𝛼𝑒𝜉, 𝜓* =

∑︀
𝛼

𝑤*
𝑖𝛼𝑧

−𝛼𝑒𝜉

with 𝑤𝑖0 = 𝑤*
𝑖0 = 1 the following two statements are met simultaneously.
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1) 𝜓𝑖 and 𝜓*
𝑖 are Baker Akhiezer functions of mKP hierarchy.

2) res
𝑧
[𝑧𝑖−𝑗(𝜕𝑘11 ...𝜕

𝑘𝑚
𝑚 𝜓𝑖)𝜓

*
𝑗 ] = 0 for 𝑖 ≥ 𝑗 and any (𝑘1, ..., 𝑘𝑚).

Proof. First we will show, that if condition 1 is satisfied, then condition 2 is also

satisfied.

Like in KP case we need to consider only (𝑘, 0, 0, ..., 0) since 𝜕𝑠𝜓𝑖 = (ℒ𝑠
𝑖 )+𝜓𝑖.

res
𝑧
[𝑧𝑖−𝑗(𝜕𝑘𝜓𝑖)𝜓

*
𝑗 ] = res

𝑧
[(𝜕𝑘𝒲𝑖𝜕

𝑖−𝑗𝑒𝜉)((𝒲†
𝑗 )

−1𝑒−𝜉)] = res
𝜕
[(𝜕𝑘𝒲𝑖𝜕

𝑖−𝑗)𝒲−1
𝑗 ] =

= res
𝜕
[(𝜕𝑘(𝜕 + 𝑣𝑖−1)...(𝜕 + 𝑣𝑗)𝒲𝑗𝒲−1

𝑗 ] = 0.

Now we will proof reverse statement. For 𝑖 = 𝑗 we have a case of KP hierarchy

and it already has been proven, that if res
𝑧
[(𝜕𝑘11 ...𝜕

𝑘𝑚
𝑚 𝜓𝑖)𝜓

*
𝑖 ] = 0, then 𝜓𝑖 and 𝜓*

𝑖

are Baker-Akhiezer functions and adjoint BA functions of KP hierarchies with ℒ𝑖

operators. We are left to prove, that these operators connected through equation

(3.4). In order to do so we will consider the case 𝑖 = 𝑗 + 1 and (𝑘, 0, 0, ..., 0).

0 = res
𝑧
[𝑧(𝜕𝑘𝜓𝑗+1)𝜓

*
𝑗 ] = res

𝑧
[(𝜕𝑘𝒲𝑗+1𝜕𝑒

𝜉)((𝒲†
𝑗 )

−1𝑒−𝜉)] = res
𝜕
[𝜕𝑘𝒲𝑗+1𝜕𝒲−1

𝑗 ].

which means, that 𝒲𝑗+1𝜕𝒲−1
𝑗 is purely differential first order monic operator and

we can put 𝒲𝑗+1𝜕𝒲−1
𝑗 = 𝜕 + 𝑣𝑗. From that equation (3.4) follows immediately.

Since every 𝜓𝑖 is solution of KP Theorem 2 combined with proven Lemma means

that whole mKP hierarchy is equivalent to series of bilinear equations:

∮︁
∞

𝑧𝑛−𝑚𝑒𝜉(𝑡−𝑡′,𝑧)𝜏𝑛(𝑡− [𝑧−1])𝜏𝑚(𝑡+ [𝑧]−1)d𝑧 = 0 (3.9)

for 𝑛 ≥ 𝑚.

But for our purposes it will be convenient to take a different look at mKP hier-

archy as a half of more general 2d Toda hierarchy.
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3.2 gl((∞)) algebra and 2d Toda hierarchy

The content of this section is based on (Ueno and Takasaki [1984]).

We will consider formal Lie algebra gl((∞))

Let Λ𝑗 be a 𝑗-th shift matrix Λ𝑗 = (𝛿𝜇+𝑗,𝜈)𝜇,𝜈∈Z and 𝐸𝑖𝑗 be the (𝑖, 𝑗)-matrix unit

𝐸𝑖𝑗 = (𝛿𝜇𝑖𝛿𝜈𝑗)𝜇,𝜈∈Z. Let gl((∞)) be a formal Lie algebra consisting of all Z × Z

matrices

gl((∞)) =

{︃∑︁
𝑖,𝑗∈Z

𝑎𝑖𝑗𝐸𝑖𝑗|𝑎𝑖𝑗 ∈ C

}︃
. (3.10)

A matrix 𝐴 ∈ gl((∞)) is written in a form

𝐴 =
∑︁
𝑗∈Z

diag[𝑎𝑗(𝑠)]Λ
𝑗 (3.11)

here diag[𝑎𝑗(𝑠)] denotes a diagonal matrix diag(..., 𝑎𝑗(−1), 𝑎𝑗(0).𝑎𝑗(1), ...) we can

define a positive/negative part of matrix of matrix 𝐴 : (𝐴)+ =
∑︀
𝑗≥0

diag[𝑎𝑗(𝑠)]Λ
𝑗 and

(𝐴)− =
∑︀
𝑗<0

diag[𝑎𝑗(𝑠)]Λ
𝑗.

