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1 General description of the thesis

Relevance of the research topic

A mixture of probability distributions is a distribution of a random variable ξ, such that

P
{
ξ ∈ B} =

∫
A
P~a(B)dG(~a), B ∈ B(Rd),(1)

where P~a is a parametric family of probability measures on
(
Rd,B(Rd)

)
, the mapping ~a 7→ P~a(B)

is measurable for any B ∈ B(Rd), A ⊂ Rk is a set of possible values of the parameter ~a, and

G is the distribution function of this parameter. The family P~a (and the distribution of ξ) may

depend also on some other parameters, but we omit this dependence here for simplicity. If the

set A consists of a finite number of elements, that is, A = {~a1, ...,~am}, then the mixture is called

finite. In this case, (1) can be written as

P
{
ξ ∈ B} =

m∑
i=1

πiP~ai(B) B ∈ B(Rd),(2)

where πi ≥ 0 ∀i = 1..m,
∑m

i=1 πi = 1.

For finite models (2), the standard task of mathematical statistics is to estimate the elements

of the support ~ai, i = 1..m, and the mixing distribution (π1, ..., πm) based on the observations

of the random variable ξ. The method of moments was applied to this problem as early as

1894 by Pearson1 for the case when P~a is a family of one-dimensional Gaussian distributions and

m = 2. Classical statistical methods for finite mixtures (method of moments, method of maximum

likelihood, Bayesian approaches), as well as the issues of model identifiability, were quite well

studied in the 60 - 70th years of the last century.2 Nowadays, the most popular approach for

the parameter estimation in finite mixture models is the EM algorithm, which is a method for

solving an optimisation problem that arises when calculating the maximum likelihood estimate.3

1 Pearson, K. Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal
Society of London. Series A, 185: 71–110, 1894.

2 Gupta, S. and Huang, W.-T. On mixtures of distributions: a survey and some new results on ranking and
selection. Sankhya: The Indian Journal of Statistics, Series B, 245–290, 1981.

3 McLachlan, G. and Krishnan, T. The EM Algorithm and Extensions. John Wiley & Sons, 2007.
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The study of the probabilistic and statistical properties of the mixture model is a popular area

of stochastic analysis. Let us mention that over the past 15 years, 6 PhD theses on the topics in

this field have been defended at the Moscow State University.4 The relevance of this topic is also

confirmed by a large number of publications dealing with the applications of mixture models in

finance, astronomy, image analysis, genomics, and in many other areas.5 In fact, mixture models

can be applied to the analysis of any data for which statistical clustering and classification tasks

are relevant.6

At the same time, the existing methods of statistical analysis are not applicable to some new

problems that have arisen in the literature recently. Let us list the main mathematical problems

considered in this thesis.

1. Semiparametric estimation in mixture models. This direction is concentrated on the

estimation of an unknown parameters of the family P~a and an unknown absolutely continuous

distribution G based on the observations from (1). This problem is well studied for the case

when the distribution class G is given parametrically - for example, for the case of generalized

hyperbolic distributions.7 The model is of great interest for applications - in particular, in can

be used for modeling the sizes of sand8 and the sizes of diamonds in the deposits of south-

west Africa.9 More general semiparametric case was considered by Korsholm,10 but its practical

implementation meets serious computational difficulties, since one would need to solve rather
4 Кокшаров, С.Н. Асимптотические свойства смесей вероятностных распределений, МГУ им. М.В. Ло-
моносова, 2007 (научный руководитель - Королёв В.Ю.).
Назаров, А.Л. Приближенные методы разделения смесей вероятностных распределений, МГУ им. М.В.
Ломоносова, 2013 (научный руководитель - Королёв В.Ю.).
Савинов Е.А. Асимптотические свойства условных распределений непрерывных смесей, МГУ им. М.В.
Ломоносова, 2009 (научный руководитель - Шатских С.Я.).
Крылов В.А. О некоторых свойствах смесей обобщенных гамма-распределений и их применениях, МГУ
им. М.В. Ломоносова, 2011 (научный руководитель - Матвеев В.Ф.).
Горшенин А.К. Асимптотические свойства статистических процедур анализа смесей вероятностных
распределений, МГУ им. М.В. Ломоносова, 2011 (научный руководитель - Королёв В.Ю.).
Корчагин А.Ю. Прогнозирование стохастических процессов с помощью сеточного метода разделения
дисперсионно-сдвиговых смесей нормальных законов, МГУ им. М.В. Ломоносова, 2015 (научный руково-
дитель - Королёв В.Ю.).

5 Frühwirth-Schnatter, S., Celeux, G., and Robert, C. Handbook of Mixture Analysis. CRC press, 2019.
6 McNicholas, P. Mixture Model-based Classification. Chapman and Hall/CRC, 2016.
7 Jørgensen B. Statistical Properties of the Generalized Inverse Gaussian Distribution. New York: Springer-Verlag,
1982.

8 Barndorff-Nielsen O., Christensen C. Erosion, deposition, and size distributions of sand. Proceedings of the Royal
Society of London. Series A, Mathematical and physical sciences. 417(1853): 335–352, 1988.

9 Barndorff-Nielsen O. Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the
Royal Society. Series A. 353(1674): 401–419, 1977.

10Korsholm L. The semiparametric normal variance-mean mixture model. Scandinavian Journal of Statistics.
27(2): 227–261, 2000
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challenging optimisation problem. In this thesis, we propose an essentially new approach based

on the properties of the superposition of Mellin and Laplace transforms. The method does

not employ any parametric restrictions on G, and it can be applied for the estimation of any

absolutely continuous mixing distribution.

2. Stochastic time-changed models. The classical task of financial mathematics is to

construct the models that can realistically describe the jump-type dynamics of financial time

series (for example, the dynamics of stocks returns). The majority of known approaches are

based on the class of Lévy processes, which can be considered as the generalisation of the classical

Black-Scholes model to the case when the trajectories are discontinuous. This class is often used

for the construction of more complex models possessing the so-called stylised features of financial

data.11 The most popular constructions are the stochastic volatility models and stochastic time-

changes in the Lévy processes.12 Since the Lévy-based models are often constructed based on

several stochastic processes, it would be natural to ask whether the important characteristics

of these processes can be recovered from the observations of the model. For instance, one of

these characteristics is the Blumenthal-Getoor index, which indicates the jump activity of the

process.13

In the one-dimensional case, the concept of stochastic time change is that for some random

process Lt, t ≥ 0, the deterministic time t is replaced by a non-decreasing non-negative random

process T (s), s ≥ 0, which plays the role of random time. The considered models are closely

related to mixtures: in fact, the distribution of the time-changed process is a mixture of probability

distributions, and the Lévy measure characterising the behaviour of jumps is a mixture of (non-

probabilistic) measures. A significant technical difficulty lies in the type of the data - while

the results for the high-frequency data (that is, for the case when the time step between two

consecutive observations tends to zero) were obtained in the papers by Aı̈t-Sahalia and Jacod,14

the case of low-frequency data (fixed time interval, but an infinite horizon), which is considered
11Cont, R. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance. 1:
223-236, 2001.

12Barndorff-Nielsen, O. and Shiryaev, A. Change of Time and Change of Measure. World Scientific Publishing
Company, 2015.

13Rosenbaum, M. and Tankov, P. Asymptotically optimal discretisation of hedging strategies with jumps. The
Annals of Applied Probability. 24.3: 1002-1048, 2014.