If 𝑎𝑗(𝑠) = 0 for all 𝑗 > 𝑚 we call 𝐴 is order less than 𝑚. If 𝑎𝑗(𝑠) = 0 for all

𝑗 < 𝑚 we call 𝐴 is order grater than 𝑚. If matrices 𝐴 and 𝐵 both less or larger

than some 𝑚, then product of 𝐴𝐵 is well-defined.

There is natural correspondence between matrix 𝐴 and difference operator

𝒜(𝑥) =
∑︁
𝑗∈Z

𝑎𝑗(𝑥)𝑒
𝑗𝜂𝜕𝑥 (3.12)

where operator 𝑒𝑗𝜕𝑠 define by it action 𝑒𝑗𝜂𝜕𝑠𝑓(𝑥) = 𝑓(𝑥+ 𝑗𝜂).

Definition 3. Set two copies of time flows 𝑡+ and 𝑡−. Let 𝐿, 𝐿̄ and 𝑀𝑛 for 𝑛 ∈

Z/{0} be elements of gl((∞)) where

𝐿 =
∑︁
𝑗≤1

diag[𝑙𝑗(𝑠)]Λ
𝑗 with 𝑙1(𝑠) = 1 for any 𝑠 (3.13)

𝐿̄ =
∑︁
−1≤𝑗

diag[𝑙̄𝑗(𝑠)]Λ
𝑗 with 𝑙̄−1(𝑠) ̸= 0 for any 𝑠 (3.14)

𝑀𝑛>0 = (𝐿𝑛)+ 𝐵𝑛<0 = (𝐿̄−𝑛)−. (3.15)
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The Toda lattice hierarchy is a system of equations

𝜕𝑛𝐿 = [𝑀𝑛, 𝐿] 𝜕𝑛𝐿̄ = [𝑀𝑛, 𝐿̄]. (3.16)

It can be proven the same way it was proven for KP hierarchy that second

derivatives commute. In a case of both 𝑚 and 𝑛 positive or negative the proof is

the same as in KP case. Following chain of equalities will proof it for times from

different flows:

𝜕𝑛𝜕−𝑚𝐿− 𝜕−𝑚𝜕𝑛𝐿 = 𝜕𝑛[𝐿̄
𝑚
− , 𝐿]− 𝜕−𝑚[𝐿

𝑛
+, 𝐿] =

[𝐿𝑛
+, 𝐿̄

𝑚]−𝐿+ 𝐿̄𝑚
− [𝐿

𝑛
+, 𝐿]− 𝐿[𝐿𝑛

+, 𝐿̄
𝑚]− − [𝐿𝑛

+, 𝐿]𝐿̄
𝑚
−−

−[𝐿̄𝑚
− , 𝐿

𝑛]+𝐿− 𝐿𝑛
+[𝐿̄

𝑚
− , 𝐿] + 𝐿[𝐿̄𝑚

− , 𝐿
𝑛]+ + [𝐿̄𝑚

− , 𝐿]𝐿
𝑛
+

= [𝐿𝑛
+, 𝐿̄

𝑚]𝐿+ (𝐿̄𝑚
−𝐿

𝑛
+ − 𝐿𝑛

+𝐿̄
𝑚
− )𝐿− 𝐿[𝐿𝑛

+, 𝐿̄
𝑚] + 𝐿(𝐿𝑛

+𝐿̄
𝑚
− − 𝐿̄𝑚

−𝐿
𝑛
+) = 0.

Now we will proof some lemmas which help us to obtain the whole Toda lattice

hierarchy in bilinear form:

Lemma 5. There are exist two matrices 𝑊 and 𝑊̄ of form

𝑊 =
∞∑︁
𝑗=0

diag[𝑤𝑗(𝑠)]Λ
−𝑗 (3.17)

𝑊̄ =
∞∑︁
𝑗=0

diag[𝑤̄𝑗(𝑠)]Λ
𝑗 (3.18)

with 𝑤0(𝑠) = 1 and 𝑤̄0(𝑠) ̸= 0 for any 𝑠 such that 𝐿 = 𝑊Λ𝑊−1, 𝐿̄ = 𝑊̄ Λ̄−1𝑊̄−1

and they satisfy equations

𝜕𝑛𝑊 = −𝐿𝑛
−𝑊 𝜕−𝑛𝑊 = 𝐿̄𝑛

−𝑊 𝑛 > 0 (3.19)

𝜕𝑛𝑊̄ = 𝐿𝑛
+𝑊̄ 𝜕−𝑛𝑊 = −𝐿̄𝑛

+𝑊̄ 𝑛 > 0. (3.20)

Moreover they both defined up to arbitrariness

𝑊 → 𝑊𝐹−(Λ) 𝑊̄ → 𝑊̄𝐹+(Λ) (3.21)
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where 𝐹±(Λ) =
∑︀
𝑗≥0

𝑓±
𝑗 Λ

±𝑗.

Proof. First of all simple calculation shows that system (3.19)-(3.20) is compatible.

It is clear that there are exist a some constant matrices 𝑊0 and 𝑊̄0 of forms

(3.17) and (3.18) respectfully such that

𝐿 = 𝑊0Λ𝑊
−1
0 𝐿̄ = 𝑊̄0Λ̄𝑊̄

−1
0 .

We can consider Cauchy problem for (3.19) and (3.20) with initial conditions

𝑊0, 𝑊̄0.