14Aı̈t-Sahalia, Y. and Jacod, J. Estimating the degree of activity of jumps in high frequency financial data. The
Annals of Statistics. 37: 2202–2244, 2009.
Aı̈t-Sahalia, Y. and Jacod, J. Identifying the succesive Blumenthal- Getoor indices of a discretly observed process.
The Annals of Statistics. 40: 1430–1464, 2012.
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in this thesis, was not studied earlier.15

3. Construction of nonparametric confidence sets for the density function. The

most interesting problem in this field is to construct the (1−α)−confidence sets that are honest

with respect to a certain class of densities (for example, to a class of mixtures of absolutely

continuous distributions) in the sense that the probability that a true function from this class

belongs to a confidence set is larger than (1−α) uniformly on the class. Typically, the construction

of confidence sets is based on the so-called SBR-type (Smirnov - Bickel - Rosenblatt) limit

theorems, which yield the asymptotic behaviour of the maximal deviation of the considered

density estimates.16 Despite the long history of studying the question, theorems of this type are

known only for kernel density estimates and projection estimates on some types of basis (the Haar

and the Battle-Lemarie wavelets). This issue is confirmed by a number of recent articles on this

topic published in the the Annals of Statistics.17 In this thesis, we consider the construction of the

honest confidence intervals based on the projection estimates, when using the basis of Legendre

polynomials. The solution of this problem relies on some special asymptotic properties of non-

stationary Gaussian processes, which are well studied for the special case of the nonstationarity

- the so-called cyclostationarity,18 but were not previously known in more general cases. Results

of this kind are of particular interest for the analysis of mixtures of distributions, since classical

methods for the construction of confidence sets in this case (for example, the method based on

the kernel density estimates) lead to inadequate results.

4. Limit laws and phase transitions in mixture models. The general theory of the limit

distributions for the sums and for the maxima of random variables is well-described in the brilliant

books by Petrov19 and Embrechts, Klüppelberg and Mikosch.20 Nevertheless, the analysis of the

limiting distribution in particular model can be rather tricky. Note, for example, that the limit
15Belomestny, D., and Reiss, M. Estimation and Calibration of Lévy models via Fourier methods. In: Lévy Matters
IV. Springer, Cham, 1-76, 2015.

16Smirnov, N. V. On the construction of confidence regions for the density of distribution of random variables.
Doklady Akad. Nauk SSSR. 74: 189–191, 1950.
Bickel, P, and Rosenblatt, M. On some global measures of the deviations of density function estimates. The
Annals of Statistics. 1(6):1071–1095, 1973.

17Giné, E., Nickl, R. Confidence bands in density estimation. The Annals of Statistics. 38(2): 1122–1170, 2010.
Chernozhukov, V., Chetverikov, D., Kato, K. Anti-concentration and honest, adaptive confidence bands. The
Annals of Statistics. 42(5): 1787–1818, 2014.

18Konstant, D., Piterbarg, V. Extreme values of the cyclostationary Gaussian random process. Journal of Applied
Probability. 82–97, 1993.

19Petrov, V. Sums of Independent Random Variables, Vol. 82. Springer Science & Business Media, 2012.
20Embrechts, P., Klüppelberg, C., and Mikosch, T.Modelling Extremal Events for Insurance and Finance. Springer,
1997.
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laws for the random energy model (REM) introduced by Derrida21 in the beginning of 80-th,

were fully described only 20 years later.22 It would be a worth mentioning that the probabilistic

analysis of the REM model is closely related to the parabolic Anderson problem, since it leads

to the study of the same random exponential sum. Asymptotic behaviour of this sum, as well

as the concepts of intermittency and localisation, were studied in the papers by Molchanov and

his coauthors.23 In this thesis, we aim to describe the limit laws for a new model of the REM

type with a mixture distribution of energy levels. Models of this type are also motivated by the

parabolic Anderson problem with the potential having a mixture distribution.

5. Analysis of the "purity" of a distribution. Due to the Lebesque theorem, any

probability measure P can be represented as the sum of three measures

P(·) = a1Pd(·) + a2Pac(·) + a3Psc(·),

where a1 + a2 + a3 = 1 with ai ≥ 0 ∀i, and the measures Pd,Pac,Psc are, respectively, the

measures of discrete, absolute continuous and singular distributions. For the solution of statistical

estimation problems, it is important to know whether some of parameters a1, a2, a3 are equal

to zero - for example, if a3 = 0 (there is no singular component), then the estimation methods

are significantly simplified. The Jessen - Wintner theorem says that the sum of a.s. convergent

random sums has pure type, that is, two out of three numbers a1, a2, a3 are equal to 0.24 However,

for specific models, the determination of the type can be a rather challenging task. A classical

example is the Erdös problem dealing with the Bernoulli convolution, which is defined as a series

Z =
∑∞

n=0±ρn, where the signs are chosen randomly with probabilities 1/2, and ρ ∈ (0, 1).25 The
21Derrida, B. Random - energy model: Limit of a family of disordered models. Physical Review B. 45(2): 79 - 82,
1980.
Derrida, B. Random - energy model: An exactly solvable model of disordered systems, Physical Review Models.
24(5): 2613 - 2626, 1981

22Bovier, A., Kurkova, I. and Löwe, M. Fluctuations of the free energy in the REM and the p-spin SK models.
The Annals of Probability. 30(2): 605–651, 2002.
Ben Arous, G., Bogachev L. and Molchanov, S. Limit theorems for sums of random exponentials. Probability
Theory and Related Fields. 132(4): 579–612, 2005.

23Gärtner, J., König, W. and Molchanov, S. Geometric characterization of intermittency in the parabolic Anderson
model. The Annals of Probability. 35(2): 439–499, 2007.
Ben Arous, G., Molchanov, S., and Ramirez, A. Transition from the annealed to the quenched asymptotics for
a random walk on random obstacles. The Annals of Probability. 33(6): 2149–2187, 2005.

24See Proposition 27.18 from Sato, K.-I. Lévy Processes and Infinitely Divisible Distributions. Cambridge University
Press, 1999.

25Erdös, P. On a family of symmetric Bernoulli convolutions. American Journal of Mathematics. 61(4):974–976,
1939.
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term "Bernoulli convolution" is motivated by the fact that Z is a convolution of infinite number

of measures of the type (δ−ρn +δρn)/2. The most well-known result in this field is the fact that Z

has an absolutely continuous distribution for almost all ρ ∈ (1/2, 1).26. In this thesis, we study the

question of the type of the discrete Dickman-Goncharov distribution. This question is of great

interest, since the number of applications of the Dickman–Goncharov distribution is growing:

new applications have appeared in mathematics (random walks on solvable groups, random

graph theory) and also in biology (models of growth and evolution of unicellular populations),

finance (theory of extreme phenomena in finance and insurance), physics (the model of random

energy levels), and other fields.27

The purpose and objectives of the study

The aim of the study is the development of new methods of statistical estimation in mixture

models, as well as the solution of the relevant probabilistic problems that arise while establishing

the statistical properties of these methods.

Let us list the particular tasks solved within the framework of this study.

(1) To develop an algorithm for semiparametric estimation of unknown parameters and unknown

mixing distribution for the variance-mean Gaussian mixtures. To apply these statistical

approaches to other related models, such as the continuous-time moving average Lévy processes.

To derive the convergence rates of the proposed estimates. To prove the exponential mixing

property for the processes from the considered class.

(2) For the time-changed Lévy processes, to propose an estimation scheme for the Blumenthal-

Getoor index of unknown Lévy processes. To prove the optimality of the proposed estimates

in the minimax sense for a certain subclass of Lévy processes. For a multidimensional model

of time-changed stable processes, to develop a method for the representation of the processes

from this class in the form of infinite series. To provide the empirical evidence that this model

is more appropriate for describing stock prices than the classical time-changed Brownian

motion, at least if the cumulative number of transactions is used for a stochastic time change.
26Solomyak, B. On the random series

∑
±λn (an Erdös problem). The Annals of Mathematics. 611-625, 1995.

27Molchanov, S. and Panov, V. The Dickman–Goncharov distribution. Russian Mathematical Surveys,
75(6):1089–1132, 2020.
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(3) To develop an algorithm for the construction of confidence intervals for the probability

density function, which are honest with respect to a certain subclass of absolutely continuous

distributions. To apply similar ideas for the construction of confidence intervals for the density

of the Lévy measure.

(4) To prove the limit laws and describe the phase transitions in a random energy model with

the distribution of energy levels modelled by the Gaussian mixtures.

(5) To determine which components are equal to zero in the representation of the distribution

function of the discrete Dickman-Goncharov law in the form of a mixture of three distributions

of different types.

Key results and the structure of the thesis

This section lists the main results of the study and discusses the novelty of the obtained results.

InChapter 1, we present an algorithm for semiparametric estimation of unknown parameters

and an unknown mixing distribution for variance-mean Gaussian mixtures. We show that the

convergence rate of the proposed estimates is determined by the properties of the Mellin transform

of the density of the mixing distribution. The novelty of the presented method consists in

the employing the properties of the superposition of the Mellin and Laplace transforms. The

proposed approach is a significant contribution to this topic, because, unlike the previously

known estimation methods, it is not based on the solution of difficult optimisation problems.28

The presented method is also adapted for continuous-time moving average Lévy processes.

The algorithm is developed for the statistical estimation of the Lévy measure and other parameters

of the Lévy process from the observations of the model, which is an integral over this process.

The algorithm is new and can be applied to a wide class of models known as the ambit fields.29

The properties of exponential mixing are proved for processes from the considered class, and

upper bounds for the constructed estimates are derived.

28Korsholm L. The semiparametric normal variance-mean mixture model. Scandinavian Journal of Statistics.
27(2): 227–261, 2000.

29Podolskij, M. Ambit fields: survey and new challenges. In: XI Symposium on Probability and Stochastic Processes.
Birkhäuser, Cham, 2015.
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Chapter 2 deals with the statistical inference for the time-changed Lévy processes. We

present a method for the estimation of the Blumenthal-Getoor indices of the Lévy processes used

in the construction of this model. The novelty of the method lies in the use of the asymptotic

properties of the characteristic function of the process for large values of the argument. The

rates of convergence of the proposed estimates are obtained, and it is proved that these rates are

optimal in the minimax sense.

We also present a new approach to the joint description of the returns of several stocks,

based on the multidimensional time-changed Lévy processes. For the cases of subordinated

Brownian motions and subordinated stable processes, we show a new approach for representing

the processes from the considered class in the form of infinite series. It is shown that this method

can be effectively used for the study of the returns of stock prices, and the constructed two-

dimensional models reproduce well the correlations between various stock returns.

Chapter 3 focuses on the construction of honest confidence sets for an (unknown) distribution

density based on projection estimates. It is shown that this problem is equivalent to the analysis

of the asymptotic behaviour of non-stationary Gaussian processes of a certain type. From the

technical side, the main difficulty is to describe this asymptotical behaviour up to the second

term, and to show that the error terms are of polynomial order. The efficiency of the obtained

results is illustrated by the examples of some mixture models.

We present also similar results for the density estimates of the Lévy measure. The main

result of this part is the presentation of the sequences of accompanying laws that approximate

the distribution of the maximum deviation of the estimates with errors of polynomial order. It

is shown that the rates of convergence given in previous papers on this topic30 are in fact of

logarithmic order.

In Chapter 4, we explain the connection between the Anderson parabolic problem and the

model of random energy levels. For the case, when the energy levels are modelled by the Gaussian

mixtures, we study the asymptotic behaviour of the system depending on the parameters and

describe the phase transitions. The results are a contribution to the theory of random energy

models, since similar results were previously known only for the classical case, when the energy
30Figueroa-López, J.E. Sieve-based confidence intervals and bands for Lévy densities. Bernoulli. 17(2), 643–670,
2011.
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levels are modelled by standard Gaussian random variables.31

Chapter 5 contains some new results on the type of the generalised Dickman-Goncharov

distribution. For the case when the geometric distribution is used in the construction of this

model, we describe the relation to the Erdös problem for the Bernoulli convolution. It is shown

that in this case, the generalised Dickman - Goncharov distribution is absolutely continuous for

almost all values of the parameter from a certain interval.

Theoretical and practical significance

The obtained theoretical results significantly expand the methodology of the statistical estimation

for the mixture models. At the same time, Lévy-based models (in particular, time-changed

models) are widely used to describe the dynamics of stock returns, and therefore the developed

methods can be used to solve financial problems related to trading on the stock exchange. For

example, the method of estimating the Blumenthal - Getoor index can be used to determine the

degree of reliability of a financial asset, while methods of modelling multidimensional processes

that well reproduce the dependence between financial assets, are used for testing the trading

strategies on the stock exchange.

The presented results for the Lévy processes - in particular, the methods used for estimating

the Blumenthal-Getoor index and the methods for modelling the multidimensional processes (see

Section 2.2) - were included by the author in the course "Modelling of jump-type processes in

economics" at the Higher School of Economics.

Approbation of the established results

The main results of this thesis were presented at the following international conferences and

seminars.

1. Bernoulli-IMS World Congress in Probability and Statistics (online conference, organized

by Seoul National University, July 2021), talk "The Dickman-Goncharov distribution".
31BenArous, G., Bogachev, L. and Molchanov, S. Limit theorems for sums of random exponentials. Probability
Theory and Related Fields. 132(4): 579–612, 2005.
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2. Extreme Value Analysis Conference - EVA2019 (Zagreb, Croatia, July 2019), talk "Extremes

of Gaussian non-stationary processes and improved confidence bands for densities".

3. International Workshop on Applied Probability - IWAP2018 (Budapest, Hungary, Juny

2018), talk "Multivariate subordination of stable processes".

4. German Probability and Statistics Days - GPSD2018 (Freiburg, Germany, February 2018),

talk "Multivariate subordination of stable processes".

5. Conference on Ambit Fields and Related Topics (Aarhus, Denmark, August 2017), talk

"Low-frequency estimation for moving-average Lévy processes".

6. Probability Seminar Essen (Essen, Germany, June 2017), talk "Low-frequency estimation

for moving-average Lévy processes".

7. Extreme Value Analysis Conference – EVA2017 (Delft, the Netherlands, June 2017), talk

"Distribution of maximal deviation for Lévy density estimators".

8. World Congress in Probability and Statistics (Toronto, Canada, July 2016), talk "Low-

frequency estimation of continuous-time moving average Lévy processes".

9. German Probability and Statistics Days - GPSD2016 (Bochum, Germany, March 2016),

talk "Statistical inference for fractional Lévy processes and related models".

10. Conference on Stochastic Processes and their Applications - SPA2015 (Oxford, UK, July

2015), talk "Generalized Ornstein-Uhlenbeck process: Mellin transform of the invariant

distribution and statistical inference".

11. European Meeting of Statisticians - EMS2015 (Amsterdam, the Netherlands, July 2015),

talk "Statistical inference for exponential functionals of Lévy processes".

12. Statistical Inference for Lévy Processes (Leiden, the Netherlands, September 2014), talk

"Maximal deviation distribution for projection estimates of Lévy densities".

Moreover, the author has given 10 talks at the seminar "Stochastic analysis and its applications

in economics" at the Faculty of Mathematics of the Higher School of Economics (seminar is

coordinated by Prof. V. Konakov and Prof. A. Kolesnikov) and delivered 12 talks at the workshops
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organised by the International laboratory of stochastic analysis and its applications of the Higher

School of Economics (https://lsa.hse.ru/).

List of author’s published papers on the topic of the thesis

The list consists of 12 papers, among them 6 papers are published in journals with quartiles
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- graduate students at HSE.
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2 Summary of the main results

2.1 Semiparametric estimation methods

2.1.1 Variance-mean Gaussian mixtures

We will begin the review of the results of this work by presenting a new semiparametric estimation

method for the mixture model (1) in the case of a Gaussian family of measures P~a with an

unknown absolutely continuous mixing distribution G. More precisely, Section 1.1 of the thesis

considers the model

p(x;µ,G) =

∫
R+

ϕ(µs,s)(x) dG(s) =

∫
R+

1√
2πs

exp

{
−(x− µs)2

2s

}
dG(s), x ∈ R,

where ϕ(µs,s) is the density of the normal distribution with mean µs and variance s (normal

variance-mean mixture). In this study, it is assumed that both parameter µ, and the density g

of the mixing distribution are unknown. We aim to statistically estimate these objects from a

sample X1, ..., Xn having a distribution with the density p(·, µ,G).

The estimation of the parameter µ is based on the representation of this parameter in the

form

µ =
1

2x
log

(
p(x;µ,G)

p(−x;µ,G)

)
.