Straightforward calculations show, that 𝐿𝑊 − 𝑊𝐿 and 𝐿̄𝑊̄ − 𝑊̄ 𝐿̄ are both

solutions of the same systems with zero initial conditions, so the uniqueness of

solution obliges them be a null solutions, which means, that we have constructed 𝑊

and 𝑊̄ from lemma.

Using that lemma it is easy to show, that matrices Ψ = 𝑊𝑒𝜉(𝑡+,Λ) and Ψ̄ =

𝑊̄𝑒𝜉(𝑡−,Λ−1) are solutions of following linear problems:

𝐿Ψ = ΨΛ, 𝜕𝑛Ψ =𝑀𝑛Ψ (3.22)

𝐿̄Ψ̄ = Ψ̄Λ−1, 𝜕𝑛Ψ̄ =𝑀𝑛Ψ̄. (3.23)

𝐿Ψ = 𝐿𝑊𝑒𝜉(𝑡+,Λ) = 𝑊Λ𝑒𝜉(𝑡+.Λ) = ΨΛ and for 𝑛 > 0 𝜕𝑛Ψ = −𝐿𝑛
−Ψ + ΨΛ𝑛 =

(−𝐿𝑛
− + 𝐿𝑛)Ψ =𝑀𝑛Ψ the rest calculations are similar.

Now we have proven, that

𝑀𝑛 = (𝜕𝑛Ψ)Ψ−1 = (𝜕𝑛Ψ̄)Ψ̄−1 (3.24)

or even

(𝜕𝑛𝑘
𝑖𝑘
...𝜕𝑛1

𝑖1
Ψ)Ψ−1 = (𝜕𝑛𝑘

𝑖𝑘
...𝜕𝑛1

𝑖1
Ψ̄)Ψ̄−1 (3.25)

for any (𝑖1, ...𝑖𝑘) ∈ (Z/{0})𝑘 and (𝑛1, ...𝑛𝑘) ∈ (N*)𝑘.

It can be written as

Ψ(𝑡+, 𝑡−)Ψ
−1(𝑡′+, 𝑡

′
−) = Ψ̄(𝑡+, 𝑡−)Ψ̄

−1(𝑡′+, 𝑡
′
−) (3.26)
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for any 𝑠, 𝑠′, 𝑡+.𝑡−, 𝑡′−, 𝑡′+,

This equation resembles similar ones for KP and mKP case. It can be proven

similarly to KP and mKP cases that equation (3.26) defines the whole hierarchy.

Resemblance with mKP and KP hierarchies can be continued further. We have

𝑊 =
∞∑︁
𝑗=0

diag[𝑤𝑗(𝑠)]Λ
−𝑗, 𝑊−1 =

∞∑︀
𝑗=0

Λ−𝑗diag[𝑤*
𝑗 (𝑠+ 1)],

𝑊̄ =
∞∑︁
𝑗=0

diag[𝑤̄𝑗(𝑠)]Λ
𝑗, 𝑊̄−1 =

∞∑︀
𝑗=0

Λ𝑗diag[𝑤̄*
𝑗 (𝑠+ 1)].

And define

𝜓(𝑠, 𝑧) =
∞∑︁
𝑗=0

𝑤𝑗(𝑠)𝑧
𝑠−𝑗𝑒𝜉(𝑡+,𝑧), 𝜓*(𝑠, 𝑧) =

∞∑︀
𝑗=0

𝑤*
𝑗 (𝑠)𝑧

−𝑗−𝑠𝑒−𝜉(𝑡+,𝑧),

𝜓(𝑠, 𝑧) =
∞∑︁
𝑗=0

𝑤̄𝑗(𝑠)𝑧
𝑗+𝑠𝑒𝜉(𝑡−,𝑧−1), 𝜓*(𝑠, 𝑧) =

∞∑︀
𝑗=0

𝑤̄*
𝑗 (𝑠)𝑧

𝑗−𝑠𝑒−𝜉(𝑡−,𝑧−1).

After that equation (3.26) can be rewritten as

∮︁
∞

𝜓(𝑠, 𝑧; 𝑡+, 𝑡−)𝜓
*(𝑠′, 𝑧; 𝑡′+, 𝑡

′
−)

d𝑧

2𝜋𝑖
=

∮︁
0

𝜓(𝑠, 𝑧; 𝑡+, 𝑡−)𝜓
*(𝑠′, 𝑧; 𝑡′+, 𝑡

′
−)

d𝑧

2𝜋𝑖
. (3.27)

When 𝑠 ≥ 𝑠′ and 𝑡− = 𝑡′− right hand side is equal to zero and we obtain mKP

equation in bilinear form. We can introduce tau-functions.