It follows from this representation that µ is the only zero of the function

W (ρ) := E
[
e−ρXw(X)

]
, ρ ∈ R,

where w : R→ R is a Lipschitz function, possessing the property

w(x) ≤ 0 for x ≥ 0, w(−x) = −w(x), supp(w) ⊂ [−A,A]

for some A > 0. The estimate of the parameter µ is defined as follows

µ̂n := inf{ρ > 0 : Ŵn(ρ) = 0} ∧M,
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where M is a constant such that µ ∈ [0,M/2), and Ŵn(ρ) := n−1
∑n

i=1 e
−ρXiw(Xi) is a

nonparametric estimate of W (ρ). The constantM is a technical parameter, which is used for the

proof of the theoretical properties (see Theorem 2 below).

For the estimation of the unknown distribution G, we employ the Mellin transform of a function

f defined asM[f ](z) :=
∫
R+
xz−1f(x)dx, z ∈ C. The key fact, yielding the statistical estimation

method presented in Section 1, is that the superposition of the Mellin and Laplace transforms

of the density function g can be represented as

M [L [g]] (z) =

∫
R+

φX(u) [ψµ(u)]z−1 ψ′µ(u)du, z ∈ C,(3)

where ψµ(u) = iµu − u2/2, u ∈ R, is the characteristic exponent of the normal law with mean

µ and unit variance. Moreover, the superposition of integral transforms in the left part of (3) is

related to the Mellin transform of this density by the explicit relation

M [g] (z) =
M [L [g]] (1− z)

Γ(1− z)
(4)

for any z with Re(z) ∈ (0, 1). The idea of sequential estimation of the functions ψµ(u),M [L [g]] (z),

M [g] (z) follows from relations (3) and (4). The last step (estimation of g) is based on the inverse

Mellin transform. The resulting estimate is equal to

ĝn,γ(x) =
1

2πn

n∑
k=1

∫ Vn

0

[∫ Un

0
e−iuXk

[
ψµ̂n(u)

]−γ−iv
ψ′µ̂n(u)du

]
· x−γ−iv

Γ(1− γ − iv)
dv

+
1

2πn

n∑
k=1

∫ 0

−Vn

[∫ Un

0
eiuXk [ψµ̂n(u)]−γ−iv ψ′µ̂n(u)du

]
· x−γ−iv

Γ(1− γ − iv)
dv,

where Un, Vn are infinitely increasing sequences of positive numbers and γ ∈ (0, 1). For the

theoretical study, we use the estimate ĝ◦n,γ(x), which is derived from ĝn,γ(x) by replacing the

estimate µ̂n by the true value µ. The following theorem shows that the convergence rate of the

estimate ĝ◦n,γ(x) is determined by the properties of the Mellin transform of the function g.

For any r > 0 and any random variable η with E[|η|r] <∞, denote ‖η‖r := (E[|η|r])1/r.
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Theorem 1 (Theorem 1.2 in the thesis). Let Un = n1/4 and Vn = κ ln(n) for some κ > 0.

1. If the true density g belongs to the class of functions

E(α, γ◦, γ
◦, L) :=

{
p : sup

γ∈(γ◦,γ◦)

∫
R
eα|v| |M[p](γ + iv)| dv ≤ L

}
,

where α ∈ R+, L > 0, 0 < γ◦ < γ◦ < 1/2, then for κ = γ◦/(π + 2α), any x ∈ R+, and n

large enough, it holds

√
|x|2γ◦ ∧ 1 · ‖ĝ◦n,γ(x)− g(x)‖2 ≤ C1n

−ακ,

where γ ∈ (γ◦, γ
◦), and C1 depends only on the parameters of the class E .

2. If the true density g belongs to the class

P(β, γ◦, γ
◦, L) :=

{
p : sup

γ∈(γ◦,γ◦)

∫
R
|v|β |M[p](γ + iv)| dv ≤ L

}

for some β ∈ R+, L > 0, 0 < γ◦ < γ◦ < 1/2, then for some κ > 0, any x ∈ R+ and n large

enough, it holds

√
|x|2γ◦ ∧ 1 · ‖ĝ◦n,γ(x)− g(x)‖2 ≤ C2 log−β(n),

where γ ∈ (γ◦, γ
◦), and C2 depends only on the parameters of P.

The convergence rates of the estimates µ̂n and ĝn,γ are presented in the following statement.

Theorem 2 (Theorem 1.3 in the thesis). Let r ≥ 2 and M > 0, and

Λ(M, r) :=
∥∥(1 + e−MX

)
Xw(X)

∥∥
r
<∞.

Then

E ‖µ̂n − µ‖r ≤ C3n
−1/2,
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and for n large enough

√
|x|2γ◦ ∧ 1 · ‖ĝn,γ(x)− ĝ◦n,γ(x)‖2 ≤ C4n

−1/2,

where the constants C3, C4 depend on µ,M, r.

2.1.2 Continuous-time moving average Lévy processes

The idea of superposition of several integral transforms can be applied not only in the case

of Gaussian mixtures, but also in more complex, but related models. This section presents the

results of Section 1.2 for moving average models based on the Lévy processes. These processes

are defined as

(5) Zt =

∫ ∞
−∞
K(t− s) dLs, t ∈ R,

where K : R 7→ R+ is a measurable deterministic function and (Lt)t∈R is a two-sided Lévy process

given by

Lt =


L

(1)
t , if t ≥ 0

L
(2)
−t−, if t < 0,

with L(1), L(2) - 2 independent copies of a Lévy process L̃ with Lévy triplet (γ, σ2, ν).32

32Lévy processes are defined as the processes, which are equal to 0 at the initial time point, have independent
and stationary increments, and possess the property of stochastic continuity. The Lévy measure is used for the
description of jumps of a Lévy process ~X. More precisely, the Levy measure of a set B ⊂ Rd/{~0} is equal to

ν(B) = E
[
]
{
t ∈ [0, 1] : ∆ ~Xt ∈ B

}]
,

where ∆ ~Xt = ~Xt − ~Xt− is the size of the jump at time t. Characteristic function of the process ~Xt, t ≥ 0, is
equal to

φt(~u) = E[ei〈~u, ~Xt〉] = etψ(u),

where ψ(u) is the characteristic exponent. It can be represented by the Levy-Khinchine formula as follows

ψ(u) = i〈~γ, ~u〉 − 1

2
〈~u,Σ~u〉+

∫
R

(
ei〈~u,~x〉 − 1− i〈~u, ~x〉I{|~x| < 1}

)
ν(d~x),

with ~γ ∈ Rd and Σ is a non-negatively defined matrix. Thus, the distribution of the process ~X is uniquely
determined by the triplet (~γ,Σ, ν), known as the Lévy triplet.
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The conditions K ∈ L 1(R) ∩ L 2(R) and
∫
x2ν(dx) < ∞ guarantee the correctness of

the definition33 and the stationarity of Z. The characteristic function of the process Z can

be represented as

Φ(u) := E
[
eiuZt

]
= exp (Ψ(u)) with Ψ(u) :=

∫
R
ψ(uK(s)) ds,

where ψ(·) is the characteristic exponent of L̃.

The Section 1.2 focuses on the problem of estimation the density of ν(x) of the process L̃

from the observations of the process Zt at equidistant time points t = ∆, 2∆, ..., n∆ for some

∆ > 0 (here and in the sequel we use the same notation for the Lévy measure and its density).

To simplify the presentation of the results, we will describe the case of the known parameter

σ. We denote

Ψσ(u) := Ψ(u) +
σ2u2

2

∫
R
K2(x) dx.

The Mellin transform of the second derivative of this function is related to the superposition of

the Mellin and Fourier transforms of the function ν̃(x) := x2ν(x) as follows:

M
[
Ψ′′σ
]

(z) = −M[F [ν̃]](z) ·
∫
R

(K(x))2−z dx

for all z such that
∫
R(K(x))2−Re(z) dx < ∞ and

∫
R+
|F [ν̃] (v)| · vRe(z)−1dv < ∞. Note that the

superposition of integral transforms is equal to

M[F [ν̃]](z) = M
[
ei·](z) · M[ν̃+

]
(1− z) +M

[
e−i·](z) · M[ν̃−](1− z),

M
[
F [ν̃]

]
(z) = M

[
e−i·](z) · M[ν̃+

]
(1− z) +M

[
ei·](z) · M[ν̃−](1− z).

where

ν̃+(x) := ν̃(x) · I{x ≥ 0}, ν̃−(x) := ν̃(−x) · I{x ≥ 0}.

The above formulas imply a method for the estimation the density of the Lévy measure ν. The

method consists of two steps.
33The correctness of the definition is shown in Lemma 1.4 in the thesis. This lemma is based on the general theory
of the integrals in form (5), given in the paper Rajput, B. and Rosiński, J. Spectral representations of infinitely
divisible processes. Probability Theory and Related Fields, 82(3): 451–487, 1989.
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1. At the first step, the Mellin transformsM [Ψ′′σ] andM
[
Ψ′′σ
]
are estimated by

M̂n[Ψ′′σ](1− z) :=

∫ Un

0

 Φ̂′′n(u)

Φ̂n(u)
−

(
Φ̂′n(u)

Φ̂n(u)

)2

+ σ2

∫
R
K2(x) dx

u−z du,
M̂n[Ψ′′σ](1− z) :=

∫ Un

0

 Φ̂′′n(u)

Φ̂n(u)
−

(
Φ̂′n(u)

Φ̂n(u)

)2

+ σ2

∫
R
K2(x) dx

u−z du,
resp., where Un is an unbounded increasing sequence of positive numbers and

Φ̂n(u) := n−1
∑n

j=1 e
iuZj∆ .

2. At the second step, the functions ν̃+ and ν̃− are estimated for x ∈ R+ by

ν̃n+(x) :=
1

2πi

∫ c+iVn

c−iVn

(
M̂n [Ψ′′σ] (z)

Q1(z)
−
M̂n

[
Ψ′′σ
]

(z)

Q2(z)

)
x−zdz,

ν̃n−(x) :=
1

2πi

∫ c+iVn

c−iVn

(
M̂n

[
Ψ′′σ
]

(z)

Q1(z)
− M̂n [Ψ′′σ] (z)

Q2(z)

)
x−zdz,

where Vn is an unbounded increasing sequence of positive numbers, and

Q1(z) := −e
iπz − e−iπz

eiπz/2
Γ(z)

∫
R

(K(x))2−z dx,

Q2(z) := −e
iπz − e−iπz

e−iπz/2
Γ(z)

∫
R

(K(x))2−z dx.

For any x < 0, we set ν̃n+(x) = ν̃n−(x) = 0. The estimate of the function ν̃(x) = x2ν(x) is

defined as

ν̃n(x) := ν̃n+(x) + ν̃n−(−x), x ∈ R.(6)

To study the theoretical properties of ν̃n, the following assumption is introduced.

(A1) The density of the Lévy measure ν satisfies the condition
∫ 1
−1 |x|ν(x)dx <∞, and for some

A > 0, α ∈ (0, 1), β+ > 0, β− > 0, c ∈ (0, 1) it holds


∫
R (1 + |y|)α |F [ν̃](y)| dy ≤ A,∫
R e

β±|u| |M[ν̃±](c+ iu)| du ≤ A.
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In Section 1.2.4, it is shown that this condition holds for all Lévy measures ν(x) = ν+(x)+ν−(−x)

from the class

ν±(x) =
J(±)∑
j=1

a
(±)
j x−η

(±)
j −1e−λ

(±)
j x · I {x ≥ 0} ,

with J (+), J (−) ∈ N∪0, a(+)
j , a

(−)
j > 0, η

(+)
j , η

(−)
j < 1, λ

(+)
j , λ

(−)
j > 0 for all j. Note that this class

includes the tempered stable distributions.

From a technical point of view, the difficulty is that the property of alpha-mixing34 is not

proven for processes (5). To get around this difficulty, the upper bound for the supremum of the

difference between ν̃n(x) and ν̃(x) are proved on the complement of some specially selected set

AK , the probability of which tends to zero at polynomial rate.

Theorem 3 (Theorem 1.7 in the thesis). Let us fix K > 0 and denote the set

AK :=

{
max
j=0,1,2

∥∥∥∥∥Φ
(j)
n (u)− Φ(j)(u)

Φ(u)

∥∥∥∥∥
Un

≥ Kεn

}
,

where for any f : R 7→ R, ‖f‖Un := supu∈[−Un,Un] |f(u)| , εn - is a sequence of positive numbers

such that εn → 0 as n→∞, and

Kεn

(
1 +

∥∥Ψ′σ
∥∥
Un

)
≤ 1/2.

Then on the set ACK (compliment to AK), the estimate ν̃n(x) possesses the property

(7) sup
x∈R
{|x|c |ν̃n(x)− ν̃(x)|}

≤ 1

2π

∫
{|v|≤Vn}

Ωn

min (|Q1(1− c− iv)|, |Q2(1− c− iv)|)
dv +

A

2π
e−βVn ,

34The α-mixing coefficient between σ−algebras B and C is defined as

α(B, C) = sup
B∈B,C∈C

|P{B ∩ C} − P{B}P{C}|.

The sequence ξk is said to have the alpha-mixing property if

αξ(k) = sup
t∈Z

α
(
σ(ξs, s ≤ t), σ(ξs, s ≥ t+ k)

)
→ 0 as k →∞.
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where

Ωn :=
2KC

1− c
εn
(
1 + ‖Ψ′σ‖Un

)
U1−c
n +

(
A+

2αA

1− c

)∫
R

[
K(x)

]c+1[
1 + UnK(x)

]−α
dx,

and C > 0 is a constant for all processes with Lévy measure satisfying the condition (А1).

Section 1.2.5 considers specific cases for which the right part of (7) can be given in a more

explicit form. In addition, the section describes sufficient conditions for the convergence of the

probability of the set AK to zero with a polynomial rate for a certain choice of the sequence εn

and the number K.

2.2 Time-changed models

In the one-dimensional case (d = 1), the concept of stochastic time change is that for some

random process Lt, t ≥ 0, the deterministic time t is replaced by a non-decreasing non-negative

random process T (s), s ≥ 0, which plays the role of random time. That is,

X(s) = LT (s), s ≥ 0,(8)

where it is often assumed that the processes L and T are independent. This model is motivated by

the Monroe theorem, yielding that the class time-changed Brownian motions essentially coincides

with the class of semimartingales (note that in this theorem the processes L and T can be

dependent).35

The economic interpretation of the time change is that for a specific financial instrument,

"business time" T may run faster than physical time in some time periods. For example, such

periods of time may be associated with an increased activity on the market, expressed in the

number of transactions.36 If the time change process T is itself a Lévy process (subordinator),

then the final process X is also a Lévy process, and for any s ≥ 0, the distribution of the process
35Monroe, I. Processes that can be embedded in Brownian motion. The Annals of Probability. 6:42-56, 1978.
36Clark P. A subordinated stochastic process model with fixed variance for speculative prices. Econometrica.
41:135-156, 1973.
Ané, T. and Geman, H. Order flow, transaction clock, and normality of asset returns. The Journal of Finance.
55(5): 2259-2284, 2000
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X(s) is a mixture of probability distributions:

P{X(s) ∈ B} =

∫
R+

PLu(B)dPT (s)(u), B ∈ B(Rd).

2.2.1 Estimation of the Blumenthal-Getoor indices

The Blumenthal-Getoor index of a Lévy process with the Lévy measure ν is defined as follows:

BG(Z) = inf

{
r > 0 :

∫
|x|≤1

|x|rν(dx) <∞

}
.

It is known that this index lies in the interval [0, 2] and characterizes the activity of small jumps

of the process. Equivalently, the Blumenthal-Getoor index can be defined as a number α such

that ν ({x : |x| > ε}) � cε−α, ε→ 0+ for some constant c ∈ (0,∞).37

Section 2.1 presents a method for the statistical estimation of the Blumenthal-Getoor index

of the processes L and T . It is assumed that the observations of the process X(s) = LT (s) are

available at the time points s = ∆, 2∆, ..., n∆ with a fixed ∆ > 0 (low-frequency data), and the

processes L and T are not observed separately. The following restrictions are imposed on the

model.