𝜓(𝑠, 𝑧, 𝑡+, 𝑡−) = 𝑧𝑠𝑒𝜉(𝑡+,𝑧) 𝜏𝑠(𝑡+ − [𝑧−1], 𝑡−)

𝜏𝑠(𝑡+, 𝑡−)
(3.28)

𝜓*(𝑠, 𝑧, 𝑡+, 𝑡−) = 𝑧−𝑠𝑒𝜉(𝑡+,𝑧) 𝜏𝑠(𝑡+ + [𝑧−1], 𝑡−)

𝜏𝑠(𝑡+, 𝑡−)
. (3.29)

We can also introduce 𝑟𝑛 and 𝑟*𝑛 such that

𝜓(𝑠, 𝑧, 𝑡+, 𝑡−) = 𝑧𝑠𝑒𝜉(𝑡−,𝑧−1)𝑟𝑠(𝑧, ; 𝑡+, 𝑡−) = 𝑧𝑠𝑒𝜉(𝑡−,𝑧−1)
∑︁
𝑗≥0

𝑟𝑠,𝑗𝑧
𝑗 (3.30)

𝜓*(𝑠, 𝑧, 𝑡+, 𝑡−) = 𝑧−𝑠𝑒−𝜉(𝑡−,𝑧−1)𝑟*𝑠(𝑧, ; 𝑡+, 𝑡−) = 𝑧−𝑠𝑒−𝜉(𝑡−,𝑧−1)
∑︁
𝑗≥0

𝑟*𝑠,𝑗𝑧
𝑗. (3.31)

Applying calculations similar to one used in Lemma 3 for different choice of
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𝑠− 𝑠′, 𝑡′− − 𝑡−, 𝑡
′
+ − 𝑡+ we can proof following equalities:

𝑟−1
𝑠 (𝑧) = 𝐷−(𝑧

−1)𝑟*𝑠+1(𝑧), for 𝑡′+ = 𝑡+, 𝑡
′
− = 𝑡− + [𝑧], 𝑠′ = 𝑠+ 1

𝑟𝑠(𝑧)

𝑟𝑠−1(𝑧)
=
𝐷−(𝑧

−1)𝑟𝑠,0
𝑟𝑠−1,0

for 𝑡′+ = 𝑡+, 𝑡
′
− = 𝑡− + [𝑧], 𝑠′ = 𝑠+ 2

𝐷+(𝜁)𝜏𝑠𝐷−(𝑧
−1)𝜏𝑠+1

𝜏𝑠𝐷+(𝜁)𝐷−(𝑧−1)𝜏𝑠+1

=
𝑟𝑠(𝑧)

𝐷+(𝜁)𝑟𝑠(𝑧)
for 𝑡′+ = 𝑡+ + [𝜁−1], 𝑡′− = 𝑡− + [𝑧], 𝑠′ = 𝑠+ 1.

Combine last two equations one can find that

𝜓(𝑠, 𝑧, 𝑡+, 𝑡−) = 𝑧𝑠𝑒𝜉(𝑡−,𝑧−1) 𝜏𝑠+1(𝑡+, 𝑡− − [𝑧])

𝜏(𝑡+, 𝑡−)
(3.32)

𝜓*(𝑠, 𝑧, 𝑡+, 𝑡−) = 𝑧−𝑠𝑒−𝜉(𝑡−,𝑧−1) 𝜏𝑠−1(𝑡+, 𝑡− + [𝑧])

𝜏(𝑡+, 𝑡−)
. (3.33)

Eventually it results in integral bilinear equation on tau functions of Toda lattice

hierarchy: ∮︁
∞

𝑧𝑠
′−𝑠𝑒𝜉(𝑡+,𝑧)−𝜉(𝑡′+,𝑧)𝜏𝑠(𝑡+ − [𝑧−1], 𝑡−)𝜏𝑠′(𝑡

′
+ + [𝑧−1], 𝑡′−)

d𝑧

2𝜋𝑖
=

=

∮︁
0

𝑧𝑠
′−𝑠𝑒𝜉(𝑡−,𝑧−1)−𝜉(𝑡′−,𝑧−1)𝜏𝑠+1(𝑡+, 𝑡− − [𝑧])𝜏𝑠′−1(𝑡

′
+, 𝑡

′
− + [𝑧])

d𝑧

2𝜋𝑖
.

(3.34)

Or if one consider 𝑛 not discrete but continues variable and introduce 𝑥 = 𝜂𝑛,

then it can written as∮︁
∞

𝑧𝜂(𝑥
′−𝑥)𝑒𝜉(𝑡+,𝑧)−𝜉(𝑡′+,𝑧)𝜏(𝑥, 𝑡+ − [𝑧−1], 𝑡−)𝜏(𝑥

′, 𝑡′+ + [𝑧−1], 𝑡′−)
d𝑧

2𝜋𝑖
=

=

∮︁
0

𝑧𝜂(𝑥
′−𝑥)𝑒𝜉(𝑡−,𝑧−1)−𝜉(𝑡′−,𝑧−1)𝜏(𝑥+ 𝜂, 𝑡+, 𝑡− − [𝑧])𝜏(𝑥′ − 𝜂, 𝑡′+, 𝑡

′
− + [𝑧])

d𝑧

2𝜋𝑖
.

(3.35)

3.3 Multi-component KP hierarchy

Content of this section is based on (Dickey [1997]).

Another generalization of KP hierarchy comes when we consider elements 𝑢𝑚 of

operator ℒ in (2.1) as 𝑛× 𝑛 matrices
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𝐿 = 𝜕 + 𝑈1𝜕
−1 + 𝑈2𝜕

−2 + ... (3.36)

We can introduce times : 𝑡𝑘𝛼, where 𝑘 > 0 and 1 ≤ 𝛼 ≤ 𝑛.

To define dynamics of these elements we introduce operators 𝑅𝛼 such that

𝑅𝛼𝑅𝛽 = 𝛿𝛼𝛽𝑅𝛼, [𝑅𝛼,𝐿] = 0 and
∑︀
𝛼

𝑅𝛼 = 1 (from here and further summations

over Greek indices goes from 1 to 𝑛).

Now define operators 𝐵𝑘𝛼 = (𝐿𝑘𝑅𝛼)+ where as in regular KP ()+ means taking

purely differential part. We introduce dynamics

𝜕𝑘𝛼𝐿 = [𝐵𝑘𝛼, 𝐿]. (3.37)

It is clear from definition, that
∑︀
𝛼

𝜕1𝛼 = 𝜕.

Similarly to KP case we may introduce dressing operator 𝑊 = 𝐼 +
∑︀
𝑘>0

𝑊𝑘𝜕
−𝑘:

𝐿 = 𝑊 𝜕𝑊−1. It is clear, that defined as 𝑅𝛼 = 𝑊𝐸𝛼𝑊
−1, 𝑅𝛼 operators are

indeed satisfy all requirements . Here (𝐸𝛼)𝑖𝑗 = 𝛿𝑖𝛼𝛿𝑗𝛼.

Introducing matrix Baker-Akhiezer and adjoint Baker-Akhiezer functions:

Ψ = 𝑊 𝑒𝜉(𝑡,𝑧) = 𝑒𝜉(𝑡,𝑧)𝑊 (3.38)

Ψ* = (𝑊 †)−1𝑒−𝜉(𝑡,𝑧) = 𝑒−𝜉(𝑡,𝑧)(𝑊 *)−1 (3.39)

where 𝜉(𝑡, 𝑧) =
∑︀
𝑘≥0

∑︀
𝛼

𝑧𝑘𝐸𝛼𝑡𝑘𝛼.

They are solutions of corresponding generalization of linear problems:

𝐿Ψ = 𝑧Ψ 𝐿†Ψ* = 𝑧Ψ* (3.40)

𝜕𝑛𝛼Ψ = 𝐵𝑛𝛼Ψ 𝜕𝑛𝛼Ψ
* = −𝐵†

𝑛𝛼Ψ
*. (3.41)

It can be proven the same way as in scalar case, analogue of Theorem 1:

Theorem 3. The identity

res
𝑧
[(𝜕𝑖1𝑘1𝛼1

...𝜕𝑖𝑚𝑘𝑚𝛼𝑚
Ψ)Ψ*] = 0
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holds for any (𝑖1, ..., 𝑖𝑚) ∈ (N*)𝑚, (𝑘1, ..., 𝑘𝑚) ∈ (N*)𝑚 and (𝛼1, ..., 𝛼𝑚) ∈ [1, 𝑛]𝑚 if

and only if Ψ and Ψ* of form (𝐼 +
∑︀
𝑘>0

𝐴𝑖𝑧
−𝑖)𝑒±𝜉 are solutions of (3.38).

Or it can be written in integral form

∮︁
∞

Ψ(𝑧; 𝑡)Ψ*(𝑧; 𝑡′)d𝑧 = 0. (3.42)

It is possible to generalize notion of 𝜏 -function.

First of all we introduce operators 𝐷𝛼(𝑧) = exp

(︂
−
∑︀
𝑘>1

𝜕𝑘𝛼
𝑧𝑘𝑘

)︂
which is act by

shifting 𝛼’s times by [𝑧−1] vector. 𝐷𝛼(𝑧)𝑓(𝑡) = 𝑓(..., 𝑡𝑘𝛾 − 𝛿𝛼𝛾(1/𝑘)𝑧
−𝑘, ...).

As in a proof of existence of 𝜏 -function for KP it is useful to consider following

identities 𝐷𝛼(𝜁)𝑒
−𝜉(𝑡,𝑧) = (𝐼 − 𝐸𝛼 + (1− 𝜁/𝑧)−1𝐸𝛼)𝑒

−𝜉(𝑡,𝑧).

Taking (𝛽, 𝛽)th and (𝛼, 𝛽)th elements of equation (3.42) with 𝑡′𝑘𝛾 = 𝑡𝑘𝛾 + 𝛿𝛽𝛾
1

𝑘𝜁𝑘

we obtain equations

𝑊𝛽𝛽𝐷𝛼𝑊
*
𝛽𝛽 = 1 (3.43)

𝜁
𝑊𝛼𝛽(𝜁)

𝑊𝛽𝛽(𝜁)
= 𝐷𝛽(𝜁)𝑊1,𝛼𝛽. (3.44)

Taking (𝛽, 𝛽)th element of equation (3.42) with 𝑡′𝑘𝛾 = 𝑡𝑘𝛾 + 𝛿𝛽𝛾

(︂
1

𝑘𝜁𝑘1
+

1

𝑘𝜁𝑘2

)︂
results in

𝐷𝛽(𝜁1)𝑊𝛽𝛽(𝜁2)

𝑊𝛽𝛽(𝜁2)
=
𝐷𝛽(𝜁2)𝑊𝛽𝛽(𝜁1)

𝑊𝛽𝛽(𝜁1)
. (3.45)

Introducing 𝑓𝛽 = log𝑊𝛽𝛽 it can be rewritten as

(𝐷𝛽(𝜁1)− 1)𝑓𝛽(𝜁2) = (𝐷𝛽(𝜁2)− 1)𝑓𝛽(𝜁1) (3.46)