(A1) The process Lt, t ≥ 0, defined on the space with filtration (Ω,F , (Ft)t≥0,P), is a Lévy

process with a Lévy triplet (µ, σ2, ν), where σ 6= 0 and

ν ({x : |x| > ε}) = ε−γ(β0 + β1ε
χ1(1 +O(ε))), as ε→ +0,

β0 > 0, β1 ∈ R, χ1 ∈ (0, γ), and γ is the Blumenthal-Getoor index of the process L.

(A2) Process T = T (s), s ≥ 0, is an increasing process starting from 0 with almost all càdlàg

trajectories, such that for any fixed s, the random variable T (s) is a stopping time with

respect to the filtration F . The processes T and L are independent. The Laplace transform
37Panov V. Abelian Theorem for Stochastic Volatility Models and Semiparametric Estimation of the Signal Space.
PhD dissertation. Humboldt University (Berlin), 2012.
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of a random variable T (∆) has the property

L∆(u) := E[e−uT (∆)] � Ae−λuαΨ(u), u→ +∞,(9)

with λ > 0, A > 0, α ∈ (0, 1], and the function Ψ(u) for u large enough satisfies

|1−Ψ(u)| ≤ β2u
−χ2

with some χ2, β2 ≥ 0 (note that if L is a subordinator, then the coefficient α coincides with

its Blumenthal-Getoor index).

The method of estimation of the parameters α and γ proposed in Section 2.1.5 is motivated by

the fact (which is proven in Section 2.1.4) that the absolute value of the characteristic function

of the process X∆ can be represented as

∣∣φ∆(u)
∣∣ =

∣∣E[eiuX∆ ]
∣∣ = A exp

{
−τ1|u|2α

(
1 + τ2|u|γ−2 + r(u)

)}
,

where τ1, τ2 > 0 and r(u) = o(|u|γ−2). Denote the estimate of this function by

φ̂n(u) :=
1

n

n∑
k=1

eiu(X∆k−X∆(k−1)),

and define the estimates of α and γ as follows:

α̂n :=
1

2

∫ ∞
0

wUn(u) log
(
− log |φ̂n(u)|

)
du,

γ̂n(α̂n) := 2(1− α̂n) +

∫ ∞
0

wVn(u) log

(
− log

|φ̂n(u)|θ2α̂n

|φ̂n(θu)|

)
du,

where the weight functions are defined as wVn(u) = V −1
n w1(u/Vn), wUn(u) = U−1

n w1(u/Un), and

Un, Vn are two infinitely increasing sequences of positive numbers, w1 is almost everywhere a

smooth function supported on the interval [ε, 1] with ε ∈ (0, 1), and satisfying the properties

∫ 1

ε
w1(u) du = 0,

∫ 1

ε
w1(u) log u du = 1.(10)

For the study of the theoretical properties of estimates, another restriction is introduced on the
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time change process T (s).

(A3) The sequence Tk = T (∆k)−T (∆(k−1)), k ∈ N, is stationary and α-mixing, and moreover,

the mixing coefficients (αT (k))k∈N satisfy the property

αT (k) ≤ ᾱ0 exp(−ᾱ1k), j ∈ N

with ᾱ0, ᾱ1 > 0.

In Theorem 2.11, a class of models G is introduced, consisting of time-changed models satisfying

the conditions (A1)-(A3) with some restrictions on the parameters. The following statement is

shown for this class.

Theorem 4 (Combination of theorems 2.11, 2.12, 2.17 in the thesis). a

1. The estimate γ̂n(α) (that is, the estimate of of the parameter γ, provided that the parameter

α is known) has a logarithmic rate of convergence to the true value of γ, but this order is

optimal in the minimax sense. More precisely, there are positive constants κ, δ, c,Ξ such

that for any Ξ1 > Ξ and Ξ2 < Ξ, it holds

sup
G

P
{
|γ̂n(α)− γ| ≥ Ξ1(log n)−c

}
< κ n−1−δ,

lim
n→∞

inf
γ̂∗n

sup
G

P
{
|γ̂∗n − γ| ≥ Ξ2(log n)−c

}
> 0,

where γ̂∗n is any estimate of γ.

2. In general, when the parameter α is not known, it is possible to choose the sequences Un

and Vn such that for some constant Ξ3 > 0,

sup
G

P
{
|γ̂n(α̂n)− γ| ≥ Ξ3(log n)−c

}
< κ n−1−δ,

that is, the convergence rate coincides with the convergence rate in the case of the known

parameter α.
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2.2.2 Series representation of the multivariate time-changed processes

Section 2.2 deals with the generalisation of the model (8) to the multidimensional case.

Consider the d-dimensional Lévy process ~Lt = (L1(t), ..., Ld(t)), t ∈ R+, with independent

components and d-dimensional subordinator ~T (s) = (T1(s), ..., Td(s)), s ∈ R+ (i.e., a Lévy

process such that each component is a non-negative Lévy process), with dependent components,

where Ti and Li are independent for any i = 1, ..., d. Define the multivariate time change as

~X(s) =
(
X1(s), ..., Xd(s)

)
:=
(
L1(T1(s)), ..., Ld(Td(s))

)
, s ∈ R+.(11)

To describe the dependence between the components of the time-changed process ~T we use the

concept of a Lévy copula.38

Definition. A d-dimensional Lévy copula F : R̄d 7→ R̄ is a function that satisfies the following

properties

1. F (~u) = 0 if ui = 0 for at least one i = 1, ..., d (grounded function);

2. F is a d-increasing function;

3. F (1)(v) = ... = F (d)(v) = v, where

F (j)(v) = lim
u1,...,uj−1,uj+1,ud→∞

F (u1, ..., uj−1, v, uj+1, ..., ud) , j = 1, ..., d,

(uniform margins);

4. F (u1, ..., ud) 6=∞ for any (u1, ..., ud) 6= (∞, ...,∞).

Lévy copulas are closely related to the notion of a tail integral, which is defined for a Lévy

measure ν as

U(x1, ..., xd) := (−1)h(x1)+...+h(xd) · ν
(
I(x1)× ...× I(xd)

)
,

38Cont, R. and Tankov, P. Financial Modelling with Jump Processes. Chapman & Hall. CRC Press, UK, 2004.
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where

I(x) :=


(x,+∞) , if x > 0,

(−∞, x) , if x < 0,
and h(x) :=


2, if x > 0,

1, if x < 0.

According to the analogue of Sklar’s theorem, for a Lévy process with a tail integral U and

marginal tail integrals U1, ..., Ud, there is a Lévy copula F such that

U(x1, ..., xd) = F (U1(x1), ..., Ud(xd)) .(12)

Conversely, for any Lévy copula F and any one-dimensional Lévy processes with residual integrals

U1, ..., Ud, there is a d-dimensional Lévy process with a residual integral U given by the formula

(12), and marginal residual integrals U1, ..., Ud. Note that Lévy copulas differ from the "ordinary"

copulas only in the domain and the image of the function: "ordinary" copulas are defined on [0, 1]d

and take values on [0, 1].

In Section 2.2.6, the following theoretical result is given for the case when ~L is a multidimensional

stable process.

Theorem 5 (Theorem 2.20 in the thesis). Consider the model (11), where L1, ...Ld are independent

stable processes, and ~T = (T1, ..., Td) is a d-dimensional subordinator (in general case, with

dependent components) with the Laplace transform

LT (s)(~u) := E
[
e〈
~T (s),~u〉

]
= exp

{
s

∫
R

(
e〈~u,~x〉 − 1

)
η(d~x)

}
, ~u ∈ Rd, s ≥ 0,

where the Lévy measure η satisfies the condition

∫
|~x|≤1

|~x|1/2η(d~x) <∞.