Combine equations which come from (𝛼, 𝛼)th, (𝛼, 𝛽)th, (𝛽, 𝛽)th and (𝛽, 𝛼)th

with 𝑡′𝑘𝛾 = 𝑡𝑘𝛾 +

(︂
𝛿𝛽𝛾

1

𝑘𝜁𝑘1
+ 𝛿𝛼𝛾

1

𝑘𝜁𝑘2

)︂
one can show that

(𝐷𝛼(𝜁1)− 1)𝑓𝛽(𝜁2) = (𝐷𝛽(𝜁2)− 1)𝑓𝛼(𝜁1). (3.47)
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As in KP case we will proof that there is function 𝜏 such that 𝑓𝛼(𝑧) = (𝐷𝛼(𝑧)−

1) log 𝜏 .

Introducing operator 𝑁𝛼(𝑧) =
∑︀
𝑗≥0

𝑧−𝑗−1𝜕𝑗𝛼+𝜕𝑧 such that 𝑁𝛼(𝑧)𝐷𝛼(𝑧)𝑓(𝑡, 𝑧) = 0

and applying it to (3.47) one obtain

𝐷𝛽(𝜁2)𝑁𝛼(𝜁1)𝑓𝛼(𝜁1)−𝑁𝛼𝑓𝛼(𝜁1) = −
∑︁
𝑗≥0

𝜁−𝑗−1𝜕𝑗𝛼𝑓𝛽(𝜁2). (3.48)

Then multiply this by 𝜁 𝑖1 and take res
𝜁1

𝑏𝑖𝛼 ≡ res
𝜁1
𝜁 𝑖1𝑁𝛼(𝜁1)𝑓𝛼(𝜁1) = 𝐷𝛽(𝜁2)res

𝜁1
𝜁 𝑖1𝑁𝛼(𝜁1)𝑓𝛼(𝜁1) + 𝜕𝑖𝛼𝑓𝛽(𝜁2) (3.49)

i.e

𝑏𝑖𝛼 = 𝐷𝛽(𝜁2)𝑏𝑖𝛼 + 𝜕𝑖𝛼𝑓𝛽(𝜁2). (3.50)

Since (𝑖, 𝛼) is arbitrary we can differentiate this equality with respect to 𝑡𝑗𝛾 .

change indices and substitute one equation from other to obtain equation

(𝐷𝛽(𝜁2)− 1)(𝜕𝑗𝛾𝑏𝑖𝛼 − 𝜕𝑖𝛼𝑏𝑗𝛾). (3.51)

Since (𝐷𝛽(𝜁2)− 1) null only functions which are constant for all times, the same

argument as in KP case can be applied here to show, that 𝜕𝑗𝛾𝑏𝑖𝛼−𝜕𝑖𝛼𝑏𝑗𝛾 = 0, which

means, that one can introduce 𝜏 such that 𝑏𝑖𝛼 = 𝜕𝑖𝛼 log 𝜏 . Tau function is defined

up to multiplication by 𝑐(𝑧), however this ambiguity can be hidden inside definition

of Baker-Akhiezer functions, which also can be defined up to multiplication by some

matrix which depend only on 𝑧.

Using equation 3.44 we define 𝜏𝛼𝛽 = 𝜏𝑊1,𝛼𝛽 and

𝑊𝛼𝛽(𝑧; 𝑡) =
1

𝑧

𝐷𝛽(𝑧)𝜏𝛼𝛽(𝑡)

𝜏(𝑡)
, 𝛼 ̸= 𝛽. (3.52)

If we introduce 𝑡𝑖 = 1
𝑛

∑︀
𝛼

𝑡𝑖𝛼 such that 𝜕𝑛 =
∑︀
𝛼

𝜕𝑛𝛼 and consider dependence only

on 𝑡𝑛 variables, we obtain Matrix KP hierarchy.
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Chapter 4

Main Results

4.1 KP hierarchy

This thesis continues a series of works started with (Airault et al. [1977]) where au-

thors have considered a singular solutions of KdV equation and shown, that its poles

is governed by dynamics of cubic Hamiltonian of Calogero-Moser system in special

locus, where 𝐻2 is equal to zero. Following by famous Krichever results (Krichever

[1978]) and (Krichever [1980]) where he has shown that connection between pole

solutions of nonlinear partial equations and many body systems becomes more nat-

ural for KP equation. Shiota in (Shiota [1994]) have extended that correspondence

to the whole hierarchy for rational case. He have shown that poles of rational solu-

tions of KP hierarchy evolve with respect to 𝑡𝑚’s KP time like particles of rational

Calogero-Moser model governed by Hamiltonian 𝐻𝑚 = tr𝐿𝑚 with Calogero-Moser

matrix 𝐿 (1.26).

Later this result was generalized in (Haine [2007]) and (Zabrodin [2020]) for

trigonometric solutions with corresponding Hamiltonians

𝐻𝑚 =
1

2(𝑚+ 1)𝛾
tr ((𝐿+ 𝛾𝐼)𝑚+1 − (𝐿− 𝛾𝐼)𝑚+1) where 𝐿 is Lax matrix for

trigonometric Calogero-Moser system (1.28).