Denote by F (u1, ..., ud) the Lévy copula between T1, .., Td. Assume that:

(1) the distribution function F̃ (u1, ..., ud−1|v) = ∂F (u1, .., ud−1, v)/∂v is a c.d.f. of an absolutely

continuous distribution for any v ≥ 0;

(2) there exist the functions h1, ..., hd−1 : R × R+ 7→ R and random variables ξ1, ..., ξd−1 such
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that

P {h1(ξ1, v) ≤ u1, ..., hd−1(ξd−1, v) ≤ ud−1} = F̃ (u1, ..., ud−1|v).

Then

~X(s)
d
= ~Z(s), ∀s ∈ [0, 1],

with the d-dimensional stochastic process ~Z(s) = (Z1(s), ..., Zd(s)) defined as follows:

Zk(s) :=
∞∑
i=1

[(
G

(k)
i − µi

)(
U

(−1)
k

(
hk(Q

(k)
i ,Γi)

))1/αk

+µiU
(−1)
k

(
hk(Q

(k)
i ,Γi)

)]
I {Ri ≤ s}

for k = 1..(d− 1) and

Zd(s) :=

∞∑
i=1

[(
G

(d)
i − µi

)(
U

(−1)
d (Γi)

)1/αk
+ µiU

(−1)
d (Γi)

]
I {Ri ≤ s} ,

where

• U1, ..., Ud are the tail integrals of the Lévy measures of subordinators T1, ..., Td, respectively,

and U (−1)
1 , ..., U

(−1)
d are their generalised inverse functions, that is

U
(−1)
i (y) = inf {x > 0 : Ui(x) < y} , i = 1...d, y ∈ R+;

• Γi, i = 1, 2, ..., is the sequence of jumps of the standard Poisson process;

• Ri, i = 1, 2, ..., is a sequence of independent identically distributed quantities with uniform

distribution on [0, 1];

• for i = 1, 2, ..., G(1)
i , ..., G

(d)
i is a sequence of i.i.d. stable variables, G(j)

i ∼ Sαj (σj , βj , 0);

• for i = 1, 2, ..., ~Qi :=
(
Q

(1)
i , ..., Q

(d−1)
i

)
is an i.i.d. sequence having the same distribution

as (ξ1, ..., ξd−1),

and all sequences Γi, Ri, G
(1)
i , ..., G

(d)
i , ~Qi, i = 1, 2, ... are jointly independent.
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Note that in the time-changed models, the use of stable processes has a number of advantages

in comparison with Brownian motion. Section 2.2.7 presents the results of the empirical analysis

showing that the model of a two-dimensional subordinated stable process reproduces the dependence

between the components well both in the case of highly correlated components (Section 2.2.7

considers the returns of Apple and Microsoft shares) and in the case of weak correlation (the

returns of Apple and General Electric shares).

2.3 Construction of the honest confidence sets

2.3.1 Honest confidence sets for the density functions

In Section 3.1, we present a new approach for the construction of the confidence sets for the

density and show the application of this method to some mixture models.

We say that Cn(x) is a (1−α)-confidence set for p, honest with respect to a given class F , if

inf
p∈F

P
{
p(x) ∈ Cn(x), for all x ∈ R

}
≥ 1− α+ en,(13)

where en → 0 as n→∞. The standard approach to the construction of such confidence intervals

consists in the application of theoretical facts known in the literature as the SBR-type theorems

(Smirnov - Bickel - Rosenblatt), which yield that the distribution of the maximal deviation of

the estimate p̂n, i.e.

D[p̂n] = sup
u∈R

|p̂n(u)− p(u)|√
p(u)

(14)

is asympotically close to the Gumbel distribution. Namely, as n→∞,

sup
p∈F

∣∣∣∣P{D[p̂n] ≤ x

an
+ bn

}
− e−e−x

∣∣∣∣→ 0, ∀ x ∈ R(15)

for some deterministic sequences an and bn. Note that the statements of the form (15) have been

proved only for the kernel estimates and for projection estimates constructed using some wavelet

bases (Haar basis and Battle-Lemarie basis).39

39Giné, E. and Nickl, R. Mathematical Foundations of Infinite-dimensional Statistical Models. Cambridge
University Press, 2016.
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Section 3.1 presents a method for the construction of honest confidence intervals with sequences

en of polynomial order. The method is based on the projection estimates, which are defined for

the density functions from the space L 2([A,B]) ([A,B] is a fixed interval) as follows. In the

space L 2([A,B]), we choose a basis Ψ :=
{
ψ0, ψ1, ψ2, ...

}
, divide [A,B] on M intervals of the

length δ = (B−A)/M, and on each interval Im = [am, bm] := [A+ δ(m−1), A+ δm],m = 1..M ,

we reproduce the basis Ψ

ψ
(m)
j (x) =

√
M · ψj

(
M(x− am) +A

)
, m = 1..M, j = 0, 1, ....

Since p ∈ L 2([A,B]), for any M ∈ N,

p(x) =
M∑
m=1

∞∑
j=0

[∫
ψ

(m)
j (u)p(u)du

]
ψ

(m)
j (x).

The projection estimate p is defined as

p̂n(x) =
M∑
m=1

J∑
j=0

[∫
ψ

(m)
j (u)dPn(u)

]
ψ

(m)
j (x),

where J ∈ N and Pn = n−1
∑n

i=1 δXi is the empirical measure.

As shown in Section 3.1.4, the distribution of the maximum deviation of this estimate (in

terms of (14)) is close to the distribution of the supremum of the absolute value of the Gaussian

process

Υ(x) =

∫
I

( J∑
j=0

ψj(x)ψj(u)
)
dW (u), x ∈ [A,B],

where W is the Brownian motion. Due to Proposition 3.1,

P
{

max
t∈[A,B]

∣∣Υ(t)
∣∣ ≥ u} = G(u) +O

(
e−u

2(1+χ)/(2S)
)
, u→∞,

for S = maxt∈[A,B]{VarΥt}, some χ > 0 and some decreasing function G : R+ 7→ R such that

limx→∞G(x) = 0. Note that Proposition 3.1 is a new statement of the theory of extreme values

for non-stationary Gaussian processes.
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Below is the formulation of the statement about the sequence of accompanying laws.

Theorem 6 (Theorem 3.11 in the thesis). Assume that for some J ∈ N, the functions ψ0, ..., ψJ

have the following properties.

(A1) For any j = 0..J,, the function ψj is uniformly Hölder-continuous with some exponent

α ∈ (0, 1], i.e., the Hölder coefficient

∣∣ψj∣∣α := sup
x 6=y, x,y∈[A,B]

|ψj(x)− ψj(y)|
|x− y|α

is finite.

(A2) The maximum of the sum
∑J

j=0 ψ
2
j (x) is attained at a finite number of points.

Assume that the true density p belongs to the class

Pq,H,β :=
{
p− p.d.f. , p ∈ L 2([A,B]), inf

x∈[A,B]
p(x) ≥ q,

∣∣p∣∣
β
≤ H

}
,

for some q > 0, H > 0, β ∈ (0, 1]. Denote the sequence of distribution functions

AM (x) :=


exp
{
−MG

(
x
)}
, if x ≥ cM ,

0, if x < cM

with cM = (2S logM)1/2 − S. Then for M = bnλc with λ ∈ ((2β + 1)−1, 1), and n large enough,

it holds

sup
x∈R

∣∣∣∣P{√ n

M
D[p̂n] ≤ x

}
−AM (x)

∣∣∣∣ ≤ c̄n−γ

with some c̄, γ > 0.

The method of the construction of confidence intervals that are honest with respect to the
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class Pq,H,β is based on Theorem 6. As shown in Section 3.1.6, such intervals can be written as

Cn(x) :=

(
p̂n(x) + (k2

α,M/2)−
[
p̂n(x)k2

α,M + (k4
α,M/4)

]1/2
,

p̂n(x) + (k2
α,M/2) +

[
p̂n(x)k2

α,M + (k4
α,M/4)

]1/2)
,

where kα,M :=
√
M/n · qα,M and qα,M - (1 − α) - quantile of the distribution AM . Numerical

experiments were provided for the density of a mixture of normal distributions

p(x) =
1

2
φ(0,1)(x) +

1

10

4∑
j=0

φ((j/2)−1,1/100)(x),

known in the literature as the Bart Simpson density.40

2.3.2 Estimation of the Lévy measure

The techniques described in the previous section can also be applied in more complex models.

Section 3.2 presents a method for the construction of confidence intervals for the density of

the Lévy measure. Note that in the stochastic time-changed model (see Section 2.2 above), the

Lévy measure of the process X(s) = LT (s), s ≥ 0, is a mixture of probability distributions if

the process T is a subordinator. Indeed, in this case, the Lévy measure of the process X(s) is

represented as

ν(dx) =

∫
R+

µt(dx)νT (dt),

where µt is the probability measure of the process Lt at time t ≥ 0, and νT is the Lévy measure

of T .

Assuming that observations of the process Xt are available at t = ∆, 2∆, ..., n∆ with ∆→ 0

as n→∞, we determine the projection estimate of the Lévy density

ŝn(x) :=
1

n∆

M∑
m=1

J∑
j=0

[
n∑
k=1

ψ
(m)
j

(
X

(k)
∆

)]
ψ

(m)
j (x),(16)

40Wasserman, L. All of Nonparametric Statistics. Springer Science and Business Media. 2006.
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where X(k)
∆ = Xk∆−X(k−1)∆, k = 1..n. The analysis of the maximum deviation of this estimate

is significantly more complex than in the case of projection estimates for the probability density

function. For simplicity, we formulate the result for a special case of the trigonometric basis.

Theorem 7 (Theorem 3.22 in the thesis). Let ŝn(x) be the estimate (16), constructed from a

trigonometric basis, which is defined on the interval [A,A+ δ) as

{ 1√
δ
,

√
2

δ
cos (2jπ(x− a)/δ) ,

√
2

δ
sin (2jπ(x− a)/δ) , j = 1, 2, ..

}
.

Define the sequence of the distribution functions

AM (x) :=


exp

{
−2 exp

{
−x− x2

4 log(h1M)

}
− 2M

(
1− Φ

(
uM (x)

√
2h2

))}
,

if x ≥ −b3/2M ,

0, if x < −b3/2M ,

where

uM (x) :=
x

aM
+ bM

with

aM = 2h2bM , bM =

√
log (h1M)

h2
, h1 =

√
2
∑J/2

j=1 j
2

J + 1
, h2 =

B −A
2(J + 1)

.

Then for T = nκ,M = o(nκ/2/ log n) with κ ∈ (0, 1), it holds for n large enough

sup
x∈R

∣∣∣∣∣P
{√

T

M
D[ŝn] ≤ uM (x)

}
−AM (x)

∣∣∣∣∣ ≤ c̄ n−γ .
with some c̄, γ > 0.
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2.4 Limit laws and phase transitions in mixture models

2.4.1 Parabolic Anderson problem with a potential having a mixture distribution

On the lattice Zd, consider the cube Qn = [−n, n]d and random Anderson Hamiltonian

Hn = ∆ + βVn(x, ω),

where β is the reciprocal temperature, Vn(x, ω), x ∈ Qn, is the random i.i.d. potential, and

∆ψ(x) =
∑

x′:|x′−x|=1

ψ(x′)

is the lattice Laplacian on Qn with Dirichlet boundary condition ψ(x) = 0, x ∈ ∂Qn.We assume

a strong potential and choose Vn(x, ω) =
√
nξ(x, ω), where ξ is a Gaussian random variable.

Now consider the parabolic problem

∂u

∂t
= Hnu, t ≥ 0, x ∈ Qn,

u(t, x) = 0, x ∈ ∂Qn,

u(0, x) = δy(x),

where y ∈ Qn is considered as a parameter.

The fundamental solution of this problem is given by

un(t, x) = un(t, x, y) =

|Qn|∑
i=1

eλn,itψn,i(x)ψn,i(y),(17)

where λn,i, ψn,i are the eigenvalues and the normalised eigenfunctions of the operator Hn, that

is, Hnψn,i = λn,iψn,i. Denote the random exponential sum

Tr etHn =
∑
x∈Qn

un(t, x, x) =

|Qn|∑
i=1

eλn,it,(18)

which for t = β is close to Sn(β) =
∑

y∈Qn e
β
√
nξ(y,ω).
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By analogy, the trace of the Hamiltonians with potentials

Vn(x, ω) =
√
nξ(x, ω), where ξ(x, ω) =


η(x, ω), with probability 1/2,

ζ(x, ω), with probability 1/2,

where η, ζ are independent Gaussian random variables, is close to the partition function of the

REM model with a mixture distribution. The limit distributions and phase transitions of this

model are considered in Section 4.1.

The mathematical object, which is studied in Section 4.1, can be presented as

Sn(β) =

benc∑
j=1

eβ
√
nZj ,

where Z1, ..., Zbenc is a sequence of i.i.d. random variables having the distribution function

Fa,σ(x) =
1

2
Φ (x) +

1

2
Φ

(
x−
√
na

σ

)

with a ∈ R, σ > 0.

Theorem 8 (Theorems 4.3, 4.4, 4.5 in the thesis). a

1. The law of large numbers

Sn(β)

E[Sn(β)]

p−→ 1, n→∞,

holds for β < β+, where

β+ =



√
2/σ, if a >

(
1− σ2

)
/(
√

2σ),

β◦ := 2a
1−σ2 , if

(
1− σ2

)
/
√

2 < a <
(
1− σ2

)
/(
√

2σ),

√
2, if a <

(
1− σ2

)
/
√

2.
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2. The central limit theorem

Sn(β)− E[Sn(β)]√
Var(Sn(β))

d−→ ζ0, n→∞,

with ζ0 ∼ N(0, 1), holds for β < β+/2.

3. The convergence in distribution to stable laws holds in the following cases.

(i) If a <
√

2(1− σ), then there exists a deterministic sequence a]n(β) such that

Sn(β)− a]n(β)

γn(β)

d−→ ζβ, n→∞,

for any β > β], where

β] =


β�/2, if σ < 1 and a > (1− σ2)/

√
2,

√
2/2, elsewhere,

with β� =

(
(
√

2− a)−
√(√

2− a
)2 − 2σ2

)
/σ2, and ζβ is a random variable having

(
√

2/β)-stable distribution with Lévy triplet
(

0, 0, (2π)−1/2x−
√

2/βIx>0dx
)
.

(ii) If a >
√

2(1− σ), there exists a deterministic sequence ăn(β) such that

Sn(β)− ăn(β)

eβanγn(βσ)

d−→ ζβσ, n→∞,

for any β > β̆, where

β] =


β∗/2, if σ > 1 and a < (1− σ2)/(

√
2σ),

√
2/(2σ), elsewhere

with β∗ =
(
σ
√

2 + a
)
−
√(

σ
√

2 + a
)2 − 2.
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2.5 Determining the type of the distribution

Section 5.2 presents new results on the type of the generalised Dickman-Goncharov distribution,

defined as the distribution of a random variable B satisfying the distributional equation

B d
= T + BX ,

where (T ,X ) and B in the right-hand side are independent. In Section 5.2, we consider the case

when T = X , and these variables take the values ρm with probabilities qpm, m = 0, 1, 2, .., where

ρ ∈ (0, 1), p ∈ (0, 1) and q = 1− p (discrete Dickman-Goncharov distribution). It is shown that

in this case

B d
=
∞∑
n=0

Z(n)
p ρn,

where Z(1)
p , Z

(2)
p , ... - i.i.d. r.v.’s taking the values 0, 1, 2, 3, .. with probabilities p, pq, pq2, pq3, ....

The following theorem holds.

Theorem 9 (Theorem 5.5 in the thesis). The distribution of the random variable B is absolutely

continuous for almost all

ρ ∈
( q2 + 1

(q + 1)2
, 1
)
.

3 Conclusion

The thesis presents new approaches to solving various probabilistic and statistical problems for

mixture models. The obtained results are related to five different directions of study in this field

(see p. 8). The results are published in twelve papers, among them eleven papers are published in

the journals with quartiles Q1/Q2 (in Scopus). The main findings are presented in this summary

in the form of nine theorems.
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