Article (Prokofev and Zabrodin [2021b]) contains the most general version of this

statement. It considers elliptic solution of whole hierarchy in form of
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𝜏(𝑥, 𝑡) =
𝑁∏︁
𝑖=1

𝜎(𝑥− 𝑥𝑖(𝑡)). (4.1)

It is proven, that (4.1) gives solution of (2.11) if and only if evolution of 𝑥𝑖’s with

respect to 𝑡𝑚 is governed by

𝐻𝑚 = res
𝑧=∞

(𝑧𝑚𝜆(𝑧)) (4.2)

where 𝜆(𝑧) solves

det(𝐿(𝜆)− (𝑧 + 𝜁(𝜆)𝐼) = 0 (4.3)

with elliptic Lax matrix

𝐿𝑗𝑘 = −𝑝𝑗𝛿𝑗𝑘 − (1− 𝛿𝑗𝑘)Φ(𝑥𝑗 − 𝑥𝑘, 𝜆). (4.4)

It appears that there is only one unique solution of (4.3) when 𝑧 → ∞.

This article also include nontrivial calculations connecting this solution in the

limit when one or both periods of elliptic curve goes to infinity with results of

previous works.

4.2 2d Toda hierarchy

Dynamics of poles of elliptic solutions to the 2DTL and mKP hierarchies was studied

in (Krichever and Zabrodin [1995]). It was proved that the poles move as particles of

the integrable Ruijsenaars–Schneider many-body system (Ruijsenaars and Schneider

[1986]) which is a relativistic generalization of the Calogero–Moser system. The

extension to the level of hierarchies for rational solutions to the mKP equation

was made in (Iliev [2007]): again, the evolution of poles with respect to the higher

times 𝑡𝑘 of the mKP hierarchy is governed by the higher Hamiltonians −tr𝐿𝑘 of the

Ruijsenaars–Schneider system.

Article (Prokofev and Zabrodin [2019]) generalize that result. It contains direct

solutions of bilinear relation for the whole 2d Toda lattice (3.35) with trigonometric
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tau-function of the form

𝜏(𝑥, 𝑡+, 𝑡−) = exp

(︃
−
∑︁
𝑘≥1

𝑘𝑡𝑘𝑡−𝑘

)︃
𝑁∏︁
𝑖=1

(︀
𝑒2𝛾𝑥 − 𝑒2𝛾𝑥𝑖(𝑡+,𝑡−)

)︀
. (4.5)

It is shown, that evolution of the 𝑥𝑖’s with respect to the time 𝑡𝑚 govern by

Hamiltonian

𝐻𝑚 = −sinh(𝑚𝛾𝜂)

𝑚𝛾𝜂
tr(𝐿)𝑚 (4.6)

for both positive and negative 𝑚. Here

𝐿𝑖𝑗 =
𝛾𝜂𝑒𝜂𝑝𝑖

sinh(𝛾(𝑥𝑖 − 𝑥𝑗 − 𝜂))

∏︁
𝑙 ̸=𝑖

sinh(𝛾(𝑥𝑖 − 𝑥𝑙 + 𝜂))

sinh(𝛾(𝑥𝑖 − 𝑥𝑙))
(4.7)

is the Lax matrix of trigonometric Ruijsenaars–Schneider system.

Generalization to elliptic case is given in (Prokofev and Zabrodin [2021a]) where

we consider solutions of 2d Toda lattice hierarchy of the form

𝜏(𝑥, 𝑡+, 𝑡−) = exp

(︃
−
∑︁
𝑘≥1

𝑘𝑡𝑘𝑡−𝑘

)︃
𝑁∏︁
𝑖=1

𝜎 (𝑥− 𝑥𝑖(𝑡+, 𝑡−)) . (4.8)

In order for 4.8 to be solution, evolution of 𝑥𝑖 with respect to time 𝑡𝑚 should be

governed by Hamiltonian

𝐻𝑚 = res
𝑧=∞

(𝑧𝑚−1𝜆(𝑧)) (4.9)

for 𝑚 > 0 and

𝐻𝑚 = res
𝑧=0

(𝑧𝑚−1𝜆(𝑧)) (4.10)

for 𝑚 < 0.

𝜆(𝑧) can be found from the equation

det(𝐿(𝜆)− 𝑧𝜂𝜁(𝜆)) = 0 (4.11)
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with elliptic Lax matrix 𝐿

𝐿𝑖𝑗(𝜆) = 𝑒𝑝𝑖Φ(𝑥𝑖 − 𝑥𝑗 − 𝜂, 𝜆)
∏︁
𝑙 ̸=𝑖

𝜎(𝑥𝑖 − 𝑥𝑙 + 𝜂)

𝜎(𝑥𝑖 − 𝑥𝑙)
. (4.12)

Equation (4.11) have unique solution near 𝑧 = ∞.

Nontrivial calculations conducted in this paper proof that, degeneration of el-

liptic curve to its rational or trigonometric limits gives the same results as ones

obtained before.

4.3 Matrix KP

The singular (in general, elliptic) solutions to the matrix KP equation were inves-

tigated in (Krichever and Zabrodin [1995])). It was shown that the evolution of

data of such solutions (positions of poles and some internal degrees of freedom)

with respect to the time 𝑡2 is isomorphic to the dynamics of a spin generalization of

the Calogero–Moser system (the Gibbons–Hermsen system (Gibbons and Hermsen

[1984]). The generalization of this connection to whole hierarchy was studied in

(Pashkov and Zabrodin [2018]) for rational solutions. It appears, that dynamics in

𝑡𝑚 is governed by Hamiltonian 𝐻𝑚 = tr𝐿𝑚.

Trigonometric version of this result is considered in (Prokofev and Zabrodin

[2020]). There are trigonometric solutions of matrix KP hierarchy constructed in

this paper. It is proven, that

𝜏 =
𝑁∏︁
𝑖=1

(𝑒2𝛾𝑥 − 𝑒2𝛾𝑥𝑖(𝑡)) (4.13)

with

𝑊1,𝛼𝛽 = 𝑆𝛼𝛽 −
∑︁
𝑖

2𝛾𝑒2𝛾𝑥𝑖(𝑡)𝑎𝛼𝑖 (𝑡)𝑏
𝛽
𝑖 (𝑡)

𝑒2𝛾𝑥 − 𝑒2𝛾𝑥𝑖(𝑡)
(4.14)

Are solutions to whole matrix KP hierarchy if and only if dynamics of 𝑥𝑖(𝑡),

𝑎𝛼𝑖 (𝑡), 𝑏𝛼𝑖 (𝑡) in 𝑡𝑚 is governed by Hamiltonian

𝐻𝑚 =
1

2(𝑚+ 1)𝛾
tr
(︀
(𝐿+ 𝛾𝐼)𝑚+1 − (𝐿− 𝛾𝐼)𝑚+1

)︀
(4.15)
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where

𝐿𝑗𝑘 = −𝑝𝑗𝛿𝑗𝑘 − (1− 𝛿𝑗𝑘)

𝛾
∑︀
𝛼

𝑏𝛼𝑗 𝑎
𝛼
𝑘

sinh(𝛾(𝑥𝑗 − 𝑥𝑘))
(4.16)

with nonzero Poisson brackets {𝑥𝑖, 𝑝𝑗} = 𝛿𝑖𝑗 and {𝑎𝛼𝑖 , 𝑏
𝛽
𝑗 } = 𝛿𝛼𝛽𝛿𝑖𝑗.

Article (Prokofev and Zabrodin [2021c]) contains further generalization to the

elliptic level.

𝜏 =
𝑁∏︁
𝑖=1

𝜎(𝑥− 𝑥𝑖(𝑡)) (4.17)

with

𝑊1,𝛼𝛽 = 𝑆𝛼𝛽 −
∑︁
𝑖

𝑎𝛼𝑖 (𝑡)𝑏
𝛽
𝑖 (𝑡)𝜁(𝑥− 𝑥𝑖(𝑡) (4.18)

is solution of matrix KP if dynamics of poles and spins in 𝑡𝑚 is governed by

𝐻𝑚 = res
𝑧=∞

(𝑧𝑚𝜆(𝑧)) (4.19)

where 𝜆(𝑧) =
∑︀
𝛼

𝜆𝛼(𝑧) and each 𝜆𝛼(𝑧) is different solution of

det(𝐿(𝜆𝛼)− (𝑧 + 𝜁(𝜆𝛼))𝐼) = 0 (4.20)

with elliptic Lax matrix

𝐿𝑗𝑘 = −𝑝𝑗𝛿𝑗𝑘 − (1− 𝛿𝑗𝑘)Φ(𝑥𝑗 − 𝑥𝑘, 𝜆)
∑︁
𝜈

𝑏𝑗𝜈𝑎
𝑘
𝜈 . (4.21)

It appears, that equation (4.20) has 𝑛 different solutions near 𝑧 = ∞ and each

𝜆𝛼(𝑧) is generating functions of 𝐻𝑛𝛼-Hamiltonians corresponding 𝑡𝑛𝛼 flow. So we

obtained not only correspondence between Matrix KP and spin Calogero-Moser, but

between multi-component KP and spin Calogero-Moser.

Rational and trigonometric limits are also found and they match with results

from previous papers.
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The results of the thesis are published in five papers

1. V. Prokofev and A. Zabrodin. Toda lattice hierarchy and trigonometric Rui-

jsenaars–Schneider hierarchy. Journal of Physics A: Mathematical and Theo-

retical , 2019. doi:10.1088/1751-8121/ab520c

2. V. Prokofev and A. Zabrodin. Matrix Kadomtsev Petviashvili Hierarchy and

Spin Generalization of Trigonometric Calogero Moser Hierarchy. Proceedings

of the Steklov Institute of Mathematics , 2020. doi:10.1134/S0081543820030177

3. V. Prokofev and A. Zabrodin. Elliptic solutions to the KP hierarchy and

elliptic Calogero–Moser model. Journal of Physics A: Mathematical and The-

oretical, 2021b. doi:10.1088/1751-8121/ac0a3

4. V. Prokofev and A. Zabrodin. Elliptic solutions to Toda lattice hierarchy and

elliptic Ruijsenaars-Schneider model. Theoretical and Mathematical Physics

, 2021a. doi:10.1134/S0040577921080080

5. V. Prokofev and A. Zabrodin.Elliptic solutions to matrix KP hierarchy and

spin generalization of elliptic Calogero-Moser model. Journal of Mathematical

Physics , 2021c. doi:10.1063/5.0051713
